Classifier.cpp 10 KB
Newer Older
liucong's avatar
liucong committed
1
2
#include <Classifier.h>

liucong's avatar
liucong committed
3
4
5
#include <migraphx/onnx.hpp>
#include <migraphx/gpu/target.hpp>
#include <migraphx/quantization.hpp>
6
#include <hip/hip_runtime_api.h>
liucong's avatar
liucong committed
7
8
#include <Filesystem.h>
#include <SimpleLog.h>
liucong's avatar
liucong committed
9
10
#include <algorithm>
#include <CommonUtility.h>
liucong's avatar
liucong committed
11
12
13
14
15
16

namespace migraphxSamples
{

Classifier::Classifier()
{
liucong's avatar
liucong committed
17

liucong's avatar
liucong committed
18
19
20
21
22
23
24
}

Classifier::~Classifier()
{
    configurationFile.release();
}

liucong's avatar
liucong committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
cv::Mat Classifier::Preprocess(const std::vector<cv::Mat> &srcImages)
{
    // 数据预处理
    std::vector<cv::Mat> image;
    for(int i =0;i<srcImages.size();++i)
    {
        //BGR转换为RGB
        cv::Mat imgRGB;
        cv::cvtColor(srcImages[i], imgRGB, cv::COLOR_BGR2RGB);

        // 调整大小,使短边为256,保持长宽比
        cv::Mat shrink;
        float ratio = (float)256 / min(imgRGB.cols, imgRGB.rows);
        if(imgRGB.rows > imgRGB.cols)
        {
            cv::resize(imgRGB, shrink, cv::Size(256, int(ratio * imgRGB.rows)), 0, 0);
        }
        else
        {
            cv::resize(imgRGB, shrink, cv::Size(int(ratio * imgRGB.cols), 256), 0, 0);
        }

        // 裁剪中心窗口为224*224
        int start_x = shrink.cols/2 - 224/2;
        int start_y = shrink.rows/2 - 224/2;
        cv::Rect rect(start_x, start_y, 224, 224);
        cv::Mat images = shrink(rect);
        image.push_back(images);
    }

    // normalize并转换为NCHW
    cv::Mat inputBlob;
    Image2BlobParams image2BlobParams;
    image2BlobParams.scalefactor=cv::Scalar(1/58.395, 1/57.12, 1/57.375);
    image2BlobParams.mean=cv::Scalar(123.675, 116.28, 103.53);
    image2BlobParams.swapRB=false;
    blobFromImagesWithParams(image,inputBlob,image2BlobParams);
    return inputBlob;
}

liucong's avatar
liucong committed
65
66
67
ErrorCode Classifier::Initialize(InitializationParameterOfClassifier initializationParameterOfClassifier)
{
    // 读取配置文件
liucong's avatar
liucong committed
68
    std::string configFilePath=initializationParameterOfClassifier.configFilePath;
liucong's avatar
liucong committed
69
    if(!Exists(configFilePath))
liucong's avatar
liucong committed
70
71
72
73
    {
        LOG_ERROR(stdout, "no configuration file!\n");
        return CONFIG_FILE_NOT_EXIST;
    }
liucong's avatar
liucong committed
74
    if(!configurationFile.open(configFilePath, cv::FileStorage::READ))
liucong's avatar
liucong committed
75
76
77
78
79
80
81
    {
       LOG_ERROR(stdout, "fail to open configuration file\n");
       return FAIL_TO_OPEN_CONFIG_FILE;
    }
    LOG_INFO(stdout, "succeed to open configuration file\n");

    // 获取配置文件参数
liucong's avatar
liucong committed
82
    cv::FileNode netNode = configurationFile["Classifier"];
liucong's avatar
liucong committed
83
    std::string modelPath=(std::string)netNode["ModelPath"];
liucong's avatar
liucong committed
84
85
    useInt8=(bool)(int)netNode["UseInt8"];
    useFP16=(bool)(int)netNode["UseFP16"];
liucong's avatar
liucong committed
86
    useoffloadcopy=(bool)(int)netNode["Useoffloadcopy"];
liucong's avatar
liucong committed
87
88

    // 加载模型
liucong's avatar
liucong committed
89
    if(!Exists(modelPath))
liucong's avatar
liucong committed
90
    {
liucong's avatar
liucong committed
91
        LOG_ERROR(stdout,"%s not exist!\n",modelPath.c_str());
liucong's avatar
liucong committed
92
93
        return MODEL_NOT_EXIST;
    }
94
    net = migraphx::parse_onnx(modelPath);
liucong's avatar
liucong committed
95
    LOG_INFO(stdout,"succeed to load model: %s\n",GetFileName(modelPath).c_str());
liucong's avatar
liucong committed
96

liucong's avatar
liucong committed
97
98
99
100
101
    // 获取模型输入/输出节点信息
    std::unordered_map<std::string, migraphx::shape> inputs=net.get_inputs();
    std::unordered_map<std::string, migraphx::shape> outputs=net.get_outputs();
    inputName=inputs.begin()->first;
    inputShape=inputs.begin()->second;
102
103
    outputName=outputs.begin()->first;
    outputShape=outputs.begin()->second;
liucong's avatar
liucong committed
104
105
106
107
108
109
110
111
112
113
114
115
116
    int N=inputShape.lens()[0];
    int C=inputShape.lens()[1];
    int H=inputShape.lens()[2];
    int W=inputShape.lens()[3];
    inputSize=cv::Size(W,H);

    // 设置模型为GPU模式
    migraphx::target gpuTarget = migraphx::gpu::target{};

    // 量化
    if(useInt8)
    {
        // 创建量化校准数据,建议使用测试集中的多张典型图像
liucong's avatar
liucong committed
117
        cv::Mat srcImage=cv::imread("../Resource/Images/ImageNet_test.jpg",1);
liucong's avatar
liucong committed
118
119
120
121
122
        std::vector<cv::Mat> srcImages;
        for(int i=0;i<inputShape.lens()[0];++i)
        {
            srcImages.push_back(srcImage);
        }
liucong's avatar
liucong committed
123
124

        // 数据预处理
liucong's avatar
liucong committed
125
        cv::Mat inputBlob = Preprocess(srcImages);
liucong's avatar
liucong committed
126
127
128
129
130
131
132
        std::unordered_map<std::string, migraphx::argument> inputData;
        inputData[inputName]= migraphx::argument{inputShape, (float*)inputBlob.data};
        std::vector<std::unordered_map<std::string, migraphx::argument>> calibrationData = {inputData};

        // INT8量化
        migraphx::quantize_int8(net, gpuTarget, calibrationData);
    }
liucong's avatar
liucong committed
133
    else if(useFP16)
liucong's avatar
liucong committed
134
135
136
137
138
139
    {
        migraphx::quantize_fp16(net);
    }

    // 编译模型
    migraphx::compile_options options;
liucong's avatar
liucong committed
140
    options.device_id=0; // 设置GPU设备,默认为0号设备
liucong's avatar
liucong committed
141
142
143
144
145
146
147
148
    if(useoffloadcopy)
    {
        options.offload_copy=true;
    }
    else
    {
        options.offload_copy=false;
    }
liucong's avatar
liucong committed
149
    net.compile(gpuTarget,options);
liucong's avatar
liucong committed
150
    LOG_INFO(stdout,"succeed to compile model: %s\n",GetFileName(modelPath).c_str());
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

    // offloadcopy为false的时候,分配输入和输出内存
    if(!useoffloadcopy)
    {
        // 分配device输入内存
        inputBuffer_Device=nullptr;
        hipMalloc(&inputBuffer_Device, inputShape.bytes());
        programParameters[inputName] = migraphx::argument{inputShape, inputBuffer_Device};

        // 分配device和host输出内存
        outputBuffer_Device=nullptr;
        hipMalloc(&outputBuffer_Device, outputShape.bytes());
        programParameters[outputName] = migraphx::argument{outputShape, outputBuffer_Device};
        outputBuffer_Host=nullptr;                                                                // host内存
        outputBuffer_Host=malloc(outputShape.bytes());
    }
liucong's avatar
liucong committed
167
    
liucong's avatar
liucong committed
168
    // warm up
liucong's avatar
liucong committed
169
170
171
172
173
174
175
176
    if(useoffloadcopy)
    {
        std::unordered_map<std::string, migraphx::argument> inputData;
        inputData[inputName]=migraphx::argument{inputShape};
        net.eval(inputData);
    }
    else
    {
177
178
179
        migraphx::argument inputData= migraphx::argument{inputShape};
        hipMemcpy(inputBuffer_Device, inputData.data(), inputShape.bytes(), hipMemcpyHostToDevice);
        net.eval(programParameters);
liucong's avatar
liucong committed
180
    }
liucong's avatar
liucong committed
181
182

    // log
liucong's avatar
liucong committed
183
184
185
186
    LOG_INFO(stdout,"InputSize:%dx%d\n",inputSize.width,inputSize.height);
    LOG_INFO(stdout,"InputName:%s\n",inputName.c_str());
    LOG_INFO(stdout,"UseInt8:%d\n",(int)useInt8);
    LOG_INFO(stdout,"UseFP16:%d\n",(int)useFP16);
liucong's avatar
liucong committed
187
    LOG_INFO(stdout,"Useoffloadcopy:%d\n",(int)useoffloadcopy);
liucong's avatar
liucong committed
188

liucong's avatar
liucong committed
189
    return SUCCESS;
190
191
192
193
194
195
196
197
198
199
}

ErrorCode Classifier::Classify(const std::vector<cv::Mat> &srcImages,std::vector<std::vector<ResultOfPrediction>> &predictions)
{
    if(srcImages.size()==0||srcImages[0].empty()||srcImages[0].depth()!=CV_8U)
    {
        LOG_ERROR(stdout, "image error!\n");
        return IMAGE_ERROR;
    }
    
liucong's avatar
liucong committed
200
    // 数据预处理
201
    cv::Mat inputBlob = Preprocess(srcImages);
liucong's avatar
liucong committed
202

203
    // 当offload为true时,不需要内存拷贝
liucong's avatar
liucong committed
204
205
206
207
    if(useoffloadcopy)
    {
        std::unordered_map<std::string, migraphx::argument> inputData;
        inputData[inputName]= migraphx::argument{inputShape, (float*)inputBlob.data};
liucong's avatar
liucong committed
208

liucong's avatar
liucong committed
209
        // 推理
liucong's avatar
liucong committed
210
        std::vector<migraphx::argument> results = net.eval(inputData);
liucong's avatar
liucong committed
211

212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
        // 获取输出节点的属性
        migraphx::argument result  = results[0];                 // 获取第一个输出节点的数据
        migraphx::shape outputShapes=result.get_shape();         // 输出节点的shape
        std::vector<std::size_t> outputSize=outputShapes.lens(); // 每一维大小,维度顺序为(N,C,H,W) 
        int numberOfOutput=outputShapes.elements();              // 输出节点元素的个数
        float *logits=(float *)result.data();                    // 输出节点数据指针

        // 获取每张图像的预测结果
        int numberOfClasses=numberOfOutput/srcImages.size();
        for(int i=0;i<srcImages.size();++i)
        {
            int startIndex=numberOfClasses*i;

            std::vector<float> logit;
            for(int j=0;j<numberOfClasses;++j)
            {
                logit.push_back(logits[startIndex+j]);
            }
            
            std::vector<ResultOfPrediction> resultOfPredictions;
            for(int j=0;j<numberOfClasses;++j)
            {
                ResultOfPrediction prediction;
                prediction.label=j;
                prediction.confidence=logit[j];

                resultOfPredictions.push_back(prediction);
            }

            predictions.push_back(resultOfPredictions);
        }
liucong's avatar
liucong committed
243
    }
244
    else   // 当offload为false时,需要内存拷贝
liucong's avatar
liucong committed
245
246
    {

247
        migraphx::argument inputData = migraphx::argument{inputShape, (float*)inputBlob.data};
liucong's avatar
liucong committed
248

249
250
        // 拷贝到device输入内存
        hipMemcpy(inputBuffer_Device, inputData.data(), inputShape.bytes(), hipMemcpyHostToDevice);
liucong's avatar
liucong committed
251
252

        // 推理
liucong's avatar
liucong committed
253
        std::vector<migraphx::argument> results = net.eval(programParameters);
liucong's avatar
liucong committed
254

255
256
257
258
259
        // 获取输出节点的属性
        migraphx::argument result   = results[0];                  // 获取第一个输出节点的数据
        migraphx::shape outputShapes=result.get_shape();           // 输出节点的shape
        std::vector<std::size_t> outputSize=outputShapes.lens();   // 每一维大小,维度顺序为(N,C,H,W) 
        int numberOfOutput=outputShapes.elements();                // 输出节点元素的个数
liucong's avatar
liucong committed
260

261
262
        // 将device输出数据拷贝到分配好的host输出内存
        hipMemcpy(outputBuffer_Host, outputBuffer_Device, outputShapes.bytes(), hipMemcpyDeviceToHost);  // 直接使用事先分配好的输出内存拷贝
liucong's avatar
liucong committed
263

264
265
        // 获取每张图像的预测结果
        int numberOfClasses=numberOfOutput/srcImages.size();
liucong's avatar
liucong committed
266
        std::vector<float> logit;
267
        for(int i=0;i<srcImages.size();++i)
liucong's avatar
liucong committed
268
        {
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
            int startIndex=numberOfClasses*i;
            for(int j=0;j<numberOfClasses;++j)
            {
                logit.push_back(((float *)outputBuffer_Host)[startIndex+j]);
            }
            
            std::vector<ResultOfPrediction> resultOfPredictions;
            for(int j=0;j<numberOfClasses;++j)
            {
                ResultOfPrediction prediction;
                prediction.label=j;
                prediction.confidence=logit[j];

                resultOfPredictions.push_back(prediction);
            }
liucong's avatar
liucong committed
284

285
            predictions.push_back(resultOfPredictions);
liucong's avatar
liucong committed
286
287
        }

288
289
290
291
        // 释放
        hipFree(inputBuffer_Device);
        hipFree(outputBuffer_Device);
        free(outputBuffer_Host);
liucong's avatar
liucong committed
292
293
294
295
296
297
298
    }

    return SUCCESS;

}

}