classifier_data_lib.py 54.5 KB
Newer Older
Frederick Liu's avatar
Frederick Liu committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Frederick Liu's avatar
Frederick Liu committed
14

15
16
17
18
"""BERT library to process data for classification task."""

import collections
import csv
19
import importlib
stephenwu's avatar
stephenwu committed
20
import json
21
22
23
24
import os

from absl import logging
import tensorflow as tf
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
25
import tensorflow_datasets as tfds
26

27
from official.nlp.bert import tokenization
28
29
30


class InputExample(object):
31
  """A single training/test example for simple seq regression/classification."""
32

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
33
34
35
36
37
38
  def __init__(self,
               guid,
               text_a,
               text_b=None,
               label=None,
               weight=None,
Chen Chen's avatar
Chen Chen committed
39
               example_id=None):
40
41
42
43
44
45
46
47
    """Constructs a InputExample.

    Args:
      guid: Unique id for the example.
      text_a: string. The untokenized text of the first sequence. For single
        sequence tasks, only this sequence must be specified.
      text_b: (Optional) string. The untokenized text of the second sequence.
        Only must be specified for sequence pair tasks.
48
49
50
      label: (Optional) string for classification, float for regression. The
        label of the example. This should be specified for train and dev
        examples, but not for test examples.
Maxim Neumann's avatar
Maxim Neumann committed
51
52
      weight: (Optional) float. The weight of the example to be used during
        training.
Chen Chen's avatar
Chen Chen committed
53
54
      example_id: (Optional) int. The int identification number of example in
        the corpus.
55
56
57
58
59
    """
    self.guid = guid
    self.text_a = text_a
    self.text_b = text_b
    self.label = label
Maxim Neumann's avatar
Maxim Neumann committed
60
    self.weight = weight
Chen Chen's avatar
Chen Chen committed
61
    self.example_id = example_id
62
63
64
65
66
67
68
69
70
71


class InputFeatures(object):
  """A single set of features of data."""

  def __init__(self,
               input_ids,
               input_mask,
               segment_ids,
               label_id,
Maxim Neumann's avatar
Maxim Neumann committed
72
               is_real_example=True,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
73
               weight=None,
Chen Chen's avatar
Chen Chen committed
74
               example_id=None):
75
76
77
78
79
    self.input_ids = input_ids
    self.input_mask = input_mask
    self.segment_ids = segment_ids
    self.label_id = label_id
    self.is_real_example = is_real_example
Maxim Neumann's avatar
Maxim Neumann committed
80
    self.weight = weight
Chen Chen's avatar
Chen Chen committed
81
    self.example_id = example_id
82
83
84


class DataProcessor(object):
85
  """Base class for converters for seq regression/classification datasets."""
86

87
88
  def __init__(self, process_text_fn=tokenization.convert_to_unicode):
    self.process_text_fn = process_text_fn
89
90
    self.is_regression = False
    self.label_type = None
91

92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
  def get_train_examples(self, data_dir):
    """Gets a collection of `InputExample`s for the train set."""
    raise NotImplementedError()

  def get_dev_examples(self, data_dir):
    """Gets a collection of `InputExample`s for the dev set."""
    raise NotImplementedError()

  def get_test_examples(self, data_dir):
    """Gets a collection of `InputExample`s for prediction."""
    raise NotImplementedError()

  def get_labels(self):
    """Gets the list of labels for this data set."""
    raise NotImplementedError()

  @staticmethod
  def get_processor_name():
    """Gets the string identifier of the processor."""
    raise NotImplementedError()

  @classmethod
  def _read_tsv(cls, input_file, quotechar=None):
    """Reads a tab separated value file."""
    with tf.io.gfile.GFile(input_file, "r") as f:
      reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
      lines = []
      for line in reader:
        lines.append(line)
      return lines

stephenwu's avatar
stephenwu committed
123
  @classmethod
stephenwu's avatar
stephenwu committed
124
  def _read_jsonl(cls, input_file):
stephenwu's avatar
stephenwu committed
125
    """Reads a json line file."""
126
    with tf.io.gfile.GFile(input_file, "r") as f:
stephenwu's avatar
stephenwu committed
127
128
129
130
131
      lines = []
      for json_str in f:
        lines.append(json.loads(json_str))
    return lines

132

Vincent Etter's avatar
Vincent Etter committed
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
class AxProcessor(DataProcessor):
  """Processor for the AX dataset (GLUE diagnostics dataset)."""

  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

  def get_dev_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

  def get_labels(self):
    """See base class."""
    return ["contradiction", "entailment", "neutral"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "AX"

  def _create_examples(self, lines, set_type):
    """Creates examples for the training/dev/test sets."""
    text_a_index = 1 if set_type == "test" else 8
    text_b_index = 2 if set_type == "test" else 9
    examples = []
    for i, line in enumerate(lines):
      # Skip header.
      if i == 0:
        continue
      guid = "%s-%s" % (set_type, self.process_text_fn(line[0]))
      text_a = self.process_text_fn(line[text_a_index])
      text_b = self.process_text_fn(line[text_b_index])
      if set_type == "test":
        label = "contradiction"
      else:
        label = self.process_text_fn(line[-1])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples


181
182
class ColaProcessor(DataProcessor):
  """Processor for the CoLA data set (GLUE version)."""
183
184
185

  def get_train_examples(self, data_dir):
    """See base class."""
186
187
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
188
189
190

  def get_dev_examples(self, data_dir):
    """See base class."""
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

  def get_labels(self):
    """See base class."""
    return ["0", "1"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "COLA"

  def _create_examples(self, lines, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
209
    """Creates examples for the training/dev/test sets."""
210
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
211
212
    for i, line in enumerate(lines):
      # Only the test set has a header.
213
      if set_type == "test" and i == 0:
214
        continue
215
216
217
218
219
220
221
      guid = "%s-%s" % (set_type, i)
      if set_type == "test":
        text_a = self.process_text_fn(line[1])
        label = "0"
      else:
        text_a = self.process_text_fn(line[3])
        label = self.process_text_fn(line[1])
222
      examples.append(
223
          InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
224
225
    return examples

226

227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
class ImdbProcessor(DataProcessor):
  """Processor for the IMDb dataset."""

  def get_labels(self):
    return ["neg", "pos"]

  def get_train_examples(self, data_dir):
    return self._create_examples(os.path.join(data_dir, "train"))

  def get_dev_examples(self, data_dir):
    return self._create_examples(os.path.join(data_dir, "test"))

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "IMDB"

  def _create_examples(self, data_dir):
    """Creates examples."""
    examples = []
    for label in ["neg", "pos"]:
      cur_dir = os.path.join(data_dir, label)
      for filename in tf.io.gfile.listdir(cur_dir):
        if not filename.endswith("txt"):
          continue

        if len(examples) % 1000 == 0:
          logging.info("Loading dev example %d", len(examples))

        path = os.path.join(cur_dir, filename)
        with tf.io.gfile.GFile(path, "r") as f:
          text = f.read().strip().replace("<br />", " ")
        examples.append(
            InputExample(
                guid="unused_id", text_a=text, text_b=None, label=label))
    return examples


265
266
267
class MnliProcessor(DataProcessor):
  """Processor for the MultiNLI data set (GLUE version)."""

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
268
269
270
271
272
273
274
275
  def __init__(self,
               mnli_type="matched",
               process_text_fn=tokenization.convert_to_unicode):
    super(MnliProcessor, self).__init__(process_text_fn)
    if mnli_type not in ("matched", "mismatched"):
      raise ValueError("Invalid `mnli_type`: %s" % mnli_type)
    self.mnli_type = mnli_type

276
277
278
279
280
281
282
  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

  def get_dev_examples(self, data_dir):
    """See base class."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
283
284
285
286
287
288
289
290
    if self.mnli_type == "matched":
      return self._create_examples(
          self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")),
          "dev_matched")
    else:
      return self._create_examples(
          self._read_tsv(os.path.join(data_dir, "dev_mismatched.tsv")),
          "dev_mismatched")
291

Tianqi Liu's avatar
Tianqi Liu committed
292
293
  def get_test_examples(self, data_dir):
    """See base class."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
294
295
296
297
298
299
    if self.mnli_type == "matched":
      return self._create_examples(
          self._read_tsv(os.path.join(data_dir, "test_matched.tsv")), "test")
    else:
      return self._create_examples(
          self._read_tsv(os.path.join(data_dir, "test_mismatched.tsv")), "test")
Tianqi Liu's avatar
Tianqi Liu committed
300

301
302
303
304
305
306
307
  def get_labels(self):
    """See base class."""
    return ["contradiction", "entailment", "neutral"]

  @staticmethod
  def get_processor_name():
    """See base class."""
308
    return "MNLI"
Tianqi Liu's avatar
Tianqi Liu committed
309

310
  def _create_examples(self, lines, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
311
    """Creates examples for the training/dev/test sets."""
Tianqi Liu's avatar
Tianqi Liu committed
312
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
313
    for i, line in enumerate(lines):
314
315
316
317
318
319
320
321
322
      if i == 0:
        continue
      guid = "%s-%s" % (set_type, self.process_text_fn(line[0]))
      text_a = self.process_text_fn(line[8])
      text_b = self.process_text_fn(line[9])
      if set_type == "test":
        label = "contradiction"
      else:
        label = self.process_text_fn(line[-1])
Tianqi Liu's avatar
Tianqi Liu committed
323
324
325
326
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

327
328
329
330
331
332
333
334
335

class MrpcProcessor(DataProcessor):
  """Processor for the MRPC data set (GLUE version)."""

  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

Tianqi Liu's avatar
Tianqi Liu committed
336
337
  def get_dev_examples(self, data_dir):
    """See base class."""
338
339
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
Tianqi Liu's avatar
Tianqi Liu committed
340
341
342

  def get_test_examples(self, data_dir):
    """See base class."""
343
344
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
Tianqi Liu's avatar
Tianqi Liu committed
345
346
347

  def get_labels(self):
    """See base class."""
348
    return ["0", "1"]
Tianqi Liu's avatar
Tianqi Liu committed
349
350
351
352

  @staticmethod
  def get_processor_name():
    """See base class."""
353
354
355
    return "MRPC"

  def _create_examples(self, lines, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
356
    """Creates examples for the training/dev/test sets."""
357
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
358
    for i, line in enumerate(lines):
359
360
361
362
363
364
365
366
367
368
369
370
      if i == 0:
        continue
      guid = "%s-%s" % (set_type, i)
      text_a = self.process_text_fn(line[3])
      text_b = self.process_text_fn(line[4])
      if set_type == "test":
        label = "0"
      else:
        label = self.process_text_fn(line[0])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples
Tianqi Liu's avatar
Tianqi Liu committed
371
372
373
374
375
376


class PawsxProcessor(DataProcessor):
  """Processor for the PAWS-X data set."""
  supported_languages = ["de", "en", "es", "fr", "ja", "ko", "zh"]

Tianqi Liu's avatar
Tianqi Liu committed
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
  def __init__(self,
               language="en",
               process_text_fn=tokenization.convert_to_unicode):
    super(PawsxProcessor, self).__init__(process_text_fn)
    if language == "all":
      self.languages = PawsxProcessor.supported_languages
    elif language not in PawsxProcessor.supported_languages:
      raise ValueError("language %s is not supported for PAWS-X task." %
                       language)
    else:
      self.languages = [language]

  def get_train_examples(self, data_dir):
    """See base class."""
    lines = []
    for language in self.languages:
      if language == "en":
        train_tsv = "train.tsv"
      else:
        train_tsv = "translated_train.tsv"
      # Skips the header.
      lines.extend(
Tianqi Liu's avatar
Tianqi Liu committed
399
          self._read_tsv(os.path.join(data_dir, language, train_tsv))[1:])
Tianqi Liu's avatar
Tianqi Liu committed
400
401

    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
402
    for i, line in enumerate(lines):
Tianqi Liu's avatar
Tianqi Liu committed
403
404
405
406
407
408
409
410
411
412
413
      guid = "train-%d" % i
      text_a = self.process_text_fn(line[1])
      text_b = self.process_text_fn(line[2])
      label = self.process_text_fn(line[3])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

  def get_dev_examples(self, data_dir):
    """See base class."""
    lines = []
Tianqi Liu's avatar
Tianqi Liu committed
414
    for lang in PawsxProcessor.supported_languages:
Tianqi Liu's avatar
Tianqi Liu committed
415
416
      lines.extend(
          self._read_tsv(os.path.join(data_dir, lang, "dev_2k.tsv"))[1:])
Tianqi Liu's avatar
Tianqi Liu committed
417
418

    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
419
    for i, line in enumerate(lines):
Tianqi Liu's avatar
Tianqi Liu committed
420
      guid = "dev-%d" % i
Tianqi Liu's avatar
Tianqi Liu committed
421
422
423
      text_a = self.process_text_fn(line[1])
      text_b = self.process_text_fn(line[2])
      label = self.process_text_fn(line[3])
Tianqi Liu's avatar
Tianqi Liu committed
424
425
426
427
428
429
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

  def get_test_examples(self, data_dir):
    """See base class."""
Tianqi Liu's avatar
Tianqi Liu committed
430
431
    examples_by_lang = {k: [] for k in self.supported_languages}
    for lang in self.supported_languages:
Tianqi Liu's avatar
Tianqi Liu committed
432
      lines = self._read_tsv(os.path.join(data_dir, lang, "test_2k.tsv"))[1:]
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
433
      for i, line in enumerate(lines):
Tianqi Liu's avatar
Tianqi Liu committed
434
        guid = "test-%d" % i
Tianqi Liu's avatar
Tianqi Liu committed
435
436
437
        text_a = self.process_text_fn(line[1])
        text_b = self.process_text_fn(line[2])
        label = self.process_text_fn(line[3])
Tianqi Liu's avatar
Tianqi Liu committed
438
        examples_by_lang[lang].append(
Tianqi Liu's avatar
Tianqi Liu committed
439
440
441
442
443
444
445
446
447
448
            InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples_by_lang

  def get_labels(self):
    """See base class."""
    return ["0", "1"]

  @staticmethod
  def get_processor_name():
    """See base class."""
Tianqi Liu's avatar
Tianqi Liu committed
449
450
451
    return "XTREME-PAWS-X"


452
453
class QnliProcessor(DataProcessor):
  """Processor for the QNLI data set (GLUE version)."""
Saurabh Saxena's avatar
Saurabh Saxena committed
454
455
456
457
458
459
460
461
462

  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

  def get_dev_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
463
        self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev_matched")
Saurabh Saxena's avatar
Saurabh Saxena committed
464
465
466
467
468
469
470
471

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

  def get_labels(self):
    """See base class."""
472
    return ["entailment", "not_entailment"]
Saurabh Saxena's avatar
Saurabh Saxena committed
473
474
475
476

  @staticmethod
  def get_processor_name():
    """See base class."""
477
    return "QNLI"
Saurabh Saxena's avatar
Saurabh Saxena committed
478
479

  def _create_examples(self, lines, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
480
    """Creates examples for the training/dev/test sets."""
Saurabh Saxena's avatar
Saurabh Saxena committed
481
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
482
    for i, line in enumerate(lines):
Saurabh Saxena's avatar
Saurabh Saxena committed
483
484
      if i == 0:
        continue
485
486
487
488
489
490
491
492
493
      guid = "%s-%s" % (set_type, 1)
      if set_type == "test":
        text_a = tokenization.convert_to_unicode(line[1])
        text_b = tokenization.convert_to_unicode(line[2])
        label = "entailment"
      else:
        text_a = tokenization.convert_to_unicode(line[1])
        text_b = tokenization.convert_to_unicode(line[2])
        label = tokenization.convert_to_unicode(line[-1])
Tianqi Liu's avatar
Tianqi Liu committed
494
495
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
Saurabh Saxena's avatar
Saurabh Saxena committed
496
497
498
    return examples


499
500
class QqpProcessor(DataProcessor):
  """Processor for the QQP data set (GLUE version)."""
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523

  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

  def get_dev_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

  def get_labels(self):
    """See base class."""
    return ["0", "1"]

  @staticmethod
  def get_processor_name():
    """See base class."""
524
    return "QQP"
525
526

  def _create_examples(self, lines, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
527
    """Creates examples for the training/dev/test sets."""
528
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
529
    for i, line in enumerate(lines):
530
531
532
      if i == 0:
        continue
      guid = "%s-%s" % (set_type, line[0])
533
534
535
536
537
538
539
540
541
542
543
544
      if set_type == "test":
        text_a = line[1]
        text_b = line[2]
        label = "0"
      else:
        # There appear to be some garbage lines in the train dataset.
        try:
          text_a = line[3]
          text_b = line[4]
          label = line[5]
        except IndexError:
          continue
545
      examples.append(
546
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
547
548
549
    return examples


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
class RteProcessor(DataProcessor):
  """Processor for the RTE data set (GLUE version)."""

  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

  def get_dev_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

  def get_labels(self):
    """See base class."""
    # All datasets are converted to 2-class split, where for 3-class datasets we
    # collapse neutral and contradiction into not_entailment.
    return ["entailment", "not_entailment"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "RTE"

  def _create_examples(self, lines, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
580
    """Creates examples for the training/dev/test sets."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
581
582
583
584
585
    examples = []
    for i, line in enumerate(lines):
      if i == 0:
        continue
      guid = "%s-%s" % (set_type, i)
586
587
      text_a = tokenization.convert_to_unicode(line[1])
      text_b = tokenization.convert_to_unicode(line[2])
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
588
589
590
591
592
593
594
595
596
      if set_type == "test":
        label = "entailment"
      else:
        label = tokenization.convert_to_unicode(line[3])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples


597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
class SstProcessor(DataProcessor):
  """Processor for the SST-2 data set (GLUE version)."""

  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

  def get_dev_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

  def get_labels(self):
    """See base class."""
    return ["0", "1"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "SST-2"

  def _create_examples(self, lines, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
625
    """Creates examples for the training/dev/test sets."""
626
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
627
    for i, line in enumerate(lines):
628
629
630
631
632
633
634
635
636
637
638
639
640
641
      if i == 0:
        continue
      guid = "%s-%s" % (set_type, i)
      if set_type == "test":
        text_a = tokenization.convert_to_unicode(line[1])
        label = "0"
      else:
        text_a = tokenization.convert_to_unicode(line[0])
        label = tokenization.convert_to_unicode(line[1])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
    return examples


642
643
644
645
646
647
648
649
class StsBProcessor(DataProcessor):
  """Processor for the STS-B data set (GLUE version)."""

  def __init__(self, process_text_fn=tokenization.convert_to_unicode):
    super(StsBProcessor, self).__init__(process_text_fn=process_text_fn)
    self.is_regression = True
    self.label_type = float
    self._labels = None
650
651
652
653
654
655
656
657
658

  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

  def get_dev_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
659
        self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
660
661
662
663
664
665
666
667

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

  def get_labels(self):
    """See base class."""
668
    return self._labels
669
670
671
672

  @staticmethod
  def get_processor_name():
    """See base class."""
673
    return "STS-B"
674
675

  def _create_examples(self, lines, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
676
    """Creates examples for the training/dev/test sets."""
677
    examples = []
678
    for i, line in enumerate(lines):
679
680
      if i == 0:
        continue
681
682
683
      guid = "%s-%s" % (set_type, i)
      text_a = tokenization.convert_to_unicode(line[7])
      text_b = tokenization.convert_to_unicode(line[8])
684
      if set_type == "test":
685
        label = 0.0
686
      else:
687
        label = self.label_type(tokenization.convert_to_unicode(line[9]))
688
689
690
691
692
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
693
class TfdsProcessor(DataProcessor):
Maxim Neumann's avatar
Maxim Neumann committed
694
  """Processor for generic text classification and regression TFDS data set.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
695
696
697
698
699
700
701
702
703
704

  The TFDS parameters are expected to be provided in the tfds_params string, in
  a comma-separated list of parameter assignments.
  Examples:
    tfds_params="dataset=scicite,text_key=string"
    tfds_params="dataset=imdb_reviews,test_split=,dev_split=test"
    tfds_params="dataset=glue/cola,text_key=sentence"
    tfds_params="dataset=glue/sst2,text_key=sentence"
    tfds_params="dataset=glue/qnli,text_key=question,text_b_key=sentence"
    tfds_params="dataset=glue/mrpc,text_key=sentence1,text_b_key=sentence2"
Maxim Neumann's avatar
Maxim Neumann committed
705
706
    tfds_params="dataset=glue/stsb,text_key=sentence1,text_b_key=sentence2,"
                "is_regression=true,label_type=float"
Maxim Neumann's avatar
Maxim Neumann committed
707
708
    tfds_params="dataset=snli,text_key=premise,text_b_key=hypothesis,"
                "skip_label=-1"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
709
710
711
712
  Possible parameters (please refer to the documentation of Tensorflow Datasets
  (TFDS) for the meaning of individual parameters):
    dataset: Required dataset name (potentially with subset and version number).
    data_dir: Optional TFDS source root directory.
713
    module_import: Optional Dataset module to import.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
714
715
716
717
718
719
720
721
722
    train_split: Name of the train split (defaults to `train`).
    dev_split: Name of the dev split (defaults to `validation`).
    test_split: Name of the test split (defaults to `test`).
    text_key: Key of the text_a feature (defaults to `text`).
    text_b_key: Key of the second text feature if available.
    label_key: Key of the label feature (defaults to `label`).
    test_text_key: Key of the text feature to use in test set.
    test_text_b_key: Key of the second text feature to use in test set.
    test_label: String to be used as the label for all test examples.
Maxim Neumann's avatar
Maxim Neumann committed
723
    label_type: Type of the label key (defaults to `int`).
Maxim Neumann's avatar
Maxim Neumann committed
724
    weight_key: Key of the float sample weight (is not used if not provided).
Maxim Neumann's avatar
Maxim Neumann committed
725
    is_regression: Whether the task is a regression problem (defaults to False).
Maxim Neumann's avatar
Maxim Neumann committed
726
    skip_label: Skip examples with given label (defaults to None).
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
727
728
  """

Tianqi Liu's avatar
Tianqi Liu committed
729
730
  def __init__(self,
               tfds_params,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
731
732
733
               process_text_fn=tokenization.convert_to_unicode):
    super(TfdsProcessor, self).__init__(process_text_fn)
    self._process_tfds_params_str(tfds_params)
734
735
736
    if self.module_import:
      importlib.import_module(self.module_import)

Tianqi Liu's avatar
Tianqi Liu committed
737
738
    self.dataset, info = tfds.load(
        self.dataset_name, data_dir=self.data_dir, with_info=True)
Maxim Neumann's avatar
Maxim Neumann committed
739
740
741
742
    if self.is_regression:
      self._labels = None
    else:
      self._labels = list(range(info.features[self.label_key].num_classes))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
743
744
745

  def _process_tfds_params_str(self, params_str):
    """Extracts TFDS parameters from a comma-separated assignements string."""
Maxim Neumann's avatar
Maxim Neumann committed
746
747
748
    dtype_map = {"int": int, "float": float}
    cast_str_to_bool = lambda s: s.lower() not in ["false", "0"]

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
749
750
751
752
    tuples = [x.split("=") for x in params_str.split(",")]
    d = {k.strip(): v.strip() for k, v in tuples}
    self.dataset_name = d["dataset"]  # Required.
    self.data_dir = d.get("data_dir", None)
753
    self.module_import = d.get("module_import", None)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
754
755
756
757
758
759
760
761
762
    self.train_split = d.get("train_split", "train")
    self.dev_split = d.get("dev_split", "validation")
    self.test_split = d.get("test_split", "test")
    self.text_key = d.get("text_key", "text")
    self.text_b_key = d.get("text_b_key", None)
    self.label_key = d.get("label_key", "label")
    self.test_text_key = d.get("test_text_key", self.text_key)
    self.test_text_b_key = d.get("test_text_b_key", self.text_b_key)
    self.test_label = d.get("test_label", "test_example")
Maxim Neumann's avatar
Maxim Neumann committed
763
764
    self.label_type = dtype_map[d.get("label_type", "int")]
    self.is_regression = cast_str_to_bool(d.get("is_regression", "False"))
Maxim Neumann's avatar
Maxim Neumann committed
765
    self.weight_key = d.get("weight_key", None)
Maxim Neumann's avatar
Maxim Neumann committed
766
767
768
    self.skip_label = d.get("skip_label", None)
    if self.skip_label is not None:
      self.skip_label = self.label_type(self.skip_label)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788

  def get_train_examples(self, data_dir):
    assert data_dir is None
    return self._create_examples(self.train_split, "train")

  def get_dev_examples(self, data_dir):
    assert data_dir is None
    return self._create_examples(self.dev_split, "dev")

  def get_test_examples(self, data_dir):
    assert data_dir is None
    return self._create_examples(self.test_split, "test")

  def get_labels(self):
    return self._labels

  def get_processor_name(self):
    return "TFDS_" + self.dataset_name

  def _create_examples(self, split_name, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
789
    """Creates examples for the training/dev/test sets."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
790
791
792
793
    if split_name not in self.dataset:
      raise ValueError("Split {} not available.".format(split_name))
    dataset = self.dataset[split_name].as_numpy_iterator()
    examples = []
Maxim Neumann's avatar
Maxim Neumann committed
794
    text_b, weight = None, None
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
795
796
797
798
799
800
801
802
803
804
805
    for i, example in enumerate(dataset):
      guid = "%s-%s" % (set_type, i)
      if set_type == "test":
        text_a = self.process_text_fn(example[self.test_text_key])
        if self.test_text_b_key:
          text_b = self.process_text_fn(example[self.test_text_b_key])
        label = self.test_label
      else:
        text_a = self.process_text_fn(example[self.text_key])
        if self.text_b_key:
          text_b = self.process_text_fn(example[self.text_b_key])
Maxim Neumann's avatar
Maxim Neumann committed
806
        label = self.label_type(example[self.label_key])
Maxim Neumann's avatar
Maxim Neumann committed
807
808
        if self.skip_label is not None and label == self.skip_label:
          continue
Maxim Neumann's avatar
Maxim Neumann committed
809
810
      if self.weight_key:
        weight = float(example[self.weight_key])
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
811
      examples.append(
Tianqi Liu's avatar
Tianqi Liu committed
812
813
814
815
816
817
          InputExample(
              guid=guid,
              text_a=text_a,
              text_b=text_b,
              label=label,
              weight=weight))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
818
819
820
    return examples


821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
class WnliProcessor(DataProcessor):
  """Processor for the WNLI data set (GLUE version)."""

  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

  def get_dev_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

  def get_labels(self):
    """See base class."""
    return ["0", "1"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "WNLI"

  def _create_examples(self, lines, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
849
    """Creates examples for the training/dev/test sets."""
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
    examples = []
    for i, line in enumerate(lines):
      if i == 0:
        continue
      guid = "%s-%s" % (set_type, i)
      text_a = tokenization.convert_to_unicode(line[1])
      text_b = tokenization.convert_to_unicode(line[2])
      if set_type == "test":
        label = "0"
      else:
        label = tokenization.convert_to_unicode(line[3])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples


866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
class XnliProcessor(DataProcessor):
  """Processor for the XNLI data set."""
  supported_languages = [
      "ar", "bg", "de", "el", "en", "es", "fr", "hi", "ru", "sw", "th", "tr",
      "ur", "vi", "zh"
  ]

  def __init__(self,
               language="en",
               process_text_fn=tokenization.convert_to_unicode):
    super(XnliProcessor, self).__init__(process_text_fn)
    if language == "all":
      self.languages = XnliProcessor.supported_languages
    elif language not in XnliProcessor.supported_languages:
      raise ValueError("language %s is not supported for XNLI task." % language)
    else:
      self.languages = [language]

  def get_train_examples(self, data_dir):
    """See base class."""
    lines = []
    for language in self.languages:
      # Skips the header.
      lines.extend(
          self._read_tsv(
              os.path.join(data_dir, "multinli",
                           "multinli.train.%s.tsv" % language))[1:])

    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
895
    for i, line in enumerate(lines):
896
897
898
899
900
901
902
903
904
905
906
907
908
909
      guid = "train-%d" % i
      text_a = self.process_text_fn(line[0])
      text_b = self.process_text_fn(line[1])
      label = self.process_text_fn(line[2])
      if label == self.process_text_fn("contradictory"):
        label = self.process_text_fn("contradiction")
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

  def get_dev_examples(self, data_dir):
    """See base class."""
    lines = self._read_tsv(os.path.join(data_dir, "xnli.dev.tsv"))
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
910
    for i, line in enumerate(lines):
911
912
913
914
915
916
917
918
919
920
921
922
923
924
      if i == 0:
        continue
      guid = "dev-%d" % i
      text_a = self.process_text_fn(line[6])
      text_b = self.process_text_fn(line[7])
      label = self.process_text_fn(line[1])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

  def get_test_examples(self, data_dir):
    """See base class."""
    lines = self._read_tsv(os.path.join(data_dir, "xnli.test.tsv"))
    examples_by_lang = {k: [] for k in XnliProcessor.supported_languages}
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
925
    for i, line in enumerate(lines):
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
      if i == 0:
        continue
      guid = "test-%d" % i
      language = self.process_text_fn(line[0])
      text_a = self.process_text_fn(line[6])
      text_b = self.process_text_fn(line[7])
      label = self.process_text_fn(line[1])
      examples_by_lang[language].append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples_by_lang

  def get_labels(self):
    """See base class."""
    return ["contradiction", "entailment", "neutral"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "XNLI"


class XtremePawsxProcessor(DataProcessor):
  """Processor for the XTREME PAWS-X data set."""
  supported_languages = ["de", "en", "es", "fr", "ja", "ko", "zh"]

951
952
953
954
955
956
  def __init__(self,
               process_text_fn=tokenization.convert_to_unicode,
               translated_data_dir=None,
               only_use_en_dev=True):
    """See base class.

957
    Args:
958
959
960
961
962
963
964
965
966
967
      process_text_fn: See base class.
      translated_data_dir: If specified, will also include translated data in
        the training and testing data.
      only_use_en_dev: If True, only use english dev data. Otherwise, use dev
        data from all languages.
    """
    super(XtremePawsxProcessor, self).__init__(process_text_fn)
    self.translated_data_dir = translated_data_dir
    self.only_use_en_dev = only_use_en_dev

968
969
970
  def get_train_examples(self, data_dir):
    """See base class."""
    examples = []
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
    if self.translated_data_dir is None:
      lines = self._read_tsv(os.path.join(data_dir, "train-en.tsv"))
      for i, line in enumerate(lines):
        guid = "train-%d" % i
        text_a = self.process_text_fn(line[0])
        text_b = self.process_text_fn(line[1])
        label = self.process_text_fn(line[2])
        examples.append(
            InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    else:
      for lang in self.supported_languages:
        lines = self._read_tsv(
            os.path.join(self.translated_data_dir, "translate-train",
                         f"en-{lang}-translated.tsv"))
        for i, line in enumerate(lines):
          guid = f"train-{lang}-{i}"
          text_a = self.process_text_fn(line[2])
          text_b = self.process_text_fn(line[3])
          label = self.process_text_fn(line[4])
          examples.append(
              InputExample(
                  guid=guid, text_a=text_a, text_b=text_b, label=label))
993
994
995
996
997
    return examples

  def get_dev_examples(self, data_dir):
    """See base class."""
    examples = []
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
    if self.only_use_en_dev:
      lines = self._read_tsv(os.path.join(data_dir, "dev-en.tsv"))
      for i, line in enumerate(lines):
        guid = "dev-%d" % i
        text_a = self.process_text_fn(line[0])
        text_b = self.process_text_fn(line[1])
        label = self.process_text_fn(line[2])
        examples.append(
            InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    else:
      for lang in self.supported_languages:
        lines = self._read_tsv(os.path.join(data_dir, f"dev-{lang}.tsv"))
        for i, line in enumerate(lines):
          guid = f"dev-{lang}-{i}"
          text_a = self.process_text_fn(line[0])
          text_b = self.process_text_fn(line[1])
          label = self.process_text_fn(line[2])
          examples.append(
              InputExample(
                  guid=guid, text_a=text_a, text_b=text_b, label=label))
1018
1019
1020
1021
    return examples

  def get_test_examples(self, data_dir):
    """See base class."""
1022
    examples_by_lang = {}
1023
    for lang in self.supported_languages:
1024
      examples_by_lang[lang] = []
1025
      lines = self._read_tsv(os.path.join(data_dir, f"test-{lang}.tsv"))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1026
      for i, line in enumerate(lines):
1027
        guid = f"test-{lang}-{i}"
1028
1029
1030
1031
1032
        text_a = self.process_text_fn(line[0])
        text_b = self.process_text_fn(line[1])
        label = "0"
        examples_by_lang[lang].append(
            InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
    if self.translated_data_dir is not None:
      for lang in self.supported_languages:
        if lang == "en":
          continue
        examples_by_lang[f"{lang}-en"] = []
        lines = self._read_tsv(
            os.path.join(self.translated_data_dir, "translate-test",
                         f"test-{lang}-en-translated.tsv"))
        for i, line in enumerate(lines):
          guid = f"test-{lang}-en-{i}"
          text_a = self.process_text_fn(line[2])
          text_b = self.process_text_fn(line[3])
          label = "0"
          examples_by_lang[f"{lang}-en"].append(
              InputExample(
                  guid=guid, text_a=text_a, text_b=text_b, label=label))
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
    return examples_by_lang

  def get_labels(self):
    """See base class."""
    return ["0", "1"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "XTREME-PAWS-X"


class XtremeXnliProcessor(DataProcessor):
  """Processor for the XTREME XNLI data set."""
  supported_languages = [
      "ar", "bg", "de", "el", "en", "es", "fr", "hi", "ru", "sw", "th", "tr",
      "ur", "vi", "zh"
  ]

1068
1069
1070
1071
1072
1073
  def __init__(self,
               process_text_fn=tokenization.convert_to_unicode,
               translated_data_dir=None,
               only_use_en_dev=True):
    """See base class.

1074
    Args:
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
      process_text_fn: See base class.
      translated_data_dir: If specified, will also include translated data in
        the training data.
      only_use_en_dev: If True, only use english dev data. Otherwise, use dev
        data from all languages.
    """
    super(XtremeXnliProcessor, self).__init__(process_text_fn)
    self.translated_data_dir = translated_data_dir
    self.only_use_en_dev = only_use_en_dev

1085
1086
1087
1088
1089
  def get_train_examples(self, data_dir):
    """See base class."""
    lines = self._read_tsv(os.path.join(data_dir, "train-en.tsv"))

    examples = []
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
    if self.translated_data_dir is None:
      for i, line in enumerate(lines):
        guid = "train-%d" % i
        text_a = self.process_text_fn(line[0])
        text_b = self.process_text_fn(line[1])
        label = self.process_text_fn(line[2])
        if label == self.process_text_fn("contradictory"):
          label = self.process_text_fn("contradiction")
        examples.append(
            InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    else:
      for lang in self.supported_languages:
        lines = self._read_tsv(
            os.path.join(self.translated_data_dir, "translate-train",
                         f"en-{lang}-translated.tsv"))
        for i, line in enumerate(lines):
          guid = f"train-{lang}-{i}"
          text_a = self.process_text_fn(line[2])
          text_b = self.process_text_fn(line[3])
          label = self.process_text_fn(line[4])
          if label == self.process_text_fn("contradictory"):
            label = self.process_text_fn("contradiction")
          examples.append(
              InputExample(
                  guid=guid, text_a=text_a, text_b=text_b, label=label))
1115
1116
1117
1118
1119
    return examples

  def get_dev_examples(self, data_dir):
    """See base class."""
    examples = []
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
    if self.only_use_en_dev:
      lines = self._read_tsv(os.path.join(data_dir, "dev-en.tsv"))
      for i, line in enumerate(lines):
        guid = "dev-%d" % i
        text_a = self.process_text_fn(line[0])
        text_b = self.process_text_fn(line[1])
        label = self.process_text_fn(line[2])
        examples.append(
            InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    else:
      for lang in self.supported_languages:
        lines = self._read_tsv(os.path.join(data_dir, f"dev-{lang}.tsv"))
        for i, line in enumerate(lines):
          guid = f"dev-{lang}-{i}"
          text_a = self.process_text_fn(line[0])
          text_b = self.process_text_fn(line[1])
          label = self.process_text_fn(line[2])
          if label == self.process_text_fn("contradictory"):
            label = self.process_text_fn("contradiction")
          examples.append(
              InputExample(
                  guid=guid, text_a=text_a, text_b=text_b, label=label))
1142
1143
1144
1145
    return examples

  def get_test_examples(self, data_dir):
    """See base class."""
1146
    examples_by_lang = {}
1147
    for lang in self.supported_languages:
1148
      examples_by_lang[lang] = []
1149
      lines = self._read_tsv(os.path.join(data_dir, f"test-{lang}.tsv"))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1150
      for i, line in enumerate(lines):
1151
        guid = f"test-{lang}-{i}"
1152
1153
1154
1155
1156
        text_a = self.process_text_fn(line[0])
        text_b = self.process_text_fn(line[1])
        label = "contradiction"
        examples_by_lang[lang].append(
            InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
    if self.translated_data_dir is not None:
      for lang in self.supported_languages:
        if lang == "en":
          continue
        examples_by_lang[f"{lang}-en"] = []
        lines = self._read_tsv(
            os.path.join(self.translated_data_dir, "translate-test",
                         f"test-{lang}-en-translated.tsv"))
        for i, line in enumerate(lines):
          guid = f"test-{lang}-en-{i}"
          text_a = self.process_text_fn(line[2])
          text_b = self.process_text_fn(line[3])
          label = "contradiction"
          examples_by_lang[f"{lang}-en"].append(
              InputExample(
                  guid=guid, text_a=text_a, text_b=text_b, label=label))
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
    return examples_by_lang

  def get_labels(self):
    """See base class."""
    return ["contradiction", "entailment", "neutral"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "XTREME-XNLI"


1185
1186
1187
1188
def convert_single_example(ex_index, example, label_list, max_seq_length,
                           tokenizer):
  """Converts a single `InputExample` into a single `InputFeatures`."""
  label_map = {}
Maxim Neumann's avatar
Maxim Neumann committed
1189
1190
1191
  if label_list:
    for (i, label) in enumerate(label_list):
      label_map[label] = i
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207

  tokens_a = tokenizer.tokenize(example.text_a)
  tokens_b = None
  if example.text_b:
    tokens_b = tokenizer.tokenize(example.text_b)

  if tokens_b:
    # Modifies `tokens_a` and `tokens_b` in place so that the total
    # length is less than the specified length.
    # Account for [CLS], [SEP], [SEP] with "- 3"
    _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
  else:
    # Account for [CLS] and [SEP] with "- 2"
    if len(tokens_a) > max_seq_length - 2:
      tokens_a = tokens_a[0:(max_seq_length - 2)]

1208
1209
1210
1211
1212
  seg_id_a = 0
  seg_id_b = 1
  seg_id_cls = 0
  seg_id_pad = 0

1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
  # The convention in BERT is:
  # (a) For sequence pairs:
  #  tokens:   [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
  #  type_ids: 0     0  0    0    0     0       0 0     1  1  1  1   1 1
  # (b) For single sequences:
  #  tokens:   [CLS] the dog is hairy . [SEP]
  #  type_ids: 0     0   0   0  0     0 0
  #
  # Where "type_ids" are used to indicate whether this is the first
  # sequence or the second sequence. The embedding vectors for `type=0` and
  # `type=1` were learned during pre-training and are added to the wordpiece
  # embedding vector (and position vector). This is not *strictly* necessary
  # since the [SEP] token unambiguously separates the sequences, but it makes
  # it easier for the model to learn the concept of sequences.
  #
  # For classification tasks, the first vector (corresponding to [CLS]) is
  # used as the "sentence vector". Note that this only makes sense because
  # the entire model is fine-tuned.
  tokens = []
  segment_ids = []
  tokens.append("[CLS]")
1234
  segment_ids.append(seg_id_cls)
1235
1236
  for token in tokens_a:
    tokens.append(token)
1237
    segment_ids.append(seg_id_a)
1238
  tokens.append("[SEP]")
1239
  segment_ids.append(seg_id_a)
1240
1241
1242
1243

  if tokens_b:
    for token in tokens_b:
      tokens.append(token)
1244
      segment_ids.append(seg_id_b)
1245
    tokens.append("[SEP]")
1246
    segment_ids.append(seg_id_b)
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257

  input_ids = tokenizer.convert_tokens_to_ids(tokens)

  # The mask has 1 for real tokens and 0 for padding tokens. Only real
  # tokens are attended to.
  input_mask = [1] * len(input_ids)

  # Zero-pad up to the sequence length.
  while len(input_ids) < max_seq_length:
    input_ids.append(0)
    input_mask.append(0)
1258
    segment_ids.append(seg_id_pad)
1259
1260
1261
1262
1263

  assert len(input_ids) == max_seq_length
  assert len(input_mask) == max_seq_length
  assert len(segment_ids) == max_seq_length

Maxim Neumann's avatar
Maxim Neumann committed
1264
  label_id = label_map[example.label] if label_map else example.label
1265
1266
  if ex_index < 5:
    logging.info("*** Example ***")
1267
1268
1269
1270
1271
1272
    logging.info("guid: %s", (example.guid))
    logging.info("tokens: %s",
                 " ".join([tokenization.printable_text(x) for x in tokens]))
    logging.info("input_ids: %s", " ".join([str(x) for x in input_ids]))
    logging.info("input_mask: %s", " ".join([str(x) for x in input_mask]))
    logging.info("segment_ids: %s", " ".join([str(x) for x in segment_ids]))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1273
    logging.info("label: %s (id = %s)", example.label, str(label_id))
Maxim Neumann's avatar
Maxim Neumann committed
1274
    logging.info("weight: %s", example.weight)
Chen Chen's avatar
Chen Chen committed
1275
    logging.info("example_id: %s", example.example_id)
1276
1277
1278
1279
1280
1281

  feature = InputFeatures(
      input_ids=input_ids,
      input_mask=input_mask,
      segment_ids=segment_ids,
      label_id=label_id,
Maxim Neumann's avatar
Maxim Neumann committed
1282
      is_real_example=True,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1283
      weight=example.weight,
Chen Chen's avatar
Chen Chen committed
1284
      example_id=example.example_id)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1285

1286
1287
1288
  return feature


stephenwu's avatar
stephenwu committed
1289
class AXgProcessor(DataProcessor):
stephenwu's avatar
stephenwu committed
1290
  """Processor for the AXg dataset (SuperGLUE diagnostics dataset)."""
stephenwu's avatar
stephenwu committed
1291
1292
1293
1294

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
stephenwu's avatar
stephenwu committed
1295
        self._read_jsonl(os.path.join(data_dir, "AX-g.jsonl")), "test")
stephenwu's avatar
stephenwu committed
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309

  def get_labels(self):
    """See base class."""
    return ["entailment", "not_entailment"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "AXg"

  def _create_examples(self, lines, set_type):
    """Creates examples for the training/dev/test sets."""
    examples = []
    for line in lines:
1310
      guid = "%s-%s" % (set_type, self.process_text_fn(str(line["idx"])))
stephenwu's avatar
stephenwu committed
1311
1312
      text_a = self.process_text_fn(line["premise"])
      text_b = self.process_text_fn(line["hypothesis"])
stephenwu's avatar
stephenwu committed
1313
1314
1315
1316
      label = self.process_text_fn(line["label"])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples
1317

1318

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
class BoolQProcessor(DataProcessor):
  """Processor for the BoolQ dataset (SuperGLUE diagnostics dataset)."""

  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_jsonl(os.path.join(data_dir, "train.jsonl")), "train")

  def get_dev_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_jsonl(os.path.join(data_dir, "val.jsonl")), "dev")

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_jsonl(os.path.join(data_dir, "test.jsonl")), "test")

  def get_labels(self):
    """See base class."""
    return ["True", "False"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "BoolQ"

  def _create_examples(self, lines, set_type):
    """Creates examples for the training/dev/test sets."""
    examples = []
    for line in lines:
      guid = "%s-%s" % (set_type, self.process_text_fn(str(line["idx"])))
      text_a = self.process_text_fn(line["question"])
      text_b = self.process_text_fn(line["passage"])
      if set_type == "test":
        label = "False"
      else:
        label = str(line["label"])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples


class CBProcessor(DataProcessor):
  """Processor for the CB dataset (SuperGLUE diagnostics dataset)."""

  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_jsonl(os.path.join(data_dir, "train.jsonl")), "train")

  def get_dev_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_jsonl(os.path.join(data_dir, "val.jsonl")), "dev")

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_jsonl(os.path.join(data_dir, "test.jsonl")), "test")

  def get_labels(self):
    """See base class."""
    return ["entailment", "neutral", "contradiction"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "CB"

  def _create_examples(self, lines, set_type):
    """Creates examples for the training/dev/test sets."""
    examples = []
    for line in lines:
      guid = "%s-%s" % (set_type, self.process_text_fn(str(line["idx"])))
      text_a = self.process_text_fn(line["premise"])
      text_b = self.process_text_fn(line["hypothesis"])
      if set_type == "test":
        label = "entailment"
      else:
        label = self.process_text_fn(line["label"])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples


1405
class SuperGLUERTEProcessor(DataProcessor):
stephenwu's avatar
stephenwu committed
1406
1407
1408
1409
1410
1411
  """Processor for the RTE dataset (SuperGLUE version)."""

  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_jsonl(os.path.join(data_dir, "train.jsonl")), "train")
stephenwu's avatar
stephenwu committed
1412

stephenwu's avatar
stephenwu committed
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
  def get_dev_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_jsonl(os.path.join(data_dir, "val.jsonl")), "dev")

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_jsonl(os.path.join(data_dir, "test.jsonl")), "test")

  def get_labels(self):
    """See base class."""
    # All datasets are converted to 2-class split, where for 3-class datasets we
    # collapse neutral and contradiction into not_entailment.
    return ["entailment", "not_entailment"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "RTESuperGLUE"

  def _create_examples(self, lines, set_type):
    """Creates examples for the training/dev/test sets."""
    examples = []
    for i, line in enumerate(lines):
      guid = "%s-%s" % (set_type, i)
1439
1440
      text_a = self.process_text_fn(line["premise"])
      text_b = self.process_text_fn(line["hypothesis"])
stephenwu's avatar
stephenwu committed
1441
1442
1443
      if set_type == "test":
        label = "entailment"
      else:
1444
        label = self.process_text_fn(line["label"])
stephenwu's avatar
stephenwu committed
1445
1446
1447
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples
stephenwu's avatar
stephenwu committed
1448

1449

Tianqi Liu's avatar
Tianqi Liu committed
1450
1451
1452
1453
1454
1455
def file_based_convert_examples_to_features(examples,
                                            label_list,
                                            max_seq_length,
                                            tokenizer,
                                            output_file,
                                            label_type=None):
1456
1457
  """Convert a set of `InputExample`s to a TFRecord file."""

1458
  tf.io.gfile.makedirs(os.path.dirname(output_file))
1459
1460
  writer = tf.io.TFRecordWriter(output_file)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1461
  for ex_index, example in enumerate(examples):
1462
    if ex_index % 10000 == 0:
1463
      logging.info("Writing example %d of %d", ex_index, len(examples))
1464
1465
1466
1467
1468
1469
1470

    feature = convert_single_example(ex_index, example, label_list,
                                     max_seq_length, tokenizer)

    def create_int_feature(values):
      f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
      return f
Tianqi Liu's avatar
Tianqi Liu committed
1471

Maxim Neumann's avatar
Maxim Neumann committed
1472
1473
1474
    def create_float_feature(values):
      f = tf.train.Feature(float_list=tf.train.FloatList(value=list(values)))
      return f
1475
1476
1477
1478
1479

    features = collections.OrderedDict()
    features["input_ids"] = create_int_feature(feature.input_ids)
    features["input_mask"] = create_int_feature(feature.input_mask)
    features["segment_ids"] = create_int_feature(feature.segment_ids)
Maxim Neumann's avatar
Maxim Neumann committed
1480
1481
    if label_type is not None and label_type == float:
      features["label_ids"] = create_float_feature([feature.label_id])
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1482
    elif feature.label_id is not None:
Maxim Neumann's avatar
Maxim Neumann committed
1483
      features["label_ids"] = create_int_feature([feature.label_id])
1484
1485
    features["is_real_example"] = create_int_feature(
        [int(feature.is_real_example)])
Maxim Neumann's avatar
Maxim Neumann committed
1486
1487
    if feature.weight is not None:
      features["weight"] = create_float_feature([feature.weight])
Chen Chen's avatar
Chen Chen committed
1488
1489
1490
1491
    if feature.example_id is not None:
      features["example_id"] = create_int_feature([feature.example_id])
    else:
      features["example_id"] = create_int_feature([ex_index])
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516

    tf_example = tf.train.Example(features=tf.train.Features(feature=features))
    writer.write(tf_example.SerializeToString())
  writer.close()


def _truncate_seq_pair(tokens_a, tokens_b, max_length):
  """Truncates a sequence pair in place to the maximum length."""

  # This is a simple heuristic which will always truncate the longer sequence
  # one token at a time. This makes more sense than truncating an equal percent
  # of tokens from each, since if one sequence is very short then each token
  # that's truncated likely contains more information than a longer sequence.
  while True:
    total_length = len(tokens_a) + len(tokens_b)
    if total_length <= max_length:
      break
    if len(tokens_a) > len(tokens_b):
      tokens_a.pop()
    else:
      tokens_b.pop()


def generate_tf_record_from_data_file(processor,
                                      data_dir,
1517
                                      tokenizer,
1518
1519
                                      train_data_output_path=None,
                                      eval_data_output_path=None,
Tianqi Liu's avatar
Tianqi Liu committed
1520
                                      test_data_output_path=None,
1521
                                      max_seq_length=128):
1522
1523
  """Generates and saves training data into a tf record file.

1524
  Args:
1525
1526
      processor: Input processor object to be used for generating data. Subclass
        of `DataProcessor`.
1527
      data_dir: Directory that contains train/eval/test data to process.
1528
      tokenizer: The tokenizer to be applied on the data.
1529
1530
1531
1532
      train_data_output_path: Output to which processed tf record for training
        will be saved.
      eval_data_output_path: Output to which processed tf record for evaluation
        will be saved.
Tianqi Liu's avatar
Tianqi Liu committed
1533
      test_data_output_path: Output to which processed tf record for testing
Tianqi Liu's avatar
Tianqi Liu committed
1534
1535
        will be saved. Must be a pattern template with {} if processor has
        language specific test data.
1536
1537
1538
1539
1540
1541
1542
1543
1544
      max_seq_length: Maximum sequence length of the to be generated
        training/eval data.

  Returns:
      A dictionary containing input meta data.
  """
  assert train_data_output_path or eval_data_output_path

  label_list = processor.get_labels()
Maxim Neumann's avatar
Maxim Neumann committed
1545
1546
  label_type = getattr(processor, "label_type", None)
  is_regression = getattr(processor, "is_regression", False)
Maxim Neumann's avatar
Maxim Neumann committed
1547
  has_sample_weights = getattr(processor, "weight_key", False)
Maxim Neumann's avatar
Maxim Neumann committed
1548

stephenwu's avatar
stephenwu committed
1549
1550
1551
  num_training_data = 0
  if train_data_output_path:
    train_input_data_examples = processor.get_train_examples(data_dir)
stephenwu's avatar
stephenwu committed
1552
1553
1554
1555
    file_based_convert_examples_to_features(train_input_data_examples,
                                            label_list, max_seq_length,
                                            tokenizer, train_data_output_path,
                                            label_type)
stephenwu's avatar
stephenwu committed
1556
    num_training_data = len(train_input_data_examples)
1557
1558
1559
1560
1561

  if eval_data_output_path:
    eval_input_data_examples = processor.get_dev_examples(data_dir)
    file_based_convert_examples_to_features(eval_input_data_examples,
                                            label_list, max_seq_length,
Maxim Neumann's avatar
Maxim Neumann committed
1562
1563
                                            tokenizer, eval_data_output_path,
                                            label_type)
1564

1565
1566
1567
1568
1569
1570
  meta_data = {
      "processor_type": processor.get_processor_name(),
      "train_data_size": num_training_data,
      "max_seq_length": max_seq_length,
  }

Tianqi Liu's avatar
Tianqi Liu committed
1571
1572
1573
1574
1575
  if test_data_output_path:
    test_input_data_examples = processor.get_test_examples(data_dir)
    if isinstance(test_input_data_examples, dict):
      for language, examples in test_input_data_examples.items():
        file_based_convert_examples_to_features(
Tianqi Liu's avatar
Tianqi Liu committed
1576
1577
            examples, label_list, max_seq_length, tokenizer,
            test_data_output_path.format(language), label_type)
1578
        meta_data["test_{}_data_size".format(language)] = len(examples)
Tianqi Liu's avatar
Tianqi Liu committed
1579
1580
1581
    else:
      file_based_convert_examples_to_features(test_input_data_examples,
                                              label_list, max_seq_length,
Maxim Neumann's avatar
Maxim Neumann committed
1582
1583
                                              tokenizer, test_data_output_path,
                                              label_type)
1584
      meta_data["test_data_size"] = len(test_input_data_examples)
Tianqi Liu's avatar
Tianqi Liu committed
1585

Maxim Neumann's avatar
Maxim Neumann committed
1586
1587
1588
1589
1590
1591
  if is_regression:
    meta_data["task_type"] = "bert_regression"
    meta_data["label_type"] = {int: "int", float: "float"}[label_type]
  else:
    meta_data["task_type"] = "bert_classification"
    meta_data["num_labels"] = len(processor.get_labels())
Maxim Neumann's avatar
Maxim Neumann committed
1592
1593
  if has_sample_weights:
    meta_data["has_sample_weights"] = True
1594
1595
1596
1597
1598

  if eval_data_output_path:
    meta_data["eval_data_size"] = len(eval_input_data_examples)

  return meta_data