Classifier.cpp 9.81 KB
Newer Older
liucong's avatar
liucong committed
1
2
#include <Classifier.h>

liucong's avatar
liucong committed
3
4
5
#include <migraphx/onnx.hpp>
#include <migraphx/gpu/target.hpp>
#include <migraphx/quantization.hpp>
liucong's avatar
liucong committed
6
#include <migraphx/gpu/hip.hpp>
liucong's avatar
liucong committed
7
8
#include <Filesystem.h>
#include <SimpleLog.h>
liucong's avatar
liucong committed
9
10
#include <algorithm>
#include <CommonUtility.h>
liucong's avatar
liucong committed
11
12
13
14
15
16
17
18
19
20
21
22
23

namespace migraphxSamples
{

Classifier::Classifier()
{
}

Classifier::~Classifier()
{
    configurationFile.release();
}

liucong's avatar
liucong committed
24
25
26
27
28
29
30
31
32
33
std::unordered_map<std::string, migraphx::argument> Classifier::CreateOutputData(migraphx::program &p)
{
    std::unordered_map<std::string, migraphx::argument> outputData;
    for (auto x : p.get_outputs())
    {
        outputData[x.first] = migraphx::gpu::allocate_gpu(x.second);
    } 
    return outputData;
}

liucong's avatar
liucong committed
34
35
36
ErrorCode Classifier::Initialize(InitializationParameterOfClassifier initializationParameterOfClassifier)
{
    // 读取配置文件
liucong's avatar
liucong committed
37
    std::string configFilePath=initializationParameterOfClassifier.configFilePath;
liucong's avatar
liucong committed
38
39
40
41
42
    if(Exists(configFilePath)==false)
    {
        LOG_ERROR(stdout, "no configuration file!\n");
        return CONFIG_FILE_NOT_EXIST;
    }
liucong's avatar
liucong committed
43
    if(!configurationFile.open(configFilePath, cv::FileStorage::READ))
liucong's avatar
liucong committed
44
45
46
47
48
49
50
    {
       LOG_ERROR(stdout, "fail to open configuration file\n");
       return FAIL_TO_OPEN_CONFIG_FILE;
    }
    LOG_INFO(stdout, "succeed to open configuration file\n");

    // 获取配置文件参数
liucong's avatar
liucong committed
51
    cv::FileNode netNode = configurationFile["Classifier"];
liucong's avatar
liucong committed
52
    std::string modelPath=(std::string)netNode["ModelPath"];
liucong's avatar
liucong committed
53
54
    useInt8=(bool)(int)netNode["UseInt8"];
    useFP16=(bool)(int)netNode["UseFP16"];
liucong's avatar
liucong committed
55
    useoffloadcopy=(bool)(int)netNode["Useoffloadcopy"];
liucong's avatar
liucong committed
56

liucong's avatar
liucong committed
57
58
59
60
    // 设置最大输入shape
    migraphx::onnx_options onnx_options;
    onnx_options.map_input_dims["data"]={1,3,224,224};

liucong's avatar
liucong committed
61
62
63
    // 加载模型
    if(Exists(modelPath)==false)
    {
liucong's avatar
liucong committed
64
        LOG_ERROR(stdout,"%s not exist!\n",modelPath.c_str());
liucong's avatar
liucong committed
65
66
        return MODEL_NOT_EXIST;
    }
liucong's avatar
liucong committed
67
    net = migraphx::parse_onnx(modelPath, onnx_options);
liucong's avatar
liucong committed
68
    LOG_INFO(stdout,"succeed to load model: %s\n",GetFileName(modelPath).c_str());
liucong's avatar
liucong committed
69

liucong's avatar
liucong committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
    // 获取模型输入/输出节点信息
    std::cout<<"inputs:"<<std::endl;
    std::unordered_map<std::string, migraphx::shape> inputs=net.get_inputs();
    for(auto i:inputs)
    {
        std::cout<<i.first<<":"<<i.second<<std::endl;
    }
    std::cout<<"outputs:"<<std::endl;
    std::unordered_map<std::string, migraphx::shape> outputs=net.get_outputs();
    for(auto i:outputs)
    {
        std::cout<<i.first<<":"<<i.second<<std::endl;
    }
    inputName=inputs.begin()->first;
    inputShape=inputs.begin()->second;
liucong's avatar
liucong committed
85
86
87
88
89
90
91
92
93
94
95
96
97
    int N=inputShape.lens()[0];
    int C=inputShape.lens()[1];
    int H=inputShape.lens()[2];
    int W=inputShape.lens()[3];
    inputSize=cv::Size(W,H);

    // 设置模型为GPU模式
    migraphx::target gpuTarget = migraphx::gpu::target{};

    // 量化
    if(useInt8)
    {
        // 创建量化校准数据,建议使用测试集中的多张典型图像
liucong's avatar
liucong committed
98
        cv::Mat srcImage=cv::imread("../Resource/Images/ImageNet_test.jpg",1);
liucong's avatar
liucong committed
99
100
101
102
103
        std::vector<cv::Mat> srcImages;
        for(int i=0;i<inputShape.lens()[0];++i)
        {
            srcImages.push_back(srcImage);
        }
liucong's avatar
liucong committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

        // 数据预处理
        std::vector<cv::Mat> image;
        for(int i =0;i<srcImages.size();++i)
        {
            //BGR转换为RGB
            cv::Mat imgRGB;
            cv::cvtColor(srcImages[i], imgRGB, cv::COLOR_BGR2RGB);

            // 调整大小,使短边为256,保持长宽比
            cv::Mat shrink;
            float ratio = (float)256 / min(imgRGB.cols, imgRGB.rows);
            if(imgRGB.rows > imgRGB.cols)
            {
                cv::resize(imgRGB, shrink, cv::Size(256, int(ratio * imgRGB.rows)), 0, 0);
            }
            else
            {
                cv::resize(imgRGB, shrink, cv::Size(int(ratio * imgRGB.cols), 256), 0, 0);
            }

            // 裁剪中心窗口为224*224
            int start_x = shrink.cols/2 - 224/2;
            int start_y = shrink.rows/2 - 224/2;
            cv::Rect rect(start_x, start_y, 224, 224);
            cv::Mat images = shrink(rect);
            image.push_back(images);
        }

        // normalize并转换为NCHW
liucong's avatar
liucong committed
134
        cv::Mat inputBlob;
liucong's avatar
liucong committed
135
136
137
138
139
140
        Image2BlobParams image2BlobParams;
        image2BlobParams.scalefactor=cv::Scalar(1/58.395, 1/57.12, 1/57.375);
        image2BlobParams.mean=cv::Scalar(123.675, 116.28, 103.53);
        image2BlobParams.swapRB=false;
        blobFromImagesWithParams(image,inputBlob,image2BlobParams);
        
liucong's avatar
liucong committed
141
142
143
144
145
146
147
        std::unordered_map<std::string, migraphx::argument> inputData;
        inputData[inputName]= migraphx::argument{inputShape, (float*)inputBlob.data};
        std::vector<std::unordered_map<std::string, migraphx::argument>> calibrationData = {inputData};

        // INT8量化
        migraphx::quantize_int8(net, gpuTarget, calibrationData);
    }
liucong's avatar
liucong committed
148
    else if(useFP16)
liucong's avatar
liucong committed
149
150
151
152
153
154
    {
        migraphx::quantize_fp16(net);
    }

    // 编译模型
    migraphx::compile_options options;
liucong's avatar
liucong committed
155
    options.device_id=0; // 设置GPU设备,默认为0号设备
liucong's avatar
liucong committed
156
157
158
159
160
161
162
163
    if(useoffloadcopy)
    {
        options.offload_copy=true;
    }
    else
    {
        options.offload_copy=false;
    }
liucong's avatar
liucong committed
164
    net.compile(gpuTarget,options);
liucong's avatar
liucong committed
165
    LOG_INFO(stdout,"succeed to compile model: %s\n",GetFileName(modelPath).c_str());
liucong's avatar
liucong committed
166
    
liucong's avatar
liucong committed
167
    // warm up
liucong's avatar
liucong committed
168
169
170
171
172
173
174
175
176
177
178
179
    if(useoffloadcopy)
    {
        std::unordered_map<std::string, migraphx::argument> inputData;
        inputData[inputName]=migraphx::argument{inputShape};
        net.eval(inputData);
    }
    else
    {
        std::unordered_map<std::string, migraphx::argument> modelData_warm=CreateOutputData(net);
        modelData_warm[inputName]=migraphx::gpu::to_gpu(migraphx::argument{inputShape});
        net.eval(modelData_warm);
    }
liucong's avatar
liucong committed
180
181

    // log
liucong's avatar
liucong committed
182
183
184
185
186
    LOG_INFO(stdout,"InputSize:%dx%d\n",inputSize.width,inputSize.height);
    LOG_INFO(stdout,"InputName:%s\n",inputName.c_str());
    LOG_INFO(stdout,"UseInt8:%d\n",(int)useInt8);
    LOG_INFO(stdout,"UseFP16:%d\n",(int)useFP16);

liucong's avatar
liucong committed
187
188
189
190
191
192
193
194
    return SUCCESS;

}

ErrorCode Classifier::Classify(const std::vector<cv::Mat> &srcImages,std::vector<std::vector<ResultOfPrediction>> &predictions)
{
    if(srcImages.size()==0||srcImages[0].empty()||srcImages[0].depth()!=CV_8U)
    {
liucong's avatar
liucong committed
195
        LOG_ERROR(stdout, "image error!\n");
liucong's avatar
liucong committed
196
197
198
        return IMAGE_ERROR;
    }
    
liucong's avatar
liucong committed
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
    // 数据预处理
    std::vector<cv::Mat> image;
    for(int i =0;i<srcImages.size();++i)
    {
        //BGR转换为RGB
        cv::Mat imgRGB;
        cv::cvtColor(srcImages[i], imgRGB, cv::COLOR_BGR2RGB);

        // 调整大小,使短边为256,保持长宽比
        cv::Mat shrink;
        float ratio = (float)256 / min(imgRGB.cols, imgRGB.rows);
        if(imgRGB.rows > imgRGB.cols)
        {
            cv::resize(imgRGB, shrink, cv::Size(256, int(ratio * imgRGB.rows)), 0, 0);
        }
        else
        {
            cv::resize(imgRGB, shrink, cv::Size(int(ratio * imgRGB.cols), 256), 0, 0);
        }

        // 裁剪中心窗口为224*224
        int start_x = shrink.cols/2 - 224/2;
        int start_y = shrink.rows/2 - 224/2;
        cv::Rect rect(start_x, start_y, 224, 224);
        cv::Mat images = shrink(rect);
        image.push_back(images);
    }

    // normalize并转换为NCHW
liucong's avatar
liucong committed
228
    cv::Mat inputBlob;
liucong's avatar
liucong committed
229
230
231
232
233
    Image2BlobParams image2BlobParams;
    image2BlobParams.scalefactor=cv::Scalar(1/58.395, 1/57.12, 1/57.375);
    image2BlobParams.mean=cv::Scalar(123.675, 116.28, 103.53);
    image2BlobParams.swapRB=false;
    blobFromImagesWithParams(image,inputBlob,image2BlobParams);
liucong's avatar
liucong committed
234

liucong's avatar
liucong committed
235
    // 创建输入数据
liucong's avatar
liucong committed
236
237
238
239
240
    migraphx::argument result;
    if(useoffloadcopy)
    {
        std::unordered_map<std::string, migraphx::argument> inputData;
        inputData[inputName]= migraphx::argument{inputShape, (float*)inputBlob.data};
liucong's avatar
liucong committed
241

liucong's avatar
liucong committed
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
        // 推理
        std::vector<std::string> outputNames={"resnetv24_dense0_fwd"};    // 设置返回的输出节点
        std::vector<migraphx::argument> results = net.eval(inputData,outputNames);

        result  = results[0];                           // 获取第一个输出节点的数据
    }
    else
    {
        // 为输出节点分配device内存,用于保存输出数据
        std::unordered_map<std::string, migraphx::argument> modelData=CreateOutputData(net);

        // 将输入转换为device数据
        migraphx::argument inputData=migraphx::gpu::to_gpu(migraphx::argument{inputShape, (float*)inputBlob.data});

        // 使用device数据作为输入数据,inputData.data()返回的是device地址
        modelData[inputName]= migraphx::argument{inputShape, inputData.data()};

        // 推理
        std::vector<std::string> outputNames={"resnetv24_dense0_fwd"};    // 设置返回的输出节点
        std::vector<migraphx::argument> results = net.eval(modelData,outputNames);

        result  = migraphx::gpu::from_gpu(results[0]);  // 将第一个输出节点的数据拷贝到host端
    }
liucong's avatar
liucong committed
265
266

    // 获取输出节点的属性
liucong's avatar
liucong committed
267
268
269
270
    migraphx::shape outputShape=result.get_shape(); // 输出节点的shape
    std::vector<std::size_t> outputSize=outputShape.lens();// 每一维大小,维度顺序为(N,C,H,W) 
    int numberOfOutput=outputShape.elements();// 输出节点元素的个数
    float *logits=(float *)result.data();// 输出节点数据指针
liucong's avatar
liucong committed
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301

    // 获取每张图像的预测结果
    int numberOfClasses=numberOfOutput/srcImages.size();
    for(int i=0;i<srcImages.size();++i)
    {
        int startIndex=numberOfClasses*i;

        std::vector<float> logit;
        for(int j=0;j<numberOfClasses;++j)
        {
            logit.push_back(logits[startIndex+j]);
        }
        
        std::vector<ResultOfPrediction> resultOfPredictions;
        for(int j=0;j<numberOfClasses;++j)
        {
            ResultOfPrediction prediction;
            prediction.label=j;
            prediction.confidence=logit[j];

            resultOfPredictions.push_back(prediction);
        }

        predictions.push_back(resultOfPredictions);
    }

    return SUCCESS;

}

}