Commit 90cec348 authored by Hui Hui's avatar Hui Hui
Browse files

Open-source Xception-65 pretrained on COCO.

Open-sourcing the checkpoint so that users could reproduce our PASCAL VOC 2012 validation set result when training on train_aug set.
parent 83490227
...@@ -126,10 +126,18 @@ with "deeplab". ...@@ -126,10 +126,18 @@ with "deeplab".
## Change Logs ## Change Logs
### October 1, 2018
Released MobileNet-v2 depth-multiplier = 0.5 COCO-pretrained checkpoints on
PASCAL VOC 2012, and Xception-65 COCO pretrained checkpoint (i.e., no PASCAL
pretrained).
### September 5, 2018 ### September 5, 2018
Released Cityscapes pretrained checkpoints with found best dense prediction cell. Released Cityscapes pretrained checkpoints with found best dense prediction cell.
### May 26, 2018 ### May 26, 2018
Updated ADE20K pretrained checkpoint. Updated ADE20K pretrained checkpoint.
......
...@@ -100,8 +100,9 @@ Un-tar'ed directory includes: ...@@ -100,8 +100,9 @@ Un-tar'ed directory includes:
### Model details ### Model details
We also provide some checkpoints that are only pretrained on ImageNet so that We also provide some checkpoints that are pretrained on ImageNet and/or COCO (as
one could use this for training your own models. post-fixed in the model name) so that one could use this for training your own
models.
* mobilenet_v2: We refer the interested users to the TensorFlow open source * mobilenet_v2: We refer the interested users to the TensorFlow open source
[MobileNet-V2](https://github.com/tensorflow/models/tree/master/research/slim/nets/mobilenet) [MobileNet-V2](https://github.com/tensorflow/models/tree/master/research/slim/nets/mobilenet)
...@@ -120,11 +121,12 @@ one could use this for training your own models. ...@@ -120,11 +121,12 @@ one could use this for training your own models.
Model name | File Size Model name | File Size
-------------------------------------------------------------------------------------- | :-------: -------------------------------------------------------------------------------------- | :-------:
[xception_41](http://download.tensorflow.org/models/xception_41_2018_05_09.tar.gz ) | 288MB [xception_41_imagenet](http://download.tensorflow.org/models/xception_41_2018_05_09.tar.gz ) | 288MB
[xception_65](http://download.tensorflow.org/models/deeplabv3_xception_2018_01_04.tar.gz) | 447MB [xception_65_imagenet](http://download.tensorflow.org/models/deeplabv3_xception_2018_01_04.tar.gz) | 447MB
[xception_71](http://download.tensorflow.org/models/xception_71_2018_05_09.tar.gz ) | 474MB [xception_65_imagenet_coco](http://download.tensorflow.org/models/xception_65_coco_pretrained_2018_10_02.tar.gz) | 292MB
[resnet_v1_50_beta](http://download.tensorflow.org/models/resnet_v1_50_2018_05_04.tar.gz) | 274MB [xception_71_imagenet](http://download.tensorflow.org/models/xception_71_2018_05_09.tar.gz ) | 474MB
[resnet_v1_101_beta](http://download.tensorflow.org/models/resnet_v1_101_2018_05_04.tar.gz) | 477MB [resnet_v1_50_beta_imagenet](http://download.tensorflow.org/models/resnet_v1_50_2018_05_04.tar.gz) | 274MB
[resnet_v1_101_beta_imagenet](http://download.tensorflow.org/models/resnet_v1_101_2018_05_04.tar.gz) | 477MB
## References ## References
......
...@@ -382,7 +382,7 @@ def extract_features(images, ...@@ -382,7 +382,7 @@ def extract_features(images,
else: else:
# The following codes employ the DeepLabv3 ASPP module. Note that We # The following codes employ the DeepLabv3 ASPP module. Note that We
# could express the ASPP module as one particular dense prediction # could express the ASPP module as one particular dense prediction
# cell architecture. We do not do so but leave the followng codes in # cell architecture. We do not do so but leave the following codes in
# order for backward compatibility. # order for backward compatibility.
batch_norm_params = { batch_norm_params = {
'is_training': is_training and fine_tune_batch_norm, 'is_training': is_training and fine_tune_batch_norm,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment