Classifier.cpp 11.8 KB
Newer Older
liucong's avatar
liucong committed
1
2
#include <Classifier.h>

liucong's avatar
liucong committed
3
4
5
#include <migraphx/onnx.hpp>
#include <migraphx/gpu/target.hpp>
#include <migraphx/quantization.hpp>
6
#include <hip/hip_runtime_api.h>
liucong's avatar
liucong committed
7
8
#include <Filesystem.h>
#include <SimpleLog.h>
liucong's avatar
liucong committed
9
10
#include <algorithm>
#include <CommonUtility.h>
liucong's avatar
liucong committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

namespace migraphxSamples
{

Classifier::Classifier()
{
}

Classifier::~Classifier()
{
    configurationFile.release();
}

ErrorCode Classifier::Initialize(InitializationParameterOfClassifier initializationParameterOfClassifier)
{
    // 读取配置文件
liucong's avatar
liucong committed
27
    std::string configFilePath=initializationParameterOfClassifier.configFilePath;
liucong's avatar
liucong committed
28
29
30
31
32
    if(Exists(configFilePath)==false)
    {
        LOG_ERROR(stdout, "no configuration file!\n");
        return CONFIG_FILE_NOT_EXIST;
    }
liucong's avatar
liucong committed
33
    if(!configurationFile.open(configFilePath, cv::FileStorage::READ))
liucong's avatar
liucong committed
34
35
36
37
38
39
40
    {
       LOG_ERROR(stdout, "fail to open configuration file\n");
       return FAIL_TO_OPEN_CONFIG_FILE;
    }
    LOG_INFO(stdout, "succeed to open configuration file\n");

    // 获取配置文件参数
liucong's avatar
liucong committed
41
    cv::FileNode netNode = configurationFile["Classifier"];
liucong's avatar
liucong committed
42
    std::string modelPath=(std::string)netNode["ModelPath"];
liucong's avatar
liucong committed
43
44
    useInt8=(bool)(int)netNode["UseInt8"];
    useFP16=(bool)(int)netNode["UseFP16"];
liucong's avatar
liucong committed
45
    useoffloadcopy=(bool)(int)netNode["Useoffloadcopy"];
liucong's avatar
liucong committed
46
47
48
49

    // 加载模型
    if(Exists(modelPath)==false)
    {
liucong's avatar
liucong committed
50
        LOG_ERROR(stdout,"%s not exist!\n",modelPath.c_str());
liucong's avatar
liucong committed
51
52
        return MODEL_NOT_EXIST;
    }
53
    net = migraphx::parse_onnx(modelPath);
liucong's avatar
liucong committed
54
    LOG_INFO(stdout,"succeed to load model: %s\n",GetFileName(modelPath).c_str());
liucong's avatar
liucong committed
55

liucong's avatar
liucong committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
    // 获取模型输入/输出节点信息
    std::cout<<"inputs:"<<std::endl;
    std::unordered_map<std::string, migraphx::shape> inputs=net.get_inputs();
    for(auto i:inputs)
    {
        std::cout<<i.first<<":"<<i.second<<std::endl;
    }
    std::cout<<"outputs:"<<std::endl;
    std::unordered_map<std::string, migraphx::shape> outputs=net.get_outputs();
    for(auto i:outputs)
    {
        std::cout<<i.first<<":"<<i.second<<std::endl;
    }
    inputName=inputs.begin()->first;
    inputShape=inputs.begin()->second;
71
72
    outputName=outputs.begin()->first;
    outputShape=outputs.begin()->second;
liucong's avatar
liucong committed
73
74
75
76
77
78
79
80
81
82
83
84
85
    int N=inputShape.lens()[0];
    int C=inputShape.lens()[1];
    int H=inputShape.lens()[2];
    int W=inputShape.lens()[3];
    inputSize=cv::Size(W,H);

    // 设置模型为GPU模式
    migraphx::target gpuTarget = migraphx::gpu::target{};

    // 量化
    if(useInt8)
    {
        // 创建量化校准数据,建议使用测试集中的多张典型图像
liucong's avatar
liucong committed
86
        cv::Mat srcImage=cv::imread("../Resource/Images/ImageNet_test.jpg",1);
liucong's avatar
liucong committed
87
88
89
90
91
        std::vector<cv::Mat> srcImages;
        for(int i=0;i<inputShape.lens()[0];++i)
        {
            srcImages.push_back(srcImage);
        }
liucong's avatar
liucong committed
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

        // 数据预处理
        std::vector<cv::Mat> image;
        for(int i =0;i<srcImages.size();++i)
        {
            //BGR转换为RGB
            cv::Mat imgRGB;
            cv::cvtColor(srcImages[i], imgRGB, cv::COLOR_BGR2RGB);

            // 调整大小,使短边为256,保持长宽比
            cv::Mat shrink;
            float ratio = (float)256 / min(imgRGB.cols, imgRGB.rows);
            if(imgRGB.rows > imgRGB.cols)
            {
                cv::resize(imgRGB, shrink, cv::Size(256, int(ratio * imgRGB.rows)), 0, 0);
            }
            else
            {
                cv::resize(imgRGB, shrink, cv::Size(int(ratio * imgRGB.cols), 256), 0, 0);
            }

            // 裁剪中心窗口为224*224
            int start_x = shrink.cols/2 - 224/2;
            int start_y = shrink.rows/2 - 224/2;
            cv::Rect rect(start_x, start_y, 224, 224);
            cv::Mat images = shrink(rect);
            image.push_back(images);
        }

        // normalize并转换为NCHW
liucong's avatar
liucong committed
122
        cv::Mat inputBlob;
liucong's avatar
liucong committed
123
124
125
126
127
128
        Image2BlobParams image2BlobParams;
        image2BlobParams.scalefactor=cv::Scalar(1/58.395, 1/57.12, 1/57.375);
        image2BlobParams.mean=cv::Scalar(123.675, 116.28, 103.53);
        image2BlobParams.swapRB=false;
        blobFromImagesWithParams(image,inputBlob,image2BlobParams);
        
liucong's avatar
liucong committed
129
130
131
132
133
134
135
        std::unordered_map<std::string, migraphx::argument> inputData;
        inputData[inputName]= migraphx::argument{inputShape, (float*)inputBlob.data};
        std::vector<std::unordered_map<std::string, migraphx::argument>> calibrationData = {inputData};

        // INT8量化
        migraphx::quantize_int8(net, gpuTarget, calibrationData);
    }
liucong's avatar
liucong committed
136
    else if(useFP16)
liucong's avatar
liucong committed
137
138
139
140
141
142
    {
        migraphx::quantize_fp16(net);
    }

    // 编译模型
    migraphx::compile_options options;
liucong's avatar
liucong committed
143
    options.device_id=0; // 设置GPU设备,默认为0号设备
liucong's avatar
liucong committed
144
145
146
147
148
149
150
151
    if(useoffloadcopy)
    {
        options.offload_copy=true;
    }
    else
    {
        options.offload_copy=false;
    }
liucong's avatar
liucong committed
152
    net.compile(gpuTarget,options);
liucong's avatar
liucong committed
153
    LOG_INFO(stdout,"succeed to compile model: %s\n",GetFileName(modelPath).c_str());
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

    // offloadcopy为false的时候,分配输入和输出内存
    if(!useoffloadcopy)
    {
        // 分配device输入内存
        inputBuffer_Device=nullptr;
        hipMalloc(&inputBuffer_Device, inputShape.bytes());
        programParameters[inputName] = migraphx::argument{inputShape, inputBuffer_Device};

        // 分配device和host输出内存
        outputBuffer_Device=nullptr;
        hipMalloc(&outputBuffer_Device, outputShape.bytes());
        programParameters[outputName] = migraphx::argument{outputShape, outputBuffer_Device};
        outputBuffer_Host=nullptr;                                                                // host内存
        outputBuffer_Host=malloc(outputShape.bytes());
    }
liucong's avatar
liucong committed
170
    
liucong's avatar
liucong committed
171
    // warm up
liucong's avatar
liucong committed
172
173
174
175
176
177
178
179
    if(useoffloadcopy)
    {
        std::unordered_map<std::string, migraphx::argument> inputData;
        inputData[inputName]=migraphx::argument{inputShape};
        net.eval(inputData);
    }
    else
    {
180
181
182
        migraphx::argument inputData= migraphx::argument{inputShape};
        hipMemcpy(inputBuffer_Device, inputData.data(), inputShape.bytes(), hipMemcpyHostToDevice);
        net.eval(programParameters);
liucong's avatar
liucong committed
183
    }
liucong's avatar
liucong committed
184
185

    // log
liucong's avatar
liucong committed
186
187
188
189
    LOG_INFO(stdout,"InputSize:%dx%d\n",inputSize.width,inputSize.height);
    LOG_INFO(stdout,"InputName:%s\n",inputName.c_str());
    LOG_INFO(stdout,"UseInt8:%d\n",(int)useInt8);
    LOG_INFO(stdout,"UseFP16:%d\n",(int)useFP16);
liucong's avatar
liucong committed
190
    LOG_INFO(stdout,"Useoffloadcopy:%d\n",(int)useoffloadcopy);
liucong's avatar
liucong committed
191

liucong's avatar
liucong committed
192
193
194
195
    return SUCCESS;

}

196
cv::Mat Classifier::Preprocess(const std::vector<cv::Mat> &srcImages)
liucong's avatar
liucong committed
197
{
liucong's avatar
liucong committed
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
    // 数据预处理
    std::vector<cv::Mat> image;
    for(int i =0;i<srcImages.size();++i)
    {
        //BGR转换为RGB
        cv::Mat imgRGB;
        cv::cvtColor(srcImages[i], imgRGB, cv::COLOR_BGR2RGB);

        // 调整大小,使短边为256,保持长宽比
        cv::Mat shrink;
        float ratio = (float)256 / min(imgRGB.cols, imgRGB.rows);
        if(imgRGB.rows > imgRGB.cols)
        {
            cv::resize(imgRGB, shrink, cv::Size(256, int(ratio * imgRGB.rows)), 0, 0);
        }
        else
        {
            cv::resize(imgRGB, shrink, cv::Size(int(ratio * imgRGB.cols), 256), 0, 0);
        }

        // 裁剪中心窗口为224*224
        int start_x = shrink.cols/2 - 224/2;
        int start_y = shrink.rows/2 - 224/2;
        cv::Rect rect(start_x, start_y, 224, 224);
        cv::Mat images = shrink(rect);
        image.push_back(images);
    }

    // normalize并转换为NCHW
liucong's avatar
liucong committed
227
    cv::Mat inputBlob;
liucong's avatar
liucong committed
228
229
230
231
232
    Image2BlobParams image2BlobParams;
    image2BlobParams.scalefactor=cv::Scalar(1/58.395, 1/57.12, 1/57.375);
    image2BlobParams.mean=cv::Scalar(123.675, 116.28, 103.53);
    image2BlobParams.swapRB=false;
    blobFromImagesWithParams(image,inputBlob,image2BlobParams);
233
234
235
236
237
238
239
240
241
242
243
244
    return inputBlob;
}

ErrorCode Classifier::Classify(const std::vector<cv::Mat> &srcImages,std::vector<std::vector<ResultOfPrediction>> &predictions)
{
    if(srcImages.size()==0||srcImages[0].empty()||srcImages[0].depth()!=CV_8U)
    {
        LOG_ERROR(stdout, "image error!\n");
        return IMAGE_ERROR;
    }
    
    cv::Mat inputBlob = Preprocess(srcImages);
liucong's avatar
liucong committed
245

246
    // 当offload为true时,不需要内存拷贝
liucong's avatar
liucong committed
247
248
249
250
    if(useoffloadcopy)
    {
        std::unordered_map<std::string, migraphx::argument> inputData;
        inputData[inputName]= migraphx::argument{inputShape, (float*)inputBlob.data};
liucong's avatar
liucong committed
251

liucong's avatar
liucong committed
252
253
254
255
        // 推理
        std::vector<std::string> outputNames={"resnetv24_dense0_fwd"};    // 设置返回的输出节点
        std::vector<migraphx::argument> results = net.eval(inputData,outputNames);

256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
        // 获取输出节点的属性
        migraphx::argument result  = results[0];                 // 获取第一个输出节点的数据
        migraphx::shape outputShapes=result.get_shape();         // 输出节点的shape
        std::vector<std::size_t> outputSize=outputShapes.lens(); // 每一维大小,维度顺序为(N,C,H,W) 
        int numberOfOutput=outputShapes.elements();              // 输出节点元素的个数
        float *logits=(float *)result.data();                    // 输出节点数据指针

        // 获取每张图像的预测结果
        int numberOfClasses=numberOfOutput/srcImages.size();
        for(int i=0;i<srcImages.size();++i)
        {
            int startIndex=numberOfClasses*i;

            std::vector<float> logit;
            for(int j=0;j<numberOfClasses;++j)
            {
                logit.push_back(logits[startIndex+j]);
            }
            
            std::vector<ResultOfPrediction> resultOfPredictions;
            for(int j=0;j<numberOfClasses;++j)
            {
                ResultOfPrediction prediction;
                prediction.label=j;
                prediction.confidence=logit[j];

                resultOfPredictions.push_back(prediction);
            }

            predictions.push_back(resultOfPredictions);
        }
liucong's avatar
liucong committed
287
    }
288
    else   // 当offload为false时,需要内存拷贝
liucong's avatar
liucong committed
289
290
    {

291
        migraphx::argument inputData = migraphx::argument{inputShape, (float*)inputBlob.data};
liucong's avatar
liucong committed
292

293
294
        // 拷贝到device输入内存
        hipMemcpy(inputBuffer_Device, inputData.data(), inputShape.bytes(), hipMemcpyHostToDevice);
liucong's avatar
liucong committed
295
296

        // 推理
297
298
        std::vector<std::string> outputNames={"resnetv24_dense0_fwd"};     // 设置返回的输出节点
        std::vector<migraphx::argument> results = net.eval(programParameters,outputNames);
liucong's avatar
liucong committed
299

300
301
302
303
304
        // 获取输出节点的属性
        migraphx::argument result   = results[0];                  // 获取第一个输出节点的数据
        migraphx::shape outputShapes=result.get_shape();           // 输出节点的shape
        std::vector<std::size_t> outputSize=outputShapes.lens();   // 每一维大小,维度顺序为(N,C,H,W) 
        int numberOfOutput=outputShapes.elements();                // 输出节点元素的个数
liucong's avatar
liucong committed
305

306
307
        // 将device输出数据拷贝到分配好的host输出内存
        hipMemcpy(outputBuffer_Host, outputBuffer_Device, outputShapes.bytes(), hipMemcpyDeviceToHost);  // 直接使用事先分配好的输出内存拷贝
liucong's avatar
liucong committed
308

309
310
        // 获取每张图像的预测结果
        int numberOfClasses=numberOfOutput/srcImages.size();
liucong's avatar
liucong committed
311
        std::vector<float> logit;
312
        for(int i=0;i<srcImages.size();++i)
liucong's avatar
liucong committed
313
        {
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
            int startIndex=numberOfClasses*i;
            for(int j=0;j<numberOfClasses;++j)
            {
                logit.push_back(((float *)outputBuffer_Host)[startIndex+j]);
            }
            
            std::vector<ResultOfPrediction> resultOfPredictions;
            for(int j=0;j<numberOfClasses;++j)
            {
                ResultOfPrediction prediction;
                prediction.label=j;
                prediction.confidence=logit[j];

                resultOfPredictions.push_back(prediction);
            }
liucong's avatar
liucong committed
329

330
            predictions.push_back(resultOfPredictions);
liucong's avatar
liucong committed
331
332
        }

333
334
335
336
        // 释放
        hipFree(inputBuffer_Device);
        hipFree(outputBuffer_Device);
        free(outputBuffer_Host);
liucong's avatar
liucong committed
337
338
339
340
341
342
343
    }

    return SUCCESS;

}

}