README.md 9.22 KB
Newer Older
yukun's avatar
yukun committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# DeepLab: Deep Labelling for Semantic Image Segmentation

DeepLab is a state-of-art deep learning model for semantic image segmentation,
where the goal is to assign semantic labels (e.g., person, dog, cat and so on)
to every pixel in the input image. Current implementation includes the following
features:

1.  DeepLabv1 [1]: We use *atrous convolution* to explicitly control the
    resolution at which feature responses are computed within Deep Convolutional
    Neural Networks.

2.  DeepLabv2 [2]: We use *atrous spatial pyramid pooling* (ASPP) to robustly
    segment objects at multiple scales with filters at multiple sampling rates
    and effective fields-of-views.

3.  DeepLabv3 [3]: We augment the ASPP module with *image-level feature* [5, 6]
    to capture longer range information. We also include *batch normalization*
    [7] parameters to facilitate the training. In particular, we applying atrous
    convolution to extract output features at different output strides during
    training and evaluation, which efficiently enables training BN at output
    stride = 16 and attains a high performance at output stride = 8 during
    evaluation.

4.  DeepLabv3+ [4]: We extend DeepLabv3 to include a simple yet effective
    decoder module to refine the segmentation results especially along object
    boundaries. Furthermore, in this encoder-decoder structure one can
    arbitrarily control the resolution of extracted encoder features by atrous
    convolution to trade-off precision and runtime.

If you find the code useful for your research, please consider citing our latest
31
32
33
works:

*   DeepLabv3+:
yukun's avatar
yukun committed
34
35

```
36
@inproceedings{deeplabv3plus2018,
yukun's avatar
yukun committed
37
38
  title={Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation},
  author={Liang-Chieh Chen and Yukun Zhu and George Papandreou and Florian Schroff and Hartwig Adam},
39
  booktitle={ECCV},
yukun's avatar
yukun committed
40
41
42
43
  year={2018}
}
```

44
45
46
47
*   MobileNetv2:

```
@inproceedings{mobilenetv22018,
48
  title={MobileNetV2: Inverted Residuals and Linear Bottlenecks},
49
50
51
52
53
54
  author={Mark Sandler and Andrew Howard and Menglong Zhu and Andrey Zhmoginov and Liang-Chieh Chen},
  booktitle={CVPR},
  year={2018}
}
```

55
56
57
58
59
60
61
62
63
64
65
66
*  Architecture search for dense prediction cell:

```
@inproceedings{dpc2018,
  title={Searching for Efficient Multi-Scale Architectures for Dense Image Prediction},
  author={Liang-Chieh Chen and Maxwell D. Collins and Yukun Zhu and George Papandreou and Barret Zoph and Florian Schroff and Hartwig Adam and Jonathon Shlens},
  booktitle={NIPS},
  year={2018}
}

```

yukun's avatar
yukun committed
67
68
69
In the current implementation, we support adopting the following network
backbones:

70
1.  MobileNetv2 [8]: A fast network structure designed for mobile devices.
yukun's avatar
yukun committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

2.  Xception [9, 10]: A powerful network structure intended for server-side
    deployment.

This directory contains our TensorFlow [11] implementation. We provide codes
allowing users to train the model, evaluate results in terms of mIOU (mean
intersection-over-union), and visualize segmentation results. We use PASCAL VOC
2012 [12] and Cityscapes [13] semantic segmentation benchmarks as an example in
the code.

Some segmentation results on Flickr images:
<p align="center">
    <img src="g3doc/img/vis1.png" width=600></br>
    <img src="g3doc/img/vis2.png" width=600></br>
    <img src="g3doc/img/vis3.png" width=600></br>
</p>

## Contacts (Maintainers)

*   Liang-Chieh Chen, github: [aquariusjay](https://github.com/aquariusjay)
*   YuKun Zhu, github: [yknzhu](https://github.com/YknZhu)
*   George Papandreou, github: [gpapan](https://github.com/gpapan)
93
*   Hui Hui, github: [huihui-personal](https://github.com/huihui-personal)
yukun's avatar
yukun committed
94
95
96
97
98

## Tables of Contents

Demo:

99
*   <a href='https://colab.sandbox.google.com/github/tensorflow/models/blob/master/research/deeplab/deeplab_demo.ipynb'>Colab notebook for off-the-shelf inference.</a><br>
yukun's avatar
yukun committed
100
101
102
103
104
105

Running:

*   <a href='g3doc/installation.md'>Installation.</a><br>
*   <a href='g3doc/pascal.md'>Running DeepLab on PASCAL VOC 2012 semantic segmentation dataset.</a><br>
*   <a href='g3doc/cityscapes.md'>Running DeepLab on Cityscapes semantic segmentation dataset.</a><br>
Yubin Ruan's avatar
Yubin Ruan committed
106
*   <a href='g3doc/ade20k.md'>Running DeepLab on ADE20K semantic segmentation dataset.</a><br>
yukun's avatar
yukun committed
107
108
109
110
111
112
113

Models:

*   <a href='g3doc/model_zoo.md'>Checkpoints and frozen inference graphs.</a><br>

Misc:

yukun's avatar
yukun committed
114
*   Please check <a href='g3doc/faq.md'>FAQ</a> if you have some questions before reporting the issues.<br>
yukun's avatar
yukun committed
115
116
117
118

## Getting Help

To get help with issues you may encounter while using the DeepLab Tensorflow
yukun's avatar
yukun committed
119
implementation, create a new question on
120
[StackOverflow](https://stackoverflow.com/) with the tag "tensorflow".
yukun's avatar
yukun committed
121
122
123
124
125
126

Please report bugs (i.e., broken code, not usage questions) to the
tensorflow/models GitHub [issue
tracker](https://github.com/tensorflow/models/issues), prefixing the issue name
with "deeplab".

127
128
129
130
131
## License

All the codes in deeplab folder is covered by the [LICENSE](https://github.com/tensorflow/models/blob/master/LICENSE)
under tensorflow/models. Please refer to the LICENSE for details.

132
133
## Change Logs

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
### February 6, 2019

* Update decoder module to exploit multiple low-level features with different
output_strides.

### December 3, 2018

* Released the MobileNet-v2 checkpoint on ADE20K.


### November 19, 2018

* Supported NAS architecture for feature extraction. **Contributor**: Chenxi Liu.

* Supported hard pixel mining during training.


151
152
### October 1, 2018

153
* Released MobileNet-v2 depth-multiplier = 0.5 COCO-pretrained checkpoints on
154
155
156
157
PASCAL VOC 2012, and Xception-65 COCO pretrained checkpoint (i.e., no PASCAL
pretrained).


158
159
### September 5, 2018

160
* Released Cityscapes pretrained checkpoints with found best dense prediction cell.
161

162

163
164
### May 26, 2018

165
* Updated ADE20K pretrained checkpoint.
166
167


Yukun Zhu's avatar
Yukun Zhu committed
168
### May 18, 2018
169
170
171
* Added builders for ResNet-v1 and Xception model variants.
* Added ADE20K support, including colormap and pretrained Xception_65 checkpoint.
* Fixed a bug on using non-default depth_multiplier for MobileNet-v2.
Yukun Zhu's avatar
Yukun Zhu committed
172
173


174
175
### March 22, 2018

176
* Released checkpoints using MobileNet-V2 as network backbone and pretrained on
177
178
179
180
181
PASCAL VOC 2012 and Cityscapes.


### March 5, 2018

182
* First release of DeepLab in TensorFlow including deeper Xception network
Yukun Zhu's avatar
Yukun Zhu committed
183
backbone. Included chekcpoints that have been pretrained on PASCAL VOC 2012
184
185
and Cityscapes.

yukun's avatar
yukun committed
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
## References

1.  **Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs**<br />
    Liang-Chieh Chen+, George Papandreou+, Iasonas Kokkinos, Kevin Murphy, Alan L. Yuille (+ equal
    contribution). <br />
    [[link]](https://arxiv.org/abs/1412.7062). In ICLR, 2015.

2.  **DeepLab: Semantic Image Segmentation with Deep Convolutional Nets,**
    **Atrous Convolution, and Fully Connected CRFs** <br />
    Liang-Chieh Chen+, George Papandreou+, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille (+ equal
    contribution). <br />
    [[link]](http://arxiv.org/abs/1606.00915). TPAMI 2017.

3.  **Rethinking Atrous Convolution for Semantic Image Segmentation**<br />
    Liang-Chieh Chen, George Papandreou, Florian Schroff, Hartwig Adam.<br />
    [[link]](http://arxiv.org/abs/1706.05587). arXiv: 1706.05587, 2017.

4.  **Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation**<br />
204
205
    Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, Hartwig Adam.<br />
    [[link]](https://arxiv.org/abs/1802.02611). In ECCV, 2018.
yukun's avatar
yukun committed
206
207
208
209
210
211
212
213
214
215
216
217
218

5.  **ParseNet: Looking Wider to See Better**<br />
    Wei Liu, Andrew Rabinovich, Alexander C Berg<br />
    [[link]](https://arxiv.org/abs/1506.04579). arXiv:1506.04579, 2015.

6.  **Pyramid Scene Parsing Network**<br />
    Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, Jiaya Jia<br />
    [[link]](https://arxiv.org/abs/1612.01105). In CVPR, 2017.

7.  **Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate shift**<br />
    Sergey Ioffe, Christian Szegedy <br />
    [[link]](https://arxiv.org/abs/1502.03167). In ICML, 2015.

219
8.  **MobileNetV2: Inverted Residuals and Linear Bottlenecks**<br />
yukun's avatar
yukun committed
220
    Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen<br />
221
    [[link]](https://arxiv.org/abs/1801.04381). In CVPR, 2018.
yukun's avatar
yukun committed
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243

9.  **Xception: Deep Learning with Depthwise Separable Convolutions**<br />
    François Chollet<br />
    [[link]](https://arxiv.org/abs/1610.02357). In CVPR, 2017.

10. **Deformable Convolutional Networks -- COCO Detection and Segmentation Challenge 2017 Entry**<br />
    Haozhi Qi, Zheng Zhang, Bin Xiao, Han Hu, Bowen Cheng, Yichen Wei, Jifeng Dai<br />
    [[link]](http://presentations.cocodataset.org/COCO17-Detect-MSRA.pdf). ICCV COCO Challenge
    Workshop, 2017.

11. **Tensorflow: Large-Scale Machine Learning on Heterogeneous Distributed Systems**<br />
    M. Abadi, A. Agarwal, et al. <br />
    [[link]](https://arxiv.org/abs/1603.04467). arXiv:1603.04467, 2016.

12. **The Pascal Visual Object Classes Challenge – A Retrospective,** <br />
    Mark Everingham, S. M. Ali Eslami, Luc Van Gool, Christopher K. I. Williams, John
    Winn, and Andrew Zisserma. <br />
    [[link]](http://host.robots.ox.ac.uk/pascal/VOC/voc2012/). IJCV, 2014.

13. **The Cityscapes Dataset for Semantic Urban Scene Understanding**<br />
    Cordts, Marius, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, Bernt Schiele. <br />
    [[link]](https://www.cityscapes-dataset.com/). In CVPR, 2016.