README.md 7.81 KB
Newer Older
yukun's avatar
yukun committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# DeepLab: Deep Labelling for Semantic Image Segmentation

DeepLab is a state-of-art deep learning model for semantic image segmentation,
where the goal is to assign semantic labels (e.g., person, dog, cat and so on)
to every pixel in the input image. Current implementation includes the following
features:

1.  DeepLabv1 [1]: We use *atrous convolution* to explicitly control the
    resolution at which feature responses are computed within Deep Convolutional
    Neural Networks.

2.  DeepLabv2 [2]: We use *atrous spatial pyramid pooling* (ASPP) to robustly
    segment objects at multiple scales with filters at multiple sampling rates
    and effective fields-of-views.

3.  DeepLabv3 [3]: We augment the ASPP module with *image-level feature* [5, 6]
    to capture longer range information. We also include *batch normalization*
    [7] parameters to facilitate the training. In particular, we applying atrous
    convolution to extract output features at different output strides during
    training and evaluation, which efficiently enables training BN at output
    stride = 16 and attains a high performance at output stride = 8 during
    evaluation.

4.  DeepLabv3+ [4]: We extend DeepLabv3 to include a simple yet effective
    decoder module to refine the segmentation results especially along object
    boundaries. Furthermore, in this encoder-decoder structure one can
    arbitrarily control the resolution of extracted encoder features by atrous
    convolution to trade-off precision and runtime.

If you find the code useful for your research, please consider citing our latest
31
32
33
works:

*   DeepLabv3+:
yukun's avatar
yukun committed
34
35
36
37
38
39
40
41
42
43

```
@article{deeplabv3plus2018,
  title={Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation},
  author={Liang-Chieh Chen and Yukun Zhu and George Papandreou and Florian Schroff and Hartwig Adam},
  journal={arXiv:1802.02611},
  year={2018}
}
```

44
45
46
47
48
49
50
51
52
53
54
*   MobileNetv2:

```
@inproceedings{mobilenetv22018,
  title={Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation},
  author={Mark Sandler and Andrew Howard and Menglong Zhu and Andrey Zhmoginov and Liang-Chieh Chen},
  booktitle={CVPR},
  year={2018}
}
```

yukun's avatar
yukun committed
55
56
57
In the current implementation, we support adopting the following network
backbones:

58
1.  MobileNetv2 [8]: A fast network structure designed for mobile devices.
yukun's avatar
yukun committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

2.  Xception [9, 10]: A powerful network structure intended for server-side
    deployment.

This directory contains our TensorFlow [11] implementation. We provide codes
allowing users to train the model, evaluate results in terms of mIOU (mean
intersection-over-union), and visualize segmentation results. We use PASCAL VOC
2012 [12] and Cityscapes [13] semantic segmentation benchmarks as an example in
the code.

Some segmentation results on Flickr images:
<p align="center">
    <img src="g3doc/img/vis1.png" width=600></br>
    <img src="g3doc/img/vis2.png" width=600></br>
    <img src="g3doc/img/vis3.png" width=600></br>
</p>

## Contacts (Maintainers)

*   Liang-Chieh Chen, github: [aquariusjay](https://github.com/aquariusjay)
*   YuKun Zhu, github: [yknzhu](https://github.com/YknZhu)
*   George Papandreou, github: [gpapan](https://github.com/gpapan)

## Tables of Contents

Demo:

86
*   <a href='https://colab.sandbox.google.com/github/tensorflow/models/blob/master/research/deeplab/deeplab_demo.ipynb'>Colab notebook for off-the-shelf inference.</a><br>
yukun's avatar
yukun committed
87
88
89
90
91
92

Running:

*   <a href='g3doc/installation.md'>Installation.</a><br>
*   <a href='g3doc/pascal.md'>Running DeepLab on PASCAL VOC 2012 semantic segmentation dataset.</a><br>
*   <a href='g3doc/cityscapes.md'>Running DeepLab on Cityscapes semantic segmentation dataset.</a><br>
Yubin Ruan's avatar
Yubin Ruan committed
93
*   <a href='g3doc/ade20k.md'>Running DeepLab on ADE20K semantic segmentation dataset.</a><br>
yukun's avatar
yukun committed
94
95
96
97
98
99
100

Models:

*   <a href='g3doc/model_zoo.md'>Checkpoints and frozen inference graphs.</a><br>

Misc:

yukun's avatar
yukun committed
101
*   Please check <a href='g3doc/faq.md'>FAQ</a> if you have some questions before reporting the issues.<br>
yukun's avatar
yukun committed
102
103
104
105

## Getting Help

To get help with issues you may encounter while using the DeepLab Tensorflow
yukun's avatar
yukun committed
106
implementation, create a new question on
107
[StackOverflow](https://stackoverflow.com/) with the tag "tensorflow".
yukun's avatar
yukun committed
108
109
110
111
112
113

Please report bugs (i.e., broken code, not usage questions) to the
tensorflow/models GitHub [issue
tracker](https://github.com/tensorflow/models/issues), prefixing the issue name
with "deeplab".

114
115
116
117
118
119
120
121
122
123
124
125
126
127
## Change Logs

### March 22, 2018

Release checkpoints using MobileNet-V2 as network backbone and pretrained on
PASCAL VOC 2012 and Cityscapes.


### March 5, 2018

First release of DeepLab in TensorFlow including deeper Xception network
backbone. Include chekcpoints that have been pretrained on PASCAL VOC 2012
and Cityscapes.

yukun's avatar
yukun committed
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
## References

1.  **Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs**<br />
    Liang-Chieh Chen+, George Papandreou+, Iasonas Kokkinos, Kevin Murphy, Alan L. Yuille (+ equal
    contribution). <br />
    [[link]](https://arxiv.org/abs/1412.7062). In ICLR, 2015.

2.  **DeepLab: Semantic Image Segmentation with Deep Convolutional Nets,**
    **Atrous Convolution, and Fully Connected CRFs** <br />
    Liang-Chieh Chen+, George Papandreou+, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille (+ equal
    contribution). <br />
    [[link]](http://arxiv.org/abs/1606.00915). TPAMI 2017.

3.  **Rethinking Atrous Convolution for Semantic Image Segmentation**<br />
    Liang-Chieh Chen, George Papandreou, Florian Schroff, Hartwig Adam.<br />
    [[link]](http://arxiv.org/abs/1706.05587). arXiv: 1706.05587, 2017.

4.  **Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation**<br />
    Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, Hartwig Adam. arXiv: 1802.02611.<br />
    [[link]](https://arxiv.org/abs/1802.02611). arXiv: 1802.02611, 2018.

5.  **ParseNet: Looking Wider to See Better**<br />
    Wei Liu, Andrew Rabinovich, Alexander C Berg<br />
    [[link]](https://arxiv.org/abs/1506.04579). arXiv:1506.04579, 2015.

6.  **Pyramid Scene Parsing Network**<br />
    Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, Jiaya Jia<br />
    [[link]](https://arxiv.org/abs/1612.01105). In CVPR, 2017.

7.  **Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate shift**<br />
    Sergey Ioffe, Christian Szegedy <br />
    [[link]](https://arxiv.org/abs/1502.03167). In ICML, 2015.

8.  **Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation**<br />
    Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen<br />
    [[link]](https://arxiv.org/abs/1801.04381). arXiv:1801.04381, 2018.

9.  **Xception: Deep Learning with Depthwise Separable Convolutions**<br />
    François Chollet<br />
    [[link]](https://arxiv.org/abs/1610.02357). In CVPR, 2017.

10. **Deformable Convolutional Networks -- COCO Detection and Segmentation Challenge 2017 Entry**<br />
    Haozhi Qi, Zheng Zhang, Bin Xiao, Han Hu, Bowen Cheng, Yichen Wei, Jifeng Dai<br />
    [[link]](http://presentations.cocodataset.org/COCO17-Detect-MSRA.pdf). ICCV COCO Challenge
    Workshop, 2017.

11. **Tensorflow: Large-Scale Machine Learning on Heterogeneous Distributed Systems**<br />
    M. Abadi, A. Agarwal, et al. <br />
    [[link]](https://arxiv.org/abs/1603.04467). arXiv:1603.04467, 2016.

12. **The Pascal Visual Object Classes Challenge – A Retrospective,** <br />
    Mark Everingham, S. M. Ali Eslami, Luc Van Gool, Christopher K. I. Williams, John
    Winn, and Andrew Zisserma. <br />
    [[link]](http://host.robots.ox.ac.uk/pascal/VOC/voc2012/). IJCV, 2014.

13. **The Cityscapes Dataset for Semantic Urban Scene Understanding**<br />
    Cordts, Marius, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, Bernt Schiele. <br />
    [[link]](https://www.cityscapes-dataset.com/). In CVPR, 2016.