models.dilated_rnn.ipynb 28.3 KB
Newer Older
chenzk's avatar
v1.0  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#| default_exp models.dilated_rnn"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#| hide\n",
    "%load_ext autoreload\n",
    "%autoreload 2"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Dilated RNN"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The Dilated Recurrent Neural Network (`DilatedRNN`) addresses common challenges of modeling long sequences like vanishing gradients, computational efficiency, and improved model flexibility to model complex relationships while maintaining its parsimony. The `DilatedRNN` builds a deep stack of RNN layers using skip conditions on the temporal and the network's depth dimensions. The temporal dilated recurrent skip connections offer the capability to focus on multi-resolution inputs.The predictions are obtained by transforming the hidden states into contexts $\\mathbf{c}_{[t+1:t+H]}$, that are decoded and adapted into $\\mathbf{\\hat{y}}_{[t+1:t+H],[q]}$ through MLPs.\n",
    "\n",
    "\\begin{align}\n",
    " \\mathbf{h}_{t} &= \\textrm{DilatedRNN}([\\mathbf{y}_{t},\\mathbf{x}^{(h)}_{t},\\mathbf{x}^{(s)}], \\mathbf{h}_{t-1})\\\\\n",
    "\\mathbf{c}_{[t+1:t+H]}&=\\textrm{Linear}([\\mathbf{h}_{t}, \\mathbf{x}^{(f)}_{[:t+H]}]) \\\\ \n",
    "\\hat{y}_{\\tau,[q]}&=\\textrm{MLP}([\\mathbf{c}_{\\tau},\\mathbf{x}^{(f)}_{\\tau}])\n",
    "\\end{align}\n",
    "\n",
    "where $\\mathbf{h}_{t}$, is the hidden state for time $t$, $\\mathbf{y}_{t}$ is the input at time $t$ and $\\mathbf{h}_{t-1}$ is the hidden state of the previous layer at $t-1$, $\\mathbf{x}^{(s)}$ are static exogenous inputs, $\\mathbf{x}^{(h)}_{t}$ historic exogenous, $\\mathbf{x}^{(f)}_{[:t+H]}$ are future exogenous available at the time of the prediction.\n",
    "\n",
    "**References**<br>-[Shiyu Chang, et al. \"Dilated Recurrent Neural Networks\".](https://arxiv.org/abs/1710.02224)<br>-[Yao Qin, et al. \"A Dual-Stage Attention-Based recurrent neural network for time series prediction\".](https://arxiv.org/abs/1704.02971)<br>-[Kashif Rasul, et al. \"Zalando Research: PyTorch Dilated Recurrent Neural Networks\".](https://arxiv.org/abs/1710.02224)<br>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "![Figure 1. Three layer DilatedRNN with dilation 1, 2, 4.](imgs_models/dilated_rnn.png)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#| hide\n",
    "from nbdev.showdoc import show_doc\n",
    "from neuralforecast.utils import generate_series"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#| export\n",
    "from typing import List, Optional\n",
    "\n",
    "import torch\n",
    "import torch.nn as nn\n",
    "\n",
    "from neuralforecast.losses.pytorch import MAE\n",
    "from neuralforecast.common._base_recurrent import BaseRecurrent\n",
    "from neuralforecast.common._modules import MLP"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#| exporti\n",
    "class LSTMCell(nn.Module):\n",
    "    def __init__(self, input_size, hidden_size, dropout=0.):\n",
    "        super(LSTMCell, self).__init__()\n",
    "        self.input_size = input_size\n",
    "        self.hidden_size = hidden_size\n",
    "        self.weight_ih = nn.Parameter(torch.randn(4 * hidden_size, input_size))\n",
    "        self.weight_hh = nn.Parameter(torch.randn(4 * hidden_size, hidden_size))\n",
    "        self.bias_ih = nn.Parameter(torch.randn(4 * hidden_size))\n",
    "        self.bias_hh = nn.Parameter(torch.randn(4 * hidden_size))\n",
    "        self.dropout = dropout\n",
    "\n",
    "    def forward(self, inputs, hidden):\n",
    "        hx, cx = hidden[0].squeeze(0), hidden[1].squeeze(0)\n",
    "        gates = (torch.matmul(inputs, self.weight_ih.t()) + self.bias_ih +\n",
    "                         torch.matmul(hx, self.weight_hh.t()) + self.bias_hh)\n",
    "        ingate, forgetgate, cellgate, outgate = gates.chunk(4, 1)\n",
    "\n",
    "        ingate = torch.sigmoid(ingate)\n",
    "        forgetgate = torch.sigmoid(forgetgate)\n",
    "        cellgate = torch.tanh(cellgate)\n",
    "        outgate = torch.sigmoid(outgate)\n",
    "\n",
    "        cy = (forgetgate * cx) + (ingate * cellgate)\n",
    "        hy = outgate * torch.tanh(cy)\n",
    "\n",
    "        return hy, (hy, cy)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#| exporti\n",
    "class ResLSTMCell(nn.Module):\n",
    "    def __init__(self, input_size, hidden_size, dropout=0.):\n",
    "        super(ResLSTMCell, self).__init__()\n",
    "        self.register_buffer('input_size', torch.Tensor([input_size]))\n",
    "        self.register_buffer('hidden_size', torch.Tensor([hidden_size]))\n",
    "        self.weight_ii = nn.Parameter(torch.randn(3 * hidden_size, input_size))\n",
    "        self.weight_ic = nn.Parameter(torch.randn(3 * hidden_size, hidden_size))\n",
    "        self.weight_ih = nn.Parameter(torch.randn(3 * hidden_size, hidden_size))\n",
    "        self.bias_ii = nn.Parameter(torch.randn(3 * hidden_size))\n",
    "        self.bias_ic = nn.Parameter(torch.randn(3 * hidden_size))\n",
    "        self.bias_ih = nn.Parameter(torch.randn(3 * hidden_size))\n",
    "        self.weight_hh = nn.Parameter(torch.randn(1 * hidden_size, hidden_size))\n",
    "        self.bias_hh = nn.Parameter(torch.randn(1 * hidden_size))\n",
    "        self.weight_ir = nn.Parameter(torch.randn(hidden_size, input_size))\n",
    "        self.dropout = dropout\n",
    "\n",
    "    def forward(self, inputs, hidden):\n",
    "        hx, cx = hidden[0].squeeze(0), hidden[1].squeeze(0)\n",
    "\n",
    "        ifo_gates = (torch.matmul(inputs, self.weight_ii.t()) + self.bias_ii +\n",
    "                                  torch.matmul(hx, self.weight_ih.t()) + self.bias_ih +\n",
    "                                  torch.matmul(cx, self.weight_ic.t()) + self.bias_ic)\n",
    "        ingate, forgetgate, outgate = ifo_gates.chunk(3, 1)\n",
    "\n",
    "        cellgate = torch.matmul(hx, self.weight_hh.t()) + self.bias_hh\n",
    "\n",
    "        ingate = torch.sigmoid(ingate)\n",
    "        forgetgate = torch.sigmoid(forgetgate)\n",
    "        cellgate = torch.tanh(cellgate)\n",
    "        outgate = torch.sigmoid(outgate)\n",
    "\n",
    "        cy = (forgetgate * cx) + (ingate * cellgate)\n",
    "        ry = torch.tanh(cy)\n",
    "\n",
    "        if self.input_size == self.hidden_size:\n",
    "            hy = outgate * (ry + inputs)\n",
    "        else:\n",
    "            hy = outgate * (ry + torch.matmul(inputs, self.weight_ir.t()))\n",
    "        return hy, (hy, cy)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#| exporti\n",
    "class ResLSTMLayer(nn.Module):\n",
    "    def __init__(self, input_size, hidden_size, dropout=0.):\n",
    "        super(ResLSTMLayer, self).__init__()\n",
    "        self.input_size = input_size\n",
    "        self.hidden_size = hidden_size\n",
    "        self.cell = ResLSTMCell(input_size, hidden_size, dropout=0.)\n",
    "\n",
    "    def forward(self, inputs, hidden):\n",
    "        inputs = inputs.unbind(0)\n",
    "        outputs = []\n",
    "        for i in range(len(inputs)):\n",
    "                out, hidden = self.cell(inputs[i], hidden)\n",
    "                outputs += [out]\n",
    "        outputs = torch.stack(outputs)\n",
    "        return outputs, hidden"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#| exporti\n",
    "class AttentiveLSTMLayer(nn.Module):\n",
    "    def __init__(self, input_size, hidden_size, dropout=0.0):\n",
    "        super(AttentiveLSTMLayer, self).__init__()\n",
    "        self.input_size = input_size\n",
    "        self.hidden_size = hidden_size\n",
    "        attention_hsize = hidden_size\n",
    "        self.attention_hsize = attention_hsize\n",
    "\n",
    "        self.cell = LSTMCell(input_size, hidden_size)\n",
    "        self.attn_layer = nn.Sequential(nn.Linear(2 * hidden_size + input_size, attention_hsize),\n",
    "                                        nn.Tanh(),\n",
    "                                        nn.Linear(attention_hsize, 1))\n",
    "        self.softmax = nn.Softmax(dim=0)\n",
    "        self.dropout = dropout\n",
    "\n",
    "    def forward(self, inputs, hidden):\n",
    "        inputs = inputs.unbind(0)\n",
    "        outputs = []\n",
    "\n",
    "        for t in range(len(inputs)):\n",
    "            # attention on windows\n",
    "            hx, cx = (tensor.squeeze(0) for tensor in hidden)\n",
    "            hx_rep = hx.repeat(len(inputs), 1, 1)\n",
    "            cx_rep = cx.repeat(len(inputs), 1, 1)\n",
    "            x = torch.cat((inputs, hx_rep, cx_rep), dim=-1)\n",
    "            l = self.attn_layer(x)\n",
    "            beta = self.softmax(l)\n",
    "            context = torch.bmm(beta.permute(1, 2, 0),\n",
    "                                inputs.permute(1, 0, 2)).squeeze(1)\n",
    "            out, hidden = self.cell(context, hidden)\n",
    "            outputs += [out]\n",
    "        outputs = torch.stack(outputs)\n",
    "        return outputs, hidden"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#| exporti\n",
    "class DRNN(nn.Module):\n",
    "\n",
    "    def __init__(self, n_input, n_hidden, n_layers, dilations, dropout=0, cell_type='GRU', batch_first=True):\n",
    "        super(DRNN, self).__init__()\n",
    "\n",
    "        self.dilations = dilations\n",
    "        self.cell_type = cell_type\n",
    "        self.batch_first = batch_first\n",
    "\n",
    "        layers = []\n",
    "        if self.cell_type == \"GRU\":\n",
    "            cell = nn.GRU\n",
    "        elif self.cell_type == \"RNN\":\n",
    "            cell = nn.RNN\n",
    "        elif self.cell_type == \"LSTM\":\n",
    "            cell = nn.LSTM\n",
    "        elif self.cell_type == \"ResLSTM\":\n",
    "            cell = ResLSTMLayer\n",
    "        elif self.cell_type == \"AttentiveLSTM\":\n",
    "            cell = AttentiveLSTMLayer\n",
    "        else:\n",
    "            raise NotImplementedError\n",
    "\n",
    "        for i in range(n_layers):\n",
    "            if i == 0:\n",
    "                c = cell(n_input, n_hidden, dropout=dropout)\n",
    "            else:\n",
    "                c = cell(n_hidden, n_hidden, dropout=dropout)\n",
    "            layers.append(c)\n",
    "        self.cells = nn.Sequential(*layers)\n",
    "\n",
    "    def forward(self, inputs, hidden=None):\n",
    "        if self.batch_first:\n",
    "            inputs = inputs.transpose(0, 1)\n",
    "        outputs = []\n",
    "        for i, (cell, dilation) in enumerate(zip(self.cells, self.dilations)):\n",
    "            if hidden is None:\n",
    "                inputs, _ = self.drnn_layer(cell, inputs, dilation)\n",
    "            else:\n",
    "                inputs, hidden[i] = self.drnn_layer(cell, inputs, dilation, hidden[i])\n",
    "\n",
    "            outputs.append(inputs[-dilation:])\n",
    "\n",
    "        if self.batch_first:\n",
    "            inputs = inputs.transpose(0, 1)\n",
    "        return inputs, outputs\n",
    "\n",
    "    def drnn_layer(self, cell, inputs, rate, hidden=None):\n",
    "        n_steps = len(inputs)\n",
    "        batch_size = inputs[0].size(0)\n",
    "        hidden_size = cell.hidden_size\n",
    "\n",
    "        inputs, dilated_steps = self._pad_inputs(inputs, n_steps, rate)\n",
    "        dilated_inputs = self._prepare_inputs(inputs, rate)\n",
    "\n",
    "        if hidden is None:\n",
    "            dilated_outputs, hidden = self._apply_cell(dilated_inputs, cell, batch_size, rate, hidden_size)\n",
    "        else:\n",
    "            hidden = self._prepare_inputs(hidden, rate)\n",
    "            dilated_outputs, hidden = self._apply_cell(dilated_inputs, cell, batch_size, rate, hidden_size,\n",
    "                                                       hidden=hidden)\n",
    "\n",
    "        splitted_outputs = self._split_outputs(dilated_outputs, rate)\n",
    "        outputs = self._unpad_outputs(splitted_outputs, n_steps)\n",
    "\n",
    "        return outputs, hidden\n",
    "\n",
    "    def _apply_cell(self, dilated_inputs, cell, batch_size, rate, hidden_size, hidden=None):\n",
    "        if hidden is None:\n",
    "            hidden = torch.zeros(batch_size * rate, hidden_size,\n",
    "                                 dtype=dilated_inputs.dtype,\n",
    "                                 device=dilated_inputs.device)\n",
    "            hidden = hidden.unsqueeze(0)\n",
    "            \n",
    "            if self.cell_type in ['LSTM', 'ResLSTM', 'AttentiveLSTM']:\n",
    "                hidden = (hidden, hidden)\n",
    "                \n",
    "        dilated_outputs, hidden = cell(dilated_inputs, hidden) # compatibility hack\n",
    "\n",
    "        return dilated_outputs, hidden\n",
    "\n",
    "    def _unpad_outputs(self, splitted_outputs, n_steps):\n",
    "        return splitted_outputs[:n_steps]\n",
    "\n",
    "    def _split_outputs(self, dilated_outputs, rate):\n",
    "        batchsize = dilated_outputs.size(1) // rate\n",
    "\n",
    "        blocks = [dilated_outputs[:, i * batchsize: (i + 1) * batchsize, :] for i in range(rate)]\n",
    "\n",
    "        interleaved = torch.stack((blocks)).transpose(1, 0).contiguous()\n",
    "        interleaved = interleaved.view(dilated_outputs.size(0) * rate,\n",
    "                                       batchsize,\n",
    "                                       dilated_outputs.size(2))\n",
    "        return interleaved\n",
    "\n",
    "    def _pad_inputs(self, inputs, n_steps, rate):\n",
    "        iseven = (n_steps % rate) == 0\n",
    "\n",
    "        if not iseven:\n",
    "            dilated_steps = n_steps // rate + 1\n",
    "\n",
    "            zeros_ = torch.zeros(dilated_steps * rate - inputs.size(0),\n",
    "                                 inputs.size(1),\n",
    "                                 inputs.size(2), \n",
    "                                 dtype=inputs.dtype,\n",
    "                                 device=inputs.device)\n",
    "            inputs = torch.cat((inputs, zeros_))\n",
    "        else:\n",
    "            dilated_steps = n_steps // rate\n",
    "\n",
    "        return inputs, dilated_steps\n",
    "\n",
    "    def _prepare_inputs(self, inputs, rate):\n",
    "        dilated_inputs = torch.cat([inputs[j::rate, :, :] for j in range(rate)], 1)\n",
    "        return dilated_inputs"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#| export\n",
    "class DilatedRNN(BaseRecurrent):\n",
    "    \"\"\" DilatedRNN\n",
    "\n",
    "    **Parameters:**<br>\n",
    "    `h`: int, forecast horizon.<br>\n",
    "    `input_size`: int, maximum sequence length for truncated train backpropagation. Default -1 uses all history.<br>\n",
    "    `inference_input_size`: int, maximum sequence length for truncated inference. Default -1 uses all history.<br>\n",
    "    `cell_type`: str, type of RNN cell to use. Options: 'GRU', 'RNN', 'LSTM', 'ResLSTM', 'AttentiveLSTM'.<br>\n",
    "    `dilations`: int list, dilations betweem layers.<br>\n",
    "    `encoder_hidden_size`: int=200, units for the RNN's hidden state size.<br>\n",
    "    `context_size`: int=10, size of context vector for each timestamp on the forecasting window.<br>\n",
    "    `decoder_hidden_size`: int=200, size of hidden layer for the MLP decoder.<br>\n",
    "    `decoder_layers`: int=2, number of layers for the MLP decoder.<br>\n",
    "    `futr_exog_list`: str list, future exogenous columns.<br>\n",
    "    `hist_exog_list`: str list, historic exogenous columns.<br>\n",
    "    `stat_exog_list`: str list, static exogenous columns.<br>\n",
    "    `loss`: PyTorch module, instantiated train loss class from [losses collection](https://nixtla.github.io/neuralforecast/losses.pytorch.html).<br>\n",
    "    `valid_loss`: PyTorch module=`loss`, instantiated valid loss class from [losses collection](https://nixtla.github.io/neuralforecast/losses.pytorch.html).<br>\n",
    "    `max_steps`: int, maximum number of training steps.<br>\n",
    "    `learning_rate`: float, Learning rate between (0, 1).<br>\n",
    "    `num_lr_decays`: int, Number of learning rate decays, evenly distributed across max_steps.<br>\n",
    "    `early_stop_patience_steps`: int, Number of validation iterations before early stopping.<br>\n",
    "    `val_check_steps`: int, Number of training steps between every validation loss check.<br>\n",
    "    `batch_size`: int=32, number of different series in each batch.<br>\n",
    "    `valid_batch_size`: int=None, number of different series in each validation and test batch.<br>\n",
    "    `step_size`: int=1, step size between each window of temporal data.<br>\n",
    "    `scaler_type`: str='robust', type of scaler for temporal inputs normalization see [temporal scalers](https://nixtla.github.io/neuralforecast/common.scalers.html).<br>\n",
    "    `random_seed`: int=1, random_seed for pytorch initializer and numpy generators.<br>\n",
    "    `num_workers_loader`: int=os.cpu_count(), workers to be used by `TimeSeriesDataLoader`.<br>\n",
    "    `drop_last_loader`: bool=False, if True `TimeSeriesDataLoader` drops last non-full batch.<br>\n",
    "    `alias`: str, optional,  Custom name of the model.<br>\n",
    "    `optimizer`: Subclass of 'torch.optim.Optimizer', optional, user specified optimizer instead of the default choice (Adam).<br>\n",
    "    `optimizer_kwargs`: dict, optional, list of parameters used by the user specified `optimizer`.<br>\n",
    "    `**trainer_kwargs`: int,  keyword trainer arguments inherited from [PyTorch Lighning's trainer](https://pytorch-lightning.readthedocs.io/en/stable/api/pytorch_lightning.trainer.trainer.Trainer.html?highlight=trainer).<br>    \n",
    "    \"\"\"\n",
    "    # Class attributes\n",
    "    SAMPLING_TYPE = 'recurrent'\n",
    "    \n",
    "    def __init__(self,\n",
    "                 h: int,\n",
    "                 input_size: int = -1,\n",
    "                 inference_input_size: int = -1,\n",
    "                 cell_type: str = 'LSTM',\n",
    "                 dilations: List[List[int]] = [[1, 2], [4, 8]],\n",
    "                 encoder_hidden_size: int = 200,\n",
    "                 context_size: int = 10,\n",
    "                 decoder_hidden_size: int = 200,\n",
    "                 decoder_layers: int = 2,\n",
    "                 futr_exog_list = None,\n",
    "                 hist_exog_list = None,\n",
    "                 stat_exog_list = None,\n",
    "                 loss = MAE(),\n",
    "                 valid_loss = None,\n",
    "                 max_steps: int = 1000,\n",
    "                 learning_rate: float = 1e-3,\n",
    "                 num_lr_decays: int = 3,\n",
    "                 early_stop_patience_steps: int =-1,\n",
    "                 val_check_steps: int = 100,\n",
    "                 batch_size = 32,\n",
    "                 valid_batch_size: Optional[int] = None,\n",
    "                 step_size: int = 1,\n",
    "                 scaler_type: str = 'robust',\n",
    "                 random_seed: int = 1,\n",
    "                 num_workers_loader: int = 0,\n",
    "                 drop_last_loader: bool = False,\n",
    "                 optimizer = None,\n",
    "                 optimizer_kwargs = None,\n",
    "                 **trainer_kwargs):\n",
    "        super(DilatedRNN, self).__init__(\n",
    "            h=h,\n",
    "            input_size=input_size,\n",
    "            inference_input_size=inference_input_size,\n",
    "            loss=loss,\n",
    "            valid_loss=valid_loss,\n",
    "            max_steps=max_steps,\n",
    "            learning_rate=learning_rate,\n",
    "            num_lr_decays=num_lr_decays,\n",
    "            early_stop_patience_steps=early_stop_patience_steps,\n",
    "            val_check_steps=val_check_steps,\n",
    "            batch_size=batch_size,\n",
    "            valid_batch_size=valid_batch_size,\n",
    "            scaler_type=scaler_type,\n",
    "            futr_exog_list=futr_exog_list,\n",
    "            hist_exog_list=hist_exog_list,\n",
    "            stat_exog_list=stat_exog_list,\n",
    "            num_workers_loader=num_workers_loader,\n",
    "            drop_last_loader=drop_last_loader,\n",
    "            random_seed=random_seed,\n",
    "            optimizer=optimizer,\n",
    "            optimizer_kwargs=optimizer_kwargs,\n",
    "            **trainer_kwargs\n",
    "        )\n",
    "\n",
    "        # Dilated RNN\n",
    "        self.cell_type = cell_type\n",
    "        self.dilations = dilations\n",
    "        self.encoder_hidden_size = encoder_hidden_size\n",
    "        \n",
    "        # Context adapter\n",
    "        self.context_size = context_size\n",
    "\n",
    "        # MLP decoder\n",
    "        self.decoder_hidden_size = decoder_hidden_size\n",
    "        self.decoder_layers = decoder_layers\n",
    "\n",
    "        self.futr_exog_size = len(self.futr_exog_list)\n",
    "        self.hist_exog_size = len(self.hist_exog_list)\n",
    "        self.stat_exog_size = len(self.stat_exog_list)\n",
    "        \n",
    "        # RNN input size (1 for target variable y)\n",
    "        input_encoder = 1 + self.hist_exog_size + self.stat_exog_size\n",
    "\n",
    "        # Instantiate model\n",
    "        layers = []\n",
    "        for grp_num in range(len(self.dilations)):\n",
    "            if grp_num == 0:\n",
    "                input_encoder = 1 + self.hist_exog_size + self.stat_exog_size\n",
    "            else:\n",
    "                input_encoder = self.encoder_hidden_size\n",
    "            layer = DRNN(input_encoder,\n",
    "                         self.encoder_hidden_size,\n",
    "                         n_layers=len(self.dilations[grp_num]),\n",
    "                         dilations=self.dilations[grp_num],\n",
    "                         cell_type=self.cell_type)\n",
    "            layers.append(layer)\n",
    "\n",
    "        self.rnn_stack = nn.Sequential(*layers)\n",
    "\n",
    "        # Context adapter\n",
    "        self.context_adapter = nn.Linear(in_features=self.encoder_hidden_size + self.futr_exog_size * h,\n",
    "                                         out_features=self.context_size * h)\n",
    "\n",
    "        # Decoder MLP\n",
    "        self.mlp_decoder = MLP(in_features=self.context_size + self.futr_exog_size,\n",
    "                               out_features=self.loss.outputsize_multiplier,\n",
    "                               hidden_size=self.decoder_hidden_size,\n",
    "                               num_layers=self.decoder_layers,\n",
    "                               activation='ReLU',\n",
    "                               dropout=0.0)\n",
    "\n",
    "    def forward(self, windows_batch):\n",
    "        \n",
    "        # Parse windows_batch\n",
    "        encoder_input = windows_batch['insample_y'] # [B, seq_len, 1]\n",
    "        futr_exog     = windows_batch['futr_exog']\n",
    "        hist_exog     = windows_batch['hist_exog']\n",
    "        stat_exog     = windows_batch['stat_exog']\n",
    "\n",
    "        # Concatenate y, historic and static inputs\n",
    "        # [B, C, seq_len, 1] -> [B, seq_len, C]\n",
    "        # Contatenate [ Y_t, | X_{t-L},..., X_{t} | S ]\n",
    "        batch_size, seq_len = encoder_input.shape[:2]\n",
    "        if self.hist_exog_size > 0:\n",
    "            hist_exog = hist_exog.permute(0,2,1,3).squeeze(-1) # [B, X, seq_len, 1] -> [B, seq_len, X]\n",
    "            encoder_input = torch.cat((encoder_input, hist_exog), dim=2)\n",
    "\n",
    "        if self.stat_exog_size > 0:\n",
    "            stat_exog = stat_exog.unsqueeze(1).repeat(1, seq_len, 1) # [B, S] -> [B, seq_len, S]\n",
    "            encoder_input = torch.cat((encoder_input, stat_exog), dim=2)\n",
    "\n",
    "        # DilatedRNN forward\n",
    "        for layer_num in range(len(self.rnn_stack)):\n",
    "            residual = encoder_input\n",
    "            output, _ = self.rnn_stack[layer_num](encoder_input)\n",
    "            if layer_num > 0:\n",
    "                output += residual\n",
    "            encoder_input = output\n",
    "\n",
    "        if self.futr_exog_size > 0:\n",
    "            futr_exog = futr_exog.permute(0,2,3,1)[:,:,1:,:]  # [B, F, seq_len, 1+H] -> [B, seq_len, H, F]\n",
    "            encoder_input = torch.cat(( encoder_input, futr_exog.reshape(batch_size, seq_len, -1)), dim=2)\n",
    "\n",
    "        # Context adapter\n",
    "        context = self.context_adapter(encoder_input)\n",
    "        context = context.reshape(batch_size, seq_len, self.h, self.context_size)\n",
    "\n",
    "        # Residual connection with futr_exog\n",
    "        if self.futr_exog_size > 0:\n",
    "            context = torch.cat((context, futr_exog), dim=-1)\n",
    "\n",
    "        # Final forecast\n",
    "        output = self.mlp_decoder(context)\n",
    "        output = self.loss.domain_map(output)\n",
    "        \n",
    "        return output"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Usage Example"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#| eval: false\n",
    "import numpy as np\n",
    "import pandas as pd\n",
    "import pytorch_lightning as pl\n",
    "import matplotlib.pyplot as plt\n",
    "\n",
    "from neuralforecast import NeuralForecast\n",
    "from neuralforecast.models import DilatedRNN\n",
    "from neuralforecast.losses.pytorch import MQLoss, DistributionLoss\n",
    "from neuralforecast.utils import AirPassengersPanel, AirPassengersStatic\n",
    "from neuralforecast.tsdataset import TimeSeriesDataset, TimeSeriesLoader\n",
    "\n",
    "Y_train_df = AirPassengersPanel[AirPassengersPanel.ds<AirPassengersPanel['ds'].values[-12]] # 132 train\n",
    "Y_test_df = AirPassengersPanel[AirPassengersPanel.ds>=AirPassengersPanel['ds'].values[-12]].reset_index(drop=True) # 12 test\n",
    "\n",
    "fcst = NeuralForecast(\n",
    "    models=[DilatedRNN(h=12,\n",
    "                       input_size=-1,\n",
    "                       loss=DistributionLoss(distribution='Normal', level=[80, 90]),\n",
    "                       scaler_type='robust',\n",
    "                       encoder_hidden_size=100,\n",
    "                       max_steps=200,\n",
    "                       futr_exog_list=['y_[lag12]'],\n",
    "                       hist_exog_list=None,\n",
    "                       stat_exog_list=['airline1'],\n",
    "    )\n",
    "    ],\n",
    "    freq='M'\n",
    ")\n",
    "fcst.fit(df=Y_train_df, static_df=AirPassengersStatic)\n",
    "forecasts = fcst.predict(futr_df=Y_test_df)\n",
    "\n",
    "Y_hat_df = forecasts.reset_index(drop=False).drop(columns=['unique_id','ds'])\n",
    "plot_df = pd.concat([Y_test_df, Y_hat_df], axis=1)\n",
    "plot_df = pd.concat([Y_train_df, plot_df])\n",
    "\n",
    "plot_df = plot_df[plot_df.unique_id=='Airline1'].drop('unique_id', axis=1)\n",
    "plt.plot(plot_df['ds'], plot_df['y'], c='black', label='True')\n",
    "plt.plot(plot_df['ds'], plot_df['DilatedRNN-median'], c='blue', label='median')\n",
    "plt.fill_between(x=plot_df['ds'][-12:], \n",
    "                 y1=plot_df['DilatedRNN-lo-90'][-12:].values, \n",
    "                 y2=plot_df['DilatedRNN-hi-90'][-12:].values,\n",
    "                 alpha=0.4, label='level 90')\n",
    "plt.legend()\n",
    "plt.grid()\n",
    "plt.plot()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "python3",
   "language": "python",
   "name": "python3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}