bert_squad_benchmark.py 22.9 KB
Newer Older
davidmochen's avatar
davidmochen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes BERT SQuAD benchmarks and accuracy tests."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import json
import os
import time

# pylint: disable=g-bad-import-order
from absl import flags
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
27
from absl import logging
davidmochen's avatar
davidmochen committed
28
from absl.testing import flagsaver
29
import tensorflow as tf
davidmochen's avatar
davidmochen committed
30
31
# pylint: enable=g-bad-import-order

32
from official.benchmark import bert_benchmark_utils as benchmark_utils
33
from official.nlp.bert import run_squad
davidmochen's avatar
davidmochen committed
34
from official.utils.misc import distribution_utils
35
from official.utils.misc import keras_utils
36
from official.benchmark import benchmark_wrappers
37

davidmochen's avatar
davidmochen committed
38
39

# pylint: disable=line-too-long
David Chen's avatar
David Chen committed
40
PRETRAINED_CHECKPOINT_PATH = 'gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16/bert_model.ckpt'
davidmochen's avatar
davidmochen committed
41
42
SQUAD_TRAIN_DATA_PATH = 'gs://tf-perfzero-data/bert/squad/squad_train.tf_record'
SQUAD_PREDICT_FILE = 'gs://tf-perfzero-data/bert/squad/dev-v1.1.json'
David Chen's avatar
David Chen committed
43
SQUAD_VOCAB_FILE = 'gs://tf-perfzero-data/bert/squad/vocab.txt'
David Chen's avatar
David Chen committed
44
SQUAD_MEDIUM_INPUT_META_DATA_PATH = 'gs://tf-perfzero-data/bert/squad/squad_medium_meta_data'
Zongwei Zhou's avatar
Zongwei Zhou committed
45
SQUAD_LONG_INPUT_META_DATA_PATH = 'gs://tf-perfzero-data/bert/squad/squad_long_meta_data'
46
SQUAD_FULL_INPUT_META_DATA_PATH = 'gs://tf-perfzero-data/bert/squad/squad_full_meta_data'
David Chen's avatar
David Chen committed
47
MODEL_CONFIG_FILE_PATH = 'gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16/bert_config.json'
davidmochen's avatar
davidmochen committed
48
49
# pylint: enable=line-too-long

David Chen's avatar
David Chen committed
50
TMP_DIR = os.getenv('TMPDIR')
davidmochen's avatar
davidmochen committed
51
52
53
54
55
56
FLAGS = flags.FLAGS


class BertSquadBenchmarkBase(benchmark_utils.BertBenchmarkBase):
  """Base class to hold methods common to test classes in the module."""

David Chen's avatar
David Chen committed
57
  def __init__(self, output_dir=None, tpu=None):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
58
    super(BertSquadBenchmarkBase, self).__init__(output_dir=output_dir, tpu=tpu)
David Chen's avatar
David Chen committed
59

60
61
  def _read_training_summary_from_file(self):
    """Reads the training summary from a file."""
62
63
    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
64
65
    with tf.io.gfile.GFile(summary_path, 'rb') as reader:
      return json.loads(reader.read().decode('utf-8'))
66

67
68
69
70
  def _read_input_meta_data_from_file(self):
    """Reads the input metadata from a file."""
    with tf.io.gfile.GFile(FLAGS.input_meta_data_path, 'rb') as reader:
      return json.loads(reader.read().decode('utf-8'))
71

72
73
74
75
76
77
78
79
80
81
  def _get_distribution_strategy(self, ds_type='mirrored'):
    """Gets the distribution strategy.

    Args:
      ds_type: String, the distribution strategy type to be used. Can be
      'mirrored', 'multi_worker_mirrored', 'tpu' and 'off'.

    Returns:
      A `tf.distribute.DistibutionStrategy` object.
    """
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
82
    if FLAGS.tpu or ds_type == 'tpu':
David Chen's avatar
David Chen committed
83
      return distribution_utils.get_distribution_strategy(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
84
          distribution_strategy='tpu', tpu_address=FLAGS.tpu)
85
86
87
88
89
90
91
92
    elif ds_type == 'multi_worker_mirrored':
      # Configures cluster spec for multi-worker distribution strategy.
      _ = distribution_utils.configure_cluster(FLAGS.worker_hosts,
                                               FLAGS.task_index)
    return distribution_utils.get_distribution_strategy(
        distribution_strategy=ds_type,
        num_gpus=self.num_gpus,
        all_reduce_alg=FLAGS.all_reduce_alg)
93

94
95
96
97
98
99
100
101
102
  def _init_gpu_and_data_threads(self):
    """Set env variables before any TF calls."""
    if FLAGS.tf_gpu_thread_mode:
      keras_utils.set_gpu_thread_mode_and_count(
          per_gpu_thread_count=FLAGS.per_gpu_thread_count,
          gpu_thread_mode=FLAGS.tf_gpu_thread_mode,
          num_gpus=self.num_gpus,
          datasets_num_private_threads=FLAGS.datasets_num_private_threads)

davidmochen's avatar
davidmochen committed
103
  @flagsaver.flagsaver
104
105
  def _train_squad(self, run_eagerly=False, ds_type='mirrored'):
    """Runs BERT SQuAD training. Uses mirrored strategy by default."""
106
    self._init_gpu_and_data_threads()
107
    input_meta_data = self._read_input_meta_data_from_file()
108
    strategy = self._get_distribution_strategy(ds_type)
davidmochen's avatar
davidmochen committed
109
110
111
112

    run_squad.train_squad(
        strategy=strategy,
        input_meta_data=input_meta_data,
113
        run_eagerly=run_eagerly,
davidmochen's avatar
davidmochen committed
114
        custom_callbacks=[self.timer_callback])
115
116

  @flagsaver.flagsaver
117
118
  def _evaluate_squad(self, ds_type='mirrored'):
    """Runs BERT SQuAD evaluation. Uses mirrored strategy by default."""
119
    self._init_gpu_and_data_threads()
120
    input_meta_data = self._read_input_meta_data_from_file()
121
    strategy = self._get_distribution_strategy(ds_type)
122

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
123
124
125
126
    if input_meta_data.get('version_2_with_negative', False):
      logging.error('In memory evaluation result for SQuAD v2 is not accurate')
    eval_metrics = run_squad.eval_squad(strategy=strategy,
                                        input_meta_data=input_meta_data)
127
    # Use F1 score as reported evaluation metric.
Hongkun Yu's avatar
Hongkun Yu committed
128
    self.eval_metrics = eval_metrics['final_f1']
davidmochen's avatar
davidmochen committed
129
130


131
class BertSquadBenchmarkReal(BertSquadBenchmarkBase):
davidmochen's avatar
davidmochen committed
132
133
134
135
  """Short benchmark performance tests for BERT SQuAD model.

  Tests BERT SQuAD performance in different GPU configurations.
  The naming convention of below test cases follow
David Chen's avatar
David Chen committed
136
137
  `benchmark_(number of gpus)_gpu` format for GPUs and
  `benchmark_(topology)_tpu` format for TPUs.
davidmochen's avatar
davidmochen committed
138
139
  """

David Chen's avatar
David Chen committed
140
141
  def __init__(self, output_dir=TMP_DIR, tpu=None, **kwargs):
    super(BertSquadBenchmarkReal, self).__init__(output_dir=output_dir, tpu=tpu)
davidmochen's avatar
davidmochen committed
142
143

  def _setup(self):
144
145
    """Sets up the benchmark and SQuAD flags."""
    super(BertSquadBenchmarkReal, self)._setup()
davidmochen's avatar
davidmochen committed
146
147
148
149
150
    FLAGS.train_data_path = SQUAD_TRAIN_DATA_PATH
    FLAGS.predict_file = SQUAD_PREDICT_FILE
    FLAGS.vocab_file = SQUAD_VOCAB_FILE
    FLAGS.bert_config_file = MODEL_CONFIG_FILE_PATH
    FLAGS.num_train_epochs = 1
151
    FLAGS.steps_per_loop = 100
davidmochen's avatar
davidmochen committed
152

153
  @benchmark_wrappers.enable_runtime_flags
154
  def _run_and_report_benchmark(self,
155
156
                                run_eagerly=False,
                                ds_type='mirrored'):
157
    """Runs the benchmark and reports various metrics."""
158
    if FLAGS.train_batch_size <= 4 or run_eagerly:
159
160
161
      FLAGS.input_meta_data_path = SQUAD_MEDIUM_INPUT_META_DATA_PATH
    else:
      FLAGS.input_meta_data_path = SQUAD_LONG_INPUT_META_DATA_PATH
162
    start_time_sec = time.time()
163
    self._train_squad(run_eagerly=run_eagerly, ds_type=ds_type)
164
165
166
    wall_time_sec = time.time() - start_time_sec

    summary = self._read_training_summary_from_file()
David Chen's avatar
David Chen committed
167
    summary['start_time_sec'] = start_time_sec
168
169
170
171
172
173

    super(BertSquadBenchmarkReal, self)._report_benchmark(
        stats=summary,
        wall_time_sec=wall_time_sec,
        min_accuracy=0,
        max_accuracy=1)
davidmochen's avatar
davidmochen committed
174
175

  def benchmark_1_gpu(self):
176
    """Tests BERT SQuAD model performance with 1 GPU."""
davidmochen's avatar
davidmochen committed
177
178
179
180

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad')
181
    FLAGS.train_batch_size = 4
davidmochen's avatar
davidmochen committed
182

183
    self._run_and_report_benchmark()
davidmochen's avatar
davidmochen committed
184

185
186
187
188
189
190
191
192
  def benchmark_1_gpu_eager(self):
    """Tests BERT SQuAD model performance with 1 GPU."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad_eager')
    FLAGS.train_batch_size = 2

Zongwei Zhou's avatar
Zongwei Zhou committed
193
    self._run_and_report_benchmark(run_eagerly=True)
194

195
196
197
198
199
200
  def benchmark_1_gpu_xla(self):
    """Tests BERT SQuAD model performance with 1 GPU with XLA."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_xla_squad')
201
202
    # XLA runs out of memory when running with batch size 4.
    FLAGS.train_batch_size = 3
203
    FLAGS.enable_xla = True
204

205
    self._run_and_report_benchmark()
206
207
208
209
210
211
212

  def benchmark_1_gpu_no_dist_strat(self):
    """Tests BERT SQuAD model performance with 1 GPU without DS."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat_squad')
213
    FLAGS.train_batch_size = 4
214

215
    self._run_and_report_benchmark(ds_type='off')
216
217
218
219
220
221
222
223

  def benchmark_1_gpu_eager_no_dist_strat(self):
    """Tests BERT SQuAD model performance with 1 GPU with eager execution."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_eager_no_dist_strat_squad')
224
    FLAGS.train_batch_size = 4
225

226
    self._run_and_report_benchmark(ds_type='off', run_eagerly=True)
227

davidmochen's avatar
davidmochen committed
228
  def benchmark_2_gpu(self):
229
    """Tests BERT SQuAD model performance with 2 GPUs."""
davidmochen's avatar
davidmochen committed
230
231
232
233

    self._setup()
    self.num_gpus = 2
    FLAGS.model_dir = self._get_model_dir('benchmark_2_gpu_squad')
234
    FLAGS.train_batch_size = 8
davidmochen's avatar
davidmochen committed
235

236
    self._run_and_report_benchmark()
davidmochen's avatar
davidmochen committed
237
238

  def benchmark_4_gpu(self):
239
    """Tests BERT SQuAD model performance with 4 GPUs."""
davidmochen's avatar
davidmochen committed
240
241
242
243

    self._setup()
    self.num_gpus = 4
    FLAGS.model_dir = self._get_model_dir('benchmark_4_gpu_squad')
244
    FLAGS.train_batch_size = 16
davidmochen's avatar
davidmochen committed
245

246
    self._run_and_report_benchmark()
davidmochen's avatar
davidmochen committed
247
248

  def benchmark_8_gpu(self):
249
250
251
252
253
    """Tests BERT SQuAD model performance with 8 GPUs."""

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad')
Sai Ganesh Bandiatmakuri's avatar
Sai Ganesh Bandiatmakuri committed
254
    FLAGS.train_batch_size = 24
255
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
256

257
    self._run_and_report_benchmark()
258

259
260
261
262
263
264
265
266
267
268
  def benchmark_1_gpu_fp16_eager(self):
    """Tests BERT SQuAD model performance with 1 GPU and FP16."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad_fp16_eager')
    FLAGS.train_batch_size = 4
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'

Zongwei Zhou's avatar
Zongwei Zhou committed
269
    self._run_and_report_benchmark(run_eagerly=True)
270

271
272
273
274
275
276
277
278
279
280
281
282
  def benchmark_1_gpu_fp16(self):
    """Tests BERT SQuAD model performance with 1 GPU and FP16."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad_fp16')
    FLAGS.train_batch_size = 4
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'

    self._run_and_report_benchmark()

283
284
285
286
287
288
289
290
291
292
293
294
295
  def benchmark_1_gpu_xla_fp16(self):
    """Tests BERT SQuAD model performance with 1 GPU with XLA and FP16."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_xla_squad_fp16')
    FLAGS.train_batch_size = 4
    FLAGS.enable_xla = True
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'

    self._run_and_report_benchmark()

296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
  def benchmark_2_gpu_fp16(self):
    """Tests BERT SQuAD model performance with 2 GPUs and FP16."""

    self._setup()
    self.num_gpus = 2
    FLAGS.model_dir = self._get_model_dir('benchmark_2_gpu_squad_fp16')
    FLAGS.train_batch_size = 8
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'

    self._run_and_report_benchmark()

  def benchmark_4_gpu_fp16(self):
    """Tests BERT SQuAD model performance with 4 GPUs and FP16."""

    self._setup()
    self.num_gpus = 4
    FLAGS.model_dir = self._get_model_dir('benchmark_4_gpu_squad_fp16')
    FLAGS.train_batch_size = 16
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'

    self._run_and_report_benchmark()

  def benchmark_8_gpu_fp16(self):
    """Tests BERT SQuAD model performance with 8 GPUs."""

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad_fp16')
    FLAGS.train_batch_size = 32
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'
329
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
330
331
332

    self._run_and_report_benchmark()

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
333
334
335
336
337
338
339
340
341
342
343
344
345
  def benchmark_8_gpu_xla_fp16(self):
    """Tests BERT SQuAD model performance with 8 GPUs with XLA."""

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad_fp16')
    FLAGS.train_batch_size = 32
    FLAGS.enable_xla = True
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'

    self._run_and_report_benchmark()

346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
  def benchmark_1_gpu_amp(self):
    """Tests BERT SQuAD model performance with 1 GPU with automatic mixed precision."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_amp_squad')
    FLAGS.train_batch_size = 4
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'

    self._run_and_report_benchmark()

  def benchmark_4_gpu_amp(self):
    """Tests BERT SQuAD model performance with 1 GPU with automatic mixed precision."""

    self._setup()
    self.num_gpus = 4
    FLAGS.model_dir = self._get_model_dir('benchmark_4_gpu_amp_squad')
    FLAGS.train_batch_size = 16
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'

    self._run_and_report_benchmark()

  def benchmark_8_gpu_amp(self):
    """Tests BERT SQuAD model performance with 1 GPU with automatic mixed precision."""

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_amp_squad')
    FLAGS.train_batch_size = 32
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'
379
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
380
381

    self._run_and_report_benchmark()
382

David Chen's avatar
David Chen committed
383
384
385
386
387
388
  def benchmark_2x2_tpu(self):
    """Tests BERT SQuAD model performance with 2x2 TPU."""

    self._setup()
    FLAGS.model_dir = self._get_model_dir('benchmark_2x2_tpu')
    FLAGS.train_batch_size = 48
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
389
390
391
392
393
394
395
    FLAGS.predict_batch_size = 48
    FLAGS.mode = 'train'
    FLAGS.learning_rate = 8e-5
    FLAGS.num_train_epochs = 1
    FLAGS.steps_per_loop = 100
    FLAGS.do_lower_case = True
    FLAGS.init_checkpoint = PRETRAINED_CHECKPOINT_PATH
David Chen's avatar
David Chen committed
396
397
    self._run_and_report_benchmark()

398
399
400
401
402

class BertSquadAccuracy(BertSquadBenchmarkBase):
  """Short accuracy test for BERT SQuAD model.

  Tests BERT SQuAD accuracy. The naming convention of below test cases follow
David Chen's avatar
David Chen committed
403
404
  `benchmark_(number of gpus)_gpu` format for GPUs and
  `benchmark_(topology)_tpu` format for TPUs.
405
406
  """

David Chen's avatar
David Chen committed
407
408
  def __init__(self, output_dir=None, tpu=None, **kwargs):
    super(BertSquadAccuracy, self).__init__(output_dir=output_dir, tpu=tpu)
409
410
411
412
413
414
415
416
417
418
419

  def _setup(self):
    """Sets up the benchmark and SQuAD flags."""
    super(BertSquadAccuracy, self)._setup()
    FLAGS.train_data_path = SQUAD_TRAIN_DATA_PATH
    FLAGS.predict_file = SQUAD_PREDICT_FILE
    FLAGS.vocab_file = SQUAD_VOCAB_FILE
    FLAGS.input_meta_data_path = SQUAD_FULL_INPUT_META_DATA_PATH
    FLAGS.bert_config_file = MODEL_CONFIG_FILE_PATH
    FLAGS.init_checkpoint = PRETRAINED_CHECKPOINT_PATH
    FLAGS.num_train_epochs = 2
420
    FLAGS.steps_per_loop = 100
421

422
  @benchmark_wrappers.enable_runtime_flags
423
  def _run_and_report_benchmark(self,
424
425
                                run_eagerly=False,
                                ds_type='mirrored'):
426
    """Runs the benchmark and reports various metrics."""
427
    start_time_sec = time.time()
428
429
    self._train_squad(run_eagerly=run_eagerly, ds_type=ds_type)
    self._evaluate_squad(ds_type=ds_type)
430
431
432
433
    wall_time_sec = time.time() - start_time_sec

    summary = self._read_training_summary_from_file()
    summary['eval_metrics'] = self.eval_metrics
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
434
    summary['start_time_sec'] = start_time_sec
435
436
437
438

    super(BertSquadAccuracy, self)._report_benchmark(
        stats=summary,
        wall_time_sec=wall_time_sec,
439
        min_accuracy=0.900,
440
        max_accuracy=0.920)
441

442
443
444
445
446
447
448
449
  def benchmark_1_gpu_eager(self):
    """Tests BERT SQuAD model accuracy with 1 GPU with eager execution."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad_eager')
    FLAGS.train_batch_size = 4

450
    self._run_and_report_benchmark(ds_type='off', run_eagerly=True)
451

452
453
  def benchmark_8_gpu(self):
    """Tests BERT SQuAD model accuracy with 8 GPUs."""
davidmochen's avatar
davidmochen committed
454
455
456
457

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad')
458
    FLAGS.train_batch_size = 24
459
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
davidmochen's avatar
davidmochen committed
460

461
    self._run_and_report_benchmark()
davidmochen's avatar
davidmochen committed
462

463
464
465
466
467
468
469
470
471
  def benchmark_8_gpu_fp16(self):
    """Tests BERT SQuAD model accuracy with 8 GPUs and FP16."""

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad_fp16')
    FLAGS.train_batch_size = 32
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'
472
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
473
474
475

    self._run_and_report_benchmark()

476
477
478
479
480
481
482
  def benchmark_8_gpu_xla(self):
    """Tests BERT SQuAD model accuracy with 8 GPUs."""

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad_xla')
    FLAGS.train_batch_size = 32
483
    FLAGS.enable_xla = True
484
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
485

486
    self._run_and_report_benchmark()
487

David Chen's avatar
David Chen committed
488
489
490
491
492
493
494
495
496
  def benchmark_2x2_tpu(self):
    """Tests BERT SQuAD model accuracy with 2x2 TPU."""

    self._setup()
    FLAGS.model_dir = self._get_model_dir('benchmark_2x2_tpu')
    FLAGS.train_batch_size = 48

    self._run_and_report_benchmark()

davidmochen's avatar
davidmochen committed
497

498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
class BertSquadMultiWorkerAccuracy(BertSquadBenchmarkBase):
  """BERT SQuAD distributed accuracy tests with multiple workers."""

  def __init__(self, output_dir=None, tpu=None, **kwargs):
    super(BertSquadMultiWorkerAccuracy, self).__init__(
        output_dir=output_dir, tpu=tpu)

  def _setup(self):
    """Sets up the benchmark and SQuAD flags."""
    super(BertSquadMultiWorkerAccuracy, self)._setup()
    FLAGS.train_data_path = SQUAD_TRAIN_DATA_PATH
    FLAGS.predict_file = SQUAD_PREDICT_FILE
    FLAGS.vocab_file = SQUAD_VOCAB_FILE
    FLAGS.input_meta_data_path = SQUAD_FULL_INPUT_META_DATA_PATH
    FLAGS.bert_config_file = MODEL_CONFIG_FILE_PATH
    FLAGS.init_checkpoint = PRETRAINED_CHECKPOINT_PATH
    FLAGS.num_train_epochs = 2
515
    FLAGS.steps_per_loop = 100
516
517
518
519
520
521
522

  @benchmark_wrappers.enable_runtime_flags
  def _run_and_report_benchmark(self,
                                use_ds=True,
                                run_eagerly=False):
    """Runs the benchmark and reports various metrics."""
    start_time_sec = time.time()
523
524
525
    self._train_squad(run_eagerly=run_eagerly,
                      ds_type='multi_worker_mirrored')
    self._evaluate_squad(ds_type='multi_worker_mirrored')
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
    wall_time_sec = time.time() - start_time_sec

    summary = self._read_training_summary_from_file()
    summary['eval_metrics'] = self.eval_metrics

    super(BertSquadMultiWorkerAccuracy, self)._report_benchmark(
        stats=summary,
        wall_time_sec=wall_time_sec,
        min_accuracy=0.900,
        max_accuracy=0.920)

  def _benchmark_common(self, num_workers, all_reduce_alg):
    """Common to all benchmarks in this class."""
    self._setup()

    num_gpus = 8
    FLAGS.num_gpus = num_gpus
    FLAGS.dtype = 'fp16'
    FLAGS.enable_xla = False
    FLAGS.distribution_strategy = 'multi_worker_mirrored'
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.datasets_num_private_threads = 32
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_8_gpu_{}_worker_fp16_{}_tweaked'.format(
            num_workers, all_reduce_alg))
    FLAGS.train_batch_size = 4 * num_gpus * num_workers
    FLAGS.all_reduce_alg = all_reduce_alg

    self._run_and_report_benchmark()

Yanhui Liang's avatar
Yanhui Liang committed
556
557
558
559
560
561
562
563
  def benchmark_eager_8_gpu_2_workers_fp16_ring_tweaked(self):
    """8 GPUs per worker, 2 workers, fp16, ring all-reduce."""
    self._benchmark_common(num_workers=2, all_reduce_alg='ring')

  def benchmark_eager_8_gpu_2_workers_fp16_nccl_tweaked(self):
    """8 GPUs per worker, 2 workers, fp16, nccl all-reduce."""
    self._benchmark_common(num_workers=2, all_reduce_alg='nccl')

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
  def benchmark_8_gpu_8_workers_fp16_ring_tweaked(self):
    """8 GPUs per worker, 8 workers, fp16, ring all-reduce."""
    self._benchmark_common(num_workers=8, all_reduce_alg='ring')

  def benchmark_8_gpu_8_workers_fp16_nccl_tweaked(self):
    """8 GPUs per worker, 8 workers, fp16, nccl all-reduce."""
    self._benchmark_common(num_workers=8, all_reduce_alg='nccl')


class BertSquadMultiWorkerBenchmark(BertSquadBenchmarkBase):
  """BERT SQuAD distributed benchmark tests with multiple workers."""

  def __init__(self, output_dir=TMP_DIR, tpu=None, **kwargs):
    super(BertSquadMultiWorkerBenchmark, self).__init__(
        output_dir=output_dir, tpu=tpu)

  def _setup(self):
    """Sets up the benchmark and SQuAD flags."""
    super(BertSquadMultiWorkerBenchmark, self)._setup()
    FLAGS.train_data_path = SQUAD_TRAIN_DATA_PATH
    FLAGS.predict_file = SQUAD_PREDICT_FILE
    FLAGS.vocab_file = SQUAD_VOCAB_FILE
586
    FLAGS.input_meta_data_path = SQUAD_FULL_INPUT_META_DATA_PATH
587
588
    FLAGS.bert_config_file = MODEL_CONFIG_FILE_PATH
    FLAGS.num_train_epochs = 1
589
    FLAGS.steps_per_loop = 100
590
591
592
593
594
595

  @benchmark_wrappers.enable_runtime_flags
  def _run_and_report_benchmark(self,
                                use_ds=True,
                                run_eagerly=False):
    """Runs the benchmark and reports various metrics."""
596
597
598
599
    if FLAGS.train_batch_size <= 4 * 8:
      FLAGS.input_meta_data_path = SQUAD_LONG_INPUT_META_DATA_PATH
    else:
      FLAGS.input_meta_data_path = SQUAD_FULL_INPUT_META_DATA_PATH
600
    start_time_sec = time.time()
601
602
    self._train_squad(run_eagerly=run_eagerly,
                      ds_type='multi_worker_mirrored')
603
604
605
606
607
608
609
610
611
612
613
    wall_time_sec = time.time() - start_time_sec

    summary = self._read_training_summary_from_file()
    summary['start_time_sec'] = start_time_sec

    super(BertSquadMultiWorkerBenchmark, self)._report_benchmark(
        stats=summary,
        wall_time_sec=wall_time_sec,
        min_accuracy=0,
        max_accuracy=1)

Hongkun Yu's avatar
Hongkun Yu committed
614
  def _benchmark_common(self, num_workers, all_reduce_alg):
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
    """Common to all benchmarks in this class."""
    self._setup()

    num_gpus = 8
    FLAGS.num_gpus = num_gpus
    FLAGS.dtype = 'fp16'
    FLAGS.enable_xla = False
    FLAGS.distribution_strategy = 'multi_worker_mirrored'
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.datasets_num_private_threads = 32
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_8_gpu_{}_worker_fp16_{}_tweaked'.format(
            num_workers, all_reduce_alg))
    FLAGS.train_batch_size = 4 * num_gpus * num_workers
    FLAGS.all_reduce_alg = all_reduce_alg

    self._run_and_report_benchmark()

  def benchmark_8_gpu_1_worker_fp16_ring_tweaked(self):
    """8 GPUs per worker, 1 worker, fp16, ring all-reduce."""
    self._benchmark_common(num_workers=1, all_reduce_alg='ring')

  def benchmark_8_gpu_1_worker_fp16_nccl_tweaked(self):
    """8 GPUs per worker, 1 worker, fp16, nccl all-reduce."""
    self._benchmark_common(num_workers=1, all_reduce_alg='nccl')

  def benchmark_8_gpu_2_workers_fp16_ring_tweaked(self):
    """8 GPUs per worker, 2 workers, fp16, ring all-reduce."""
Hongkun Yu's avatar
Hongkun Yu committed
643
    self._benchmark_common(num_workers=2, all_reduce_alg='ring')
644
645
646

  def benchmark_8_gpu_2_workers_fp16_nccl_tweaked(self):
    """8 GPUs per worker, 2 workers, fp16, nccl all-reduce."""
Hongkun Yu's avatar
Hongkun Yu committed
647
    self._benchmark_common(num_workers=2, all_reduce_alg='nccl')
648
649
650

  def benchmark_8_gpu_8_workers_fp16_ring_tweaked(self):
    """8 GPUs per worker, 8 workers, fp16, ring all-reduce."""
Hongkun Yu's avatar
Hongkun Yu committed
651
    self._benchmark_common(num_workers=8, all_reduce_alg='ring')
652
653
654

  def benchmark_8_gpu_8_workers_fp16_nccl_tweaked(self):
    """8 GPUs per worker, 8 workers, fp16, nccl all-reduce."""
Hongkun Yu's avatar
Hongkun Yu committed
655
    self._benchmark_common(num_workers=8, all_reduce_alg='nccl')
656
657


davidmochen's avatar
davidmochen committed
658
659
if __name__ == '__main__':
  tf.test.main()