Commit e3f7f7b3 authored by chenzk's avatar chenzk
Browse files

v1.0

parents
Pipeline #956 failed with stages
in 0 seconds
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
---
title: "NeuralForecast's Contents"
---
## Automatic Forecasting Models
Automatic forecasting tools optimize the hyperparameters of a given model class and select the best-performing model for a validation set. The optimization methods include grid search, random search, and Bayesian optimization.
| MLP-Based |RNN-Based | Transformers | CNN-Based | Multivariate |
|:------------------------------------------|:------------------------------------- |:---------------------------------------------|:--------------------------------------------| :-------------------------------------------|
|[`AutoMLP`](../models.html#automlp) |[`AutoRNN`](../models.html#autornn) |[`AutoTFT`](../models.html#autotft) |[`AutoTimesNet`](../models.html#autotimesnet)| [`AutoStemGNN`](../models.html#autostemgnn) |
|[`AutoNBEATS`](../models.html#autonbeats) |[`AutoLSTM`](../models.html#autolstm) |[`AutoInformer`](../models.html#autoinformer) | | [`AutoHINT`](../models.html#autohint) |
|[`AutoNBEATSx`](../models.html#autonbeatsx)|[`AutoGRU`](../models.html#autogru) |[`Autoformer`](../models.html#autoautoformer) | | |
|[`AutoNHITS`](../models.html#autonhits) |[`AutoTCN`](../models.html#autotcn) |[`AutoPatchTST`](../models.html#autopatchtst) | | |
| |[`AutoDeepAR`](../models.html#autodeepar)| | | |
: {tbl-colwidths="[25,25]"}
## Optimization Objectives
NeuralForecast is a highly modular framework capable of augmenting a wide variety of robust neural network architectures with different point or probability outputs as defined by their optimization objectives.
| Scale-Dependent | Percentage-Errors | Scale-Independent | Robust |
|:-------------------------------------------------------------|:----------------------------------------------------------------------|:---------------------------------------------------------------|:-------------------------------------------------------|
|[`MAE`](../losses.pytorch.html#mean-absolute-error-mae) |[`MAPE`](../losses.pytorch.html#mean-absolute-percentage-error-mape) |[`MASE`](../losses.pytorch.html#mean-absolute-scaled-error-mase)|[`Huber`](../losses.pytorch.html#huber-loss) |
|[`MSE`](../losses.pytorch.html#mean-squared-error-mse) |[`sMAPE`](../losses.pytorch.html#symmetric-mape-smape) | |[`Tukey`](../losses.pytorch.html#tukey-loss) |
|[`RMSE`](../losses.pytorch.html#root-mean-squared-error-rmse) | | |[`HuberMQLoss`](../losses.pytorch.html#huberized-mqloss)|
: {tbl-colwidths="[25,25]"}
|Parametric Probabilities | Non-Parametric Probabilities |
|:-------------------------------------------------------------|:-------------------------------------------------------------|
|[`Normal`](../losses.pytorch.html#distributionloss) |[`QuantileLoss`](../losses.pytorch.html#quantile-loss) |
|[`StudenT`](../losses.pytorch.html#distributionloss) |[`MQLoss`](../losses.pytorch.html#multi-quantile-loss-mqloss) |
|[`Poisson`](../losses.pytorch.html#distributionloss) |[`HuberQLoss`](../losses.pytorch.html#huberized-quantile-loss)|
|[`Negative Binomial`](../losses.pytorch.html#distributionloss)|[`HuberMQLoss`](../losses.pytorch.html#huberized-mqloss) |
|[`Tweedie`](../losses.pytorch.html#distributionloss) | |
|[`PMM`](../losses.pytorch.html#poisson-mixture-mesh-pmm) /[`GMM`](../losses.pytorch.html#gaussian-mixture-mesh-gmm) | |
: {tbl-colwidths="[25,25]"}
## MLP-Based Model Family
The MLP-based family operates like a classic autoencoder. Its initial layers encode raw autoregressive window into a representation, and the decoder produces the desired output based on the horizon, probability output, or point objective. Recent architectures include modifications like residual learning techniques and task-specific changes.
|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
|:-----------------------------------------|:--------------:|:----------------------:|:----------------------:|:----------------------------:|
|[`MLP`](../models.mlp.html) |✅ |✅ |✅ |✅ |
|[`NBEATS`](../models.nbeats.html) |✅ |✅ |✅ |✅ |
|[`NBEATSx`](../models.nbeatsx.html) |✅ |✅ |✅ |✅ |
|[`NHITS`](../models.nhits.html) |✅ |✅ |✅ |✅ |
: {tbl-colwidths="[25,25]"}
## RNN-Based Model Family
The RNN-based family attempts to leverage the data's temporal structure while reducing MLPs over parametrization. Recurrent networks are dynamic and can handle sequences of varying lengths through a mechanism for updating internal states that considers the entire sequence history. Modern state modifications help diminish vanishing and exploding gradients.
|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
|:-------------------------------------------|:----------------:|:----------------------:|:----------------------:|:----------------------------:|
|[`RNN`](../models.rnn.html) |✅ |✅ |✅ |✅ |
|[`GRU`](../models.gru.html) |✅ |✅ |✅ |✅ |
|[`LSTM`](../models.lstm.html) |✅ |✅ |✅ |✅ |
|[`TCN`](../models.tcn.html) |✅ |✅ |✅ |✅ |
|[`DeepAR`](../models.deepar.html) |✅ |✅ |✅ |✅ |
|[`DilatedRNN`](../models.dilated_rnn.html) |✅ |✅ |✅ |✅ |
: {tbl-colwidths="[25,25]"}
## Transformers Model Family
Transformer architectures are an alternative to recurrent networks. These networks build on the self-attention mechanism that directly allows modeling the relationship between different sequence parts without sequential processing. Attention makes Transformers more parallelizable than RNNs.
|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
|:----------------------------------------------------------|:----------------:|:----------------------:|:----------------------:|:----------------------------:|
|[`TFT`](../models.tft.html) |✅ |✅ |✅ |✅ |
|[`Informer`](../models.informer.html) |✅ |✅ |✅ |✅ |
|[`Autoformer`](../models.autoformer.html) |✅ |✅ |✅ |✅ |
|[`PatchTST`](../models.patchtst.html) |✅ |✅ |✅ |✅ |
|[`VanillaTransformer`](../models.vanillatransformer.html) |✅ |✅ |✅ |✅ |
: {tbl-colwidths="[25,25]"}
## CNN-Based Model Family
Convolutional Neural Networks (CNNs), originally celebrated for their accomplishments in image processing and computer vision, have also revealed substantial prowess in time series forecasting. Navigating through temporal data, CNNs utilize their convolutional layers to automatically and adaptively learn temporal patterns from the input data, offering an approach to uncovering subtle, underlying patterns embedded within a series of values.
|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
|:----------------------------------------------------------|:----------------:|:----------------------:|:----------------------:|:----------------------------:|
|[`TimesNet`](../models.timesnet.html) |✅ |✅ |✅ |✅ |
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment