{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#| default_exp models.dilated_rnn" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#| hide\n", "%load_ext autoreload\n", "%autoreload 2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Dilated RNN" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The Dilated Recurrent Neural Network (`DilatedRNN`) addresses common challenges of modeling long sequences like vanishing gradients, computational efficiency, and improved model flexibility to model complex relationships while maintaining its parsimony. The `DilatedRNN` builds a deep stack of RNN layers using skip conditions on the temporal and the network's depth dimensions. The temporal dilated recurrent skip connections offer the capability to focus on multi-resolution inputs.The predictions are obtained by transforming the hidden states into contexts $\\mathbf{c}_{[t+1:t+H]}$, that are decoded and adapted into $\\mathbf{\\hat{y}}_{[t+1:t+H],[q]}$ through MLPs.\n", "\n", "\\begin{align}\n", " \\mathbf{h}_{t} &= \\textrm{DilatedRNN}([\\mathbf{y}_{t},\\mathbf{x}^{(h)}_{t},\\mathbf{x}^{(s)}], \\mathbf{h}_{t-1})\\\\\n", "\\mathbf{c}_{[t+1:t+H]}&=\\textrm{Linear}([\\mathbf{h}_{t}, \\mathbf{x}^{(f)}_{[:t+H]}]) \\\\ \n", "\\hat{y}_{\\tau,[q]}&=\\textrm{MLP}([\\mathbf{c}_{\\tau},\\mathbf{x}^{(f)}_{\\tau}])\n", "\\end{align}\n", "\n", "where $\\mathbf{h}_{t}$, is the hidden state for time $t$, $\\mathbf{y}_{t}$ is the input at time $t$ and $\\mathbf{h}_{t-1}$ is the hidden state of the previous layer at $t-1$, $\\mathbf{x}^{(s)}$ are static exogenous inputs, $\\mathbf{x}^{(h)}_{t}$ historic exogenous, $\\mathbf{x}^{(f)}_{[:t+H]}$ are future exogenous available at the time of the prediction.\n", "\n", "**References**
-[Shiyu Chang, et al. \"Dilated Recurrent Neural Networks\".](https://arxiv.org/abs/1710.02224)
-[Yao Qin, et al. \"A Dual-Stage Attention-Based recurrent neural network for time series prediction\".](https://arxiv.org/abs/1704.02971)
-[Kashif Rasul, et al. \"Zalando Research: PyTorch Dilated Recurrent Neural Networks\".](https://arxiv.org/abs/1710.02224)
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "![Figure 1. Three layer DilatedRNN with dilation 1, 2, 4.](imgs_models/dilated_rnn.png)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#| hide\n", "from nbdev.showdoc import show_doc\n", "from neuralforecast.utils import generate_series" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#| export\n", "from typing import List, Optional\n", "\n", "import torch\n", "import torch.nn as nn\n", "\n", "from neuralforecast.losses.pytorch import MAE\n", "from neuralforecast.common._base_recurrent import BaseRecurrent\n", "from neuralforecast.common._modules import MLP" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#| exporti\n", "class LSTMCell(nn.Module):\n", " def __init__(self, input_size, hidden_size, dropout=0.):\n", " super(LSTMCell, self).__init__()\n", " self.input_size = input_size\n", " self.hidden_size = hidden_size\n", " self.weight_ih = nn.Parameter(torch.randn(4 * hidden_size, input_size))\n", " self.weight_hh = nn.Parameter(torch.randn(4 * hidden_size, hidden_size))\n", " self.bias_ih = nn.Parameter(torch.randn(4 * hidden_size))\n", " self.bias_hh = nn.Parameter(torch.randn(4 * hidden_size))\n", " self.dropout = dropout\n", "\n", " def forward(self, inputs, hidden):\n", " hx, cx = hidden[0].squeeze(0), hidden[1].squeeze(0)\n", " gates = (torch.matmul(inputs, self.weight_ih.t()) + self.bias_ih +\n", " torch.matmul(hx, self.weight_hh.t()) + self.bias_hh)\n", " ingate, forgetgate, cellgate, outgate = gates.chunk(4, 1)\n", "\n", " ingate = torch.sigmoid(ingate)\n", " forgetgate = torch.sigmoid(forgetgate)\n", " cellgate = torch.tanh(cellgate)\n", " outgate = torch.sigmoid(outgate)\n", "\n", " cy = (forgetgate * cx) + (ingate * cellgate)\n", " hy = outgate * torch.tanh(cy)\n", "\n", " return hy, (hy, cy)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#| exporti\n", "class ResLSTMCell(nn.Module):\n", " def __init__(self, input_size, hidden_size, dropout=0.):\n", " super(ResLSTMCell, self).__init__()\n", " self.register_buffer('input_size', torch.Tensor([input_size]))\n", " self.register_buffer('hidden_size', torch.Tensor([hidden_size]))\n", " self.weight_ii = nn.Parameter(torch.randn(3 * hidden_size, input_size))\n", " self.weight_ic = nn.Parameter(torch.randn(3 * hidden_size, hidden_size))\n", " self.weight_ih = nn.Parameter(torch.randn(3 * hidden_size, hidden_size))\n", " self.bias_ii = nn.Parameter(torch.randn(3 * hidden_size))\n", " self.bias_ic = nn.Parameter(torch.randn(3 * hidden_size))\n", " self.bias_ih = nn.Parameter(torch.randn(3 * hidden_size))\n", " self.weight_hh = nn.Parameter(torch.randn(1 * hidden_size, hidden_size))\n", " self.bias_hh = nn.Parameter(torch.randn(1 * hidden_size))\n", " self.weight_ir = nn.Parameter(torch.randn(hidden_size, input_size))\n", " self.dropout = dropout\n", "\n", " def forward(self, inputs, hidden):\n", " hx, cx = hidden[0].squeeze(0), hidden[1].squeeze(0)\n", "\n", " ifo_gates = (torch.matmul(inputs, self.weight_ii.t()) + self.bias_ii +\n", " torch.matmul(hx, self.weight_ih.t()) + self.bias_ih +\n", " torch.matmul(cx, self.weight_ic.t()) + self.bias_ic)\n", " ingate, forgetgate, outgate = ifo_gates.chunk(3, 1)\n", "\n", " cellgate = torch.matmul(hx, self.weight_hh.t()) + self.bias_hh\n", "\n", " ingate = torch.sigmoid(ingate)\n", " forgetgate = torch.sigmoid(forgetgate)\n", " cellgate = torch.tanh(cellgate)\n", " outgate = torch.sigmoid(outgate)\n", "\n", " cy = (forgetgate * cx) + (ingate * cellgate)\n", " ry = torch.tanh(cy)\n", "\n", " if self.input_size == self.hidden_size:\n", " hy = outgate * (ry + inputs)\n", " else:\n", " hy = outgate * (ry + torch.matmul(inputs, self.weight_ir.t()))\n", " return hy, (hy, cy)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#| exporti\n", "class ResLSTMLayer(nn.Module):\n", " def __init__(self, input_size, hidden_size, dropout=0.):\n", " super(ResLSTMLayer, self).__init__()\n", " self.input_size = input_size\n", " self.hidden_size = hidden_size\n", " self.cell = ResLSTMCell(input_size, hidden_size, dropout=0.)\n", "\n", " def forward(self, inputs, hidden):\n", " inputs = inputs.unbind(0)\n", " outputs = []\n", " for i in range(len(inputs)):\n", " out, hidden = self.cell(inputs[i], hidden)\n", " outputs += [out]\n", " outputs = torch.stack(outputs)\n", " return outputs, hidden" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#| exporti\n", "class AttentiveLSTMLayer(nn.Module):\n", " def __init__(self, input_size, hidden_size, dropout=0.0):\n", " super(AttentiveLSTMLayer, self).__init__()\n", " self.input_size = input_size\n", " self.hidden_size = hidden_size\n", " attention_hsize = hidden_size\n", " self.attention_hsize = attention_hsize\n", "\n", " self.cell = LSTMCell(input_size, hidden_size)\n", " self.attn_layer = nn.Sequential(nn.Linear(2 * hidden_size + input_size, attention_hsize),\n", " nn.Tanh(),\n", " nn.Linear(attention_hsize, 1))\n", " self.softmax = nn.Softmax(dim=0)\n", " self.dropout = dropout\n", "\n", " def forward(self, inputs, hidden):\n", " inputs = inputs.unbind(0)\n", " outputs = []\n", "\n", " for t in range(len(inputs)):\n", " # attention on windows\n", " hx, cx = (tensor.squeeze(0) for tensor in hidden)\n", " hx_rep = hx.repeat(len(inputs), 1, 1)\n", " cx_rep = cx.repeat(len(inputs), 1, 1)\n", " x = torch.cat((inputs, hx_rep, cx_rep), dim=-1)\n", " l = self.attn_layer(x)\n", " beta = self.softmax(l)\n", " context = torch.bmm(beta.permute(1, 2, 0),\n", " inputs.permute(1, 0, 2)).squeeze(1)\n", " out, hidden = self.cell(context, hidden)\n", " outputs += [out]\n", " outputs = torch.stack(outputs)\n", " return outputs, hidden" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#| exporti\n", "class DRNN(nn.Module):\n", "\n", " def __init__(self, n_input, n_hidden, n_layers, dilations, dropout=0, cell_type='GRU', batch_first=True):\n", " super(DRNN, self).__init__()\n", "\n", " self.dilations = dilations\n", " self.cell_type = cell_type\n", " self.batch_first = batch_first\n", "\n", " layers = []\n", " if self.cell_type == \"GRU\":\n", " cell = nn.GRU\n", " elif self.cell_type == \"RNN\":\n", " cell = nn.RNN\n", " elif self.cell_type == \"LSTM\":\n", " cell = nn.LSTM\n", " elif self.cell_type == \"ResLSTM\":\n", " cell = ResLSTMLayer\n", " elif self.cell_type == \"AttentiveLSTM\":\n", " cell = AttentiveLSTMLayer\n", " else:\n", " raise NotImplementedError\n", "\n", " for i in range(n_layers):\n", " if i == 0:\n", " c = cell(n_input, n_hidden, dropout=dropout)\n", " else:\n", " c = cell(n_hidden, n_hidden, dropout=dropout)\n", " layers.append(c)\n", " self.cells = nn.Sequential(*layers)\n", "\n", " def forward(self, inputs, hidden=None):\n", " if self.batch_first:\n", " inputs = inputs.transpose(0, 1)\n", " outputs = []\n", " for i, (cell, dilation) in enumerate(zip(self.cells, self.dilations)):\n", " if hidden is None:\n", " inputs, _ = self.drnn_layer(cell, inputs, dilation)\n", " else:\n", " inputs, hidden[i] = self.drnn_layer(cell, inputs, dilation, hidden[i])\n", "\n", " outputs.append(inputs[-dilation:])\n", "\n", " if self.batch_first:\n", " inputs = inputs.transpose(0, 1)\n", " return inputs, outputs\n", "\n", " def drnn_layer(self, cell, inputs, rate, hidden=None):\n", " n_steps = len(inputs)\n", " batch_size = inputs[0].size(0)\n", " hidden_size = cell.hidden_size\n", "\n", " inputs, dilated_steps = self._pad_inputs(inputs, n_steps, rate)\n", " dilated_inputs = self._prepare_inputs(inputs, rate)\n", "\n", " if hidden is None:\n", " dilated_outputs, hidden = self._apply_cell(dilated_inputs, cell, batch_size, rate, hidden_size)\n", " else:\n", " hidden = self._prepare_inputs(hidden, rate)\n", " dilated_outputs, hidden = self._apply_cell(dilated_inputs, cell, batch_size, rate, hidden_size,\n", " hidden=hidden)\n", "\n", " splitted_outputs = self._split_outputs(dilated_outputs, rate)\n", " outputs = self._unpad_outputs(splitted_outputs, n_steps)\n", "\n", " return outputs, hidden\n", "\n", " def _apply_cell(self, dilated_inputs, cell, batch_size, rate, hidden_size, hidden=None):\n", " if hidden is None:\n", " hidden = torch.zeros(batch_size * rate, hidden_size,\n", " dtype=dilated_inputs.dtype,\n", " device=dilated_inputs.device)\n", " hidden = hidden.unsqueeze(0)\n", " \n", " if self.cell_type in ['LSTM', 'ResLSTM', 'AttentiveLSTM']:\n", " hidden = (hidden, hidden)\n", " \n", " dilated_outputs, hidden = cell(dilated_inputs, hidden) # compatibility hack\n", "\n", " return dilated_outputs, hidden\n", "\n", " def _unpad_outputs(self, splitted_outputs, n_steps):\n", " return splitted_outputs[:n_steps]\n", "\n", " def _split_outputs(self, dilated_outputs, rate):\n", " batchsize = dilated_outputs.size(1) // rate\n", "\n", " blocks = [dilated_outputs[:, i * batchsize: (i + 1) * batchsize, :] for i in range(rate)]\n", "\n", " interleaved = torch.stack((blocks)).transpose(1, 0).contiguous()\n", " interleaved = interleaved.view(dilated_outputs.size(0) * rate,\n", " batchsize,\n", " dilated_outputs.size(2))\n", " return interleaved\n", "\n", " def _pad_inputs(self, inputs, n_steps, rate):\n", " iseven = (n_steps % rate) == 0\n", "\n", " if not iseven:\n", " dilated_steps = n_steps // rate + 1\n", "\n", " zeros_ = torch.zeros(dilated_steps * rate - inputs.size(0),\n", " inputs.size(1),\n", " inputs.size(2), \n", " dtype=inputs.dtype,\n", " device=inputs.device)\n", " inputs = torch.cat((inputs, zeros_))\n", " else:\n", " dilated_steps = n_steps // rate\n", "\n", " return inputs, dilated_steps\n", "\n", " def _prepare_inputs(self, inputs, rate):\n", " dilated_inputs = torch.cat([inputs[j::rate, :, :] for j in range(rate)], 1)\n", " return dilated_inputs" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#| export\n", "class DilatedRNN(BaseRecurrent):\n", " \"\"\" DilatedRNN\n", "\n", " **Parameters:**
\n", " `h`: int, forecast horizon.
\n", " `input_size`: int, maximum sequence length for truncated train backpropagation. Default -1 uses all history.
\n", " `inference_input_size`: int, maximum sequence length for truncated inference. Default -1 uses all history.
\n", " `cell_type`: str, type of RNN cell to use. Options: 'GRU', 'RNN', 'LSTM', 'ResLSTM', 'AttentiveLSTM'.
\n", " `dilations`: int list, dilations betweem layers.
\n", " `encoder_hidden_size`: int=200, units for the RNN's hidden state size.
\n", " `context_size`: int=10, size of context vector for each timestamp on the forecasting window.
\n", " `decoder_hidden_size`: int=200, size of hidden layer for the MLP decoder.
\n", " `decoder_layers`: int=2, number of layers for the MLP decoder.
\n", " `futr_exog_list`: str list, future exogenous columns.
\n", " `hist_exog_list`: str list, historic exogenous columns.
\n", " `stat_exog_list`: str list, static exogenous columns.
\n", " `loss`: PyTorch module, instantiated train loss class from [losses collection](https://nixtla.github.io/neuralforecast/losses.pytorch.html).
\n", " `valid_loss`: PyTorch module=`loss`, instantiated valid loss class from [losses collection](https://nixtla.github.io/neuralforecast/losses.pytorch.html).
\n", " `max_steps`: int, maximum number of training steps.
\n", " `learning_rate`: float, Learning rate between (0, 1).
\n", " `num_lr_decays`: int, Number of learning rate decays, evenly distributed across max_steps.
\n", " `early_stop_patience_steps`: int, Number of validation iterations before early stopping.
\n", " `val_check_steps`: int, Number of training steps between every validation loss check.
\n", " `batch_size`: int=32, number of different series in each batch.
\n", " `valid_batch_size`: int=None, number of different series in each validation and test batch.
\n", " `step_size`: int=1, step size between each window of temporal data.
\n", " `scaler_type`: str='robust', type of scaler for temporal inputs normalization see [temporal scalers](https://nixtla.github.io/neuralforecast/common.scalers.html).
\n", " `random_seed`: int=1, random_seed for pytorch initializer and numpy generators.
\n", " `num_workers_loader`: int=os.cpu_count(), workers to be used by `TimeSeriesDataLoader`.
\n", " `drop_last_loader`: bool=False, if True `TimeSeriesDataLoader` drops last non-full batch.
\n", " `alias`: str, optional, Custom name of the model.
\n", " `optimizer`: Subclass of 'torch.optim.Optimizer', optional, user specified optimizer instead of the default choice (Adam).
\n", " `optimizer_kwargs`: dict, optional, list of parameters used by the user specified `optimizer`.
\n", " `**trainer_kwargs`: int, keyword trainer arguments inherited from [PyTorch Lighning's trainer](https://pytorch-lightning.readthedocs.io/en/stable/api/pytorch_lightning.trainer.trainer.Trainer.html?highlight=trainer).
\n", " \"\"\"\n", " # Class attributes\n", " SAMPLING_TYPE = 'recurrent'\n", " \n", " def __init__(self,\n", " h: int,\n", " input_size: int = -1,\n", " inference_input_size: int = -1,\n", " cell_type: str = 'LSTM',\n", " dilations: List[List[int]] = [[1, 2], [4, 8]],\n", " encoder_hidden_size: int = 200,\n", " context_size: int = 10,\n", " decoder_hidden_size: int = 200,\n", " decoder_layers: int = 2,\n", " futr_exog_list = None,\n", " hist_exog_list = None,\n", " stat_exog_list = None,\n", " loss = MAE(),\n", " valid_loss = None,\n", " max_steps: int = 1000,\n", " learning_rate: float = 1e-3,\n", " num_lr_decays: int = 3,\n", " early_stop_patience_steps: int =-1,\n", " val_check_steps: int = 100,\n", " batch_size = 32,\n", " valid_batch_size: Optional[int] = None,\n", " step_size: int = 1,\n", " scaler_type: str = 'robust',\n", " random_seed: int = 1,\n", " num_workers_loader: int = 0,\n", " drop_last_loader: bool = False,\n", " optimizer = None,\n", " optimizer_kwargs = None,\n", " **trainer_kwargs):\n", " super(DilatedRNN, self).__init__(\n", " h=h,\n", " input_size=input_size,\n", " inference_input_size=inference_input_size,\n", " loss=loss,\n", " valid_loss=valid_loss,\n", " max_steps=max_steps,\n", " learning_rate=learning_rate,\n", " num_lr_decays=num_lr_decays,\n", " early_stop_patience_steps=early_stop_patience_steps,\n", " val_check_steps=val_check_steps,\n", " batch_size=batch_size,\n", " valid_batch_size=valid_batch_size,\n", " scaler_type=scaler_type,\n", " futr_exog_list=futr_exog_list,\n", " hist_exog_list=hist_exog_list,\n", " stat_exog_list=stat_exog_list,\n", " num_workers_loader=num_workers_loader,\n", " drop_last_loader=drop_last_loader,\n", " random_seed=random_seed,\n", " optimizer=optimizer,\n", " optimizer_kwargs=optimizer_kwargs,\n", " **trainer_kwargs\n", " )\n", "\n", " # Dilated RNN\n", " self.cell_type = cell_type\n", " self.dilations = dilations\n", " self.encoder_hidden_size = encoder_hidden_size\n", " \n", " # Context adapter\n", " self.context_size = context_size\n", "\n", " # MLP decoder\n", " self.decoder_hidden_size = decoder_hidden_size\n", " self.decoder_layers = decoder_layers\n", "\n", " self.futr_exog_size = len(self.futr_exog_list)\n", " self.hist_exog_size = len(self.hist_exog_list)\n", " self.stat_exog_size = len(self.stat_exog_list)\n", " \n", " # RNN input size (1 for target variable y)\n", " input_encoder = 1 + self.hist_exog_size + self.stat_exog_size\n", "\n", " # Instantiate model\n", " layers = []\n", " for grp_num in range(len(self.dilations)):\n", " if grp_num == 0:\n", " input_encoder = 1 + self.hist_exog_size + self.stat_exog_size\n", " else:\n", " input_encoder = self.encoder_hidden_size\n", " layer = DRNN(input_encoder,\n", " self.encoder_hidden_size,\n", " n_layers=len(self.dilations[grp_num]),\n", " dilations=self.dilations[grp_num],\n", " cell_type=self.cell_type)\n", " layers.append(layer)\n", "\n", " self.rnn_stack = nn.Sequential(*layers)\n", "\n", " # Context adapter\n", " self.context_adapter = nn.Linear(in_features=self.encoder_hidden_size + self.futr_exog_size * h,\n", " out_features=self.context_size * h)\n", "\n", " # Decoder MLP\n", " self.mlp_decoder = MLP(in_features=self.context_size + self.futr_exog_size,\n", " out_features=self.loss.outputsize_multiplier,\n", " hidden_size=self.decoder_hidden_size,\n", " num_layers=self.decoder_layers,\n", " activation='ReLU',\n", " dropout=0.0)\n", "\n", " def forward(self, windows_batch):\n", " \n", " # Parse windows_batch\n", " encoder_input = windows_batch['insample_y'] # [B, seq_len, 1]\n", " futr_exog = windows_batch['futr_exog']\n", " hist_exog = windows_batch['hist_exog']\n", " stat_exog = windows_batch['stat_exog']\n", "\n", " # Concatenate y, historic and static inputs\n", " # [B, C, seq_len, 1] -> [B, seq_len, C]\n", " # Contatenate [ Y_t, | X_{t-L},..., X_{t} | S ]\n", " batch_size, seq_len = encoder_input.shape[:2]\n", " if self.hist_exog_size > 0:\n", " hist_exog = hist_exog.permute(0,2,1,3).squeeze(-1) # [B, X, seq_len, 1] -> [B, seq_len, X]\n", " encoder_input = torch.cat((encoder_input, hist_exog), dim=2)\n", "\n", " if self.stat_exog_size > 0:\n", " stat_exog = stat_exog.unsqueeze(1).repeat(1, seq_len, 1) # [B, S] -> [B, seq_len, S]\n", " encoder_input = torch.cat((encoder_input, stat_exog), dim=2)\n", "\n", " # DilatedRNN forward\n", " for layer_num in range(len(self.rnn_stack)):\n", " residual = encoder_input\n", " output, _ = self.rnn_stack[layer_num](encoder_input)\n", " if layer_num > 0:\n", " output += residual\n", " encoder_input = output\n", "\n", " if self.futr_exog_size > 0:\n", " futr_exog = futr_exog.permute(0,2,3,1)[:,:,1:,:] # [B, F, seq_len, 1+H] -> [B, seq_len, H, F]\n", " encoder_input = torch.cat(( encoder_input, futr_exog.reshape(batch_size, seq_len, -1)), dim=2)\n", "\n", " # Context adapter\n", " context = self.context_adapter(encoder_input)\n", " context = context.reshape(batch_size, seq_len, self.h, self.context_size)\n", "\n", " # Residual connection with futr_exog\n", " if self.futr_exog_size > 0:\n", " context = torch.cat((context, futr_exog), dim=-1)\n", "\n", " # Final forecast\n", " output = self.mlp_decoder(context)\n", " output = self.loss.domain_map(output)\n", " \n", " return output" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Usage Example" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#| eval: false\n", "import numpy as np\n", "import pandas as pd\n", "import pytorch_lightning as pl\n", "import matplotlib.pyplot as plt\n", "\n", "from neuralforecast import NeuralForecast\n", "from neuralforecast.models import DilatedRNN\n", "from neuralforecast.losses.pytorch import MQLoss, DistributionLoss\n", "from neuralforecast.utils import AirPassengersPanel, AirPassengersStatic\n", "from neuralforecast.tsdataset import TimeSeriesDataset, TimeSeriesLoader\n", "\n", "Y_train_df = AirPassengersPanel[AirPassengersPanel.ds=AirPassengersPanel['ds'].values[-12]].reset_index(drop=True) # 12 test\n", "\n", "fcst = NeuralForecast(\n", " models=[DilatedRNN(h=12,\n", " input_size=-1,\n", " loss=DistributionLoss(distribution='Normal', level=[80, 90]),\n", " scaler_type='robust',\n", " encoder_hidden_size=100,\n", " max_steps=200,\n", " futr_exog_list=['y_[lag12]'],\n", " hist_exog_list=None,\n", " stat_exog_list=['airline1'],\n", " )\n", " ],\n", " freq='M'\n", ")\n", "fcst.fit(df=Y_train_df, static_df=AirPassengersStatic)\n", "forecasts = fcst.predict(futr_df=Y_test_df)\n", "\n", "Y_hat_df = forecasts.reset_index(drop=False).drop(columns=['unique_id','ds'])\n", "plot_df = pd.concat([Y_test_df, Y_hat_df], axis=1)\n", "plot_df = pd.concat([Y_train_df, plot_df])\n", "\n", "plot_df = plot_df[plot_df.unique_id=='Airline1'].drop('unique_id', axis=1)\n", "plt.plot(plot_df['ds'], plot_df['y'], c='black', label='True')\n", "plt.plot(plot_df['ds'], plot_df['DilatedRNN-median'], c='blue', label='median')\n", "plt.fill_between(x=plot_df['ds'][-12:], \n", " y1=plot_df['DilatedRNN-lo-90'][-12:].values, \n", " y2=plot_df['DilatedRNN-hi-90'][-12:].values,\n", " alpha=0.4, label='level 90')\n", "plt.legend()\n", "plt.grid()\n", "plt.plot()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "python3", "language": "python", "name": "python3" } }, "nbformat": 4, "nbformat_minor": 4 }