"vscode:/vscode.git/clone" did not exist on "50cfbcda3267a5efbeb7d48b39f6b8d586a165b2"
Commit 61edd67d authored by Sam Wu's avatar Sam Wu
Browse files

Merge branch 'develop' into doc-standard

parents a72c9e83 eafd55de
......@@ -119,6 +119,8 @@
#include <migraphx/op/scatternd_add.hpp>
#include <migraphx/op/scatternd_none.hpp>
#include <migraphx/op/scatternd_mul.hpp>
#include <migraphx/op/scatternd_max.hpp>
#include <migraphx/op/scatternd_min.hpp>
#include <migraphx/op/sigmoid.hpp>
#include <migraphx/op/sign.hpp>
#include <migraphx/op/sinh.hpp>
......@@ -137,6 +139,7 @@
#include <migraphx/op/unary.hpp>
#include <migraphx/op/unary_not.hpp>
#include <migraphx/op/undefined.hpp>
#include <migraphx/op/unique.hpp>
#include <migraphx/op/unknown.hpp>
#include <migraphx/op/unsqueeze.hpp>
#include <migraphx/op/where.hpp>
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
......@@ -24,21 +24,21 @@
#ifndef MIGRAPHX_GUARD_OPERATORS_TUNE_AXIS_HPP
#define MIGRAPHX_GUARD_OPERATORS_TUNE_AXIS_HPP
#include <utility>
#include <cstdint>
#include <migraphx/stringutils.hpp>
#include <migraphx/errors.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
inline int tune_axis(const int n_dim, const int axis, const std::string& op_name = "OPERATOR")
inline int tune_axis(int n_dim, int axis, const std::string& op_name = "OPERATOR")
{
if(axis >= n_dim or std::abs(axis) > n_dim)
{
if(axis < 0)
axis += n_dim;
if(axis < 0 or axis >= n_dim)
MIGRAPHX_THROW(to_upper(op_name) + ": axis is out of range.");
}
return (axis < 0) ? axis + n_dim : axis;
return axis;
}
} // namespace MIGRAPHX_INLINE_NS
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_AMDMIGRAPHX_ONNX_POOLING_HPP
#define MIGRAPHX_GUARD_AMDMIGRAPHX_ONNX_POOLING_HPP
#include <migraphx/config.hpp>
#include <migraphx/onnx/onnx_parser.hpp>
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/instruction.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace onnx {
value handle_pooling_values(const op_desc& opd,
onnx_parser::node_info info,
const shape& in_shape,
value values);
instruction_ref add_pooling_op(const op_desc& opd, onnx_parser::node_info info, instruction_ref l0);
} // namespace onnx
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
......@@ -127,9 +127,9 @@ struct parse_multinomial : op_parser<parse_multinomial>
// use literal. The array populated by random_uniform may have any shape, as long its
// number of elements is batch_size * sample_size .
size_t batch_size = s0.lens().front();
auto rand_dummy = info.add_literal(
migraphx::literal{migraphx::shape::float_type, {batch_size * sample_size}});
auto rand_dummy = info.add_literal(migraphx::literal{
migraphx::shape{migraphx::shape::float_type, {batch_size, sample_size}},
std::vector<float>(batch_size * sample_size)});
randoms =
info.add_instruction(migraphx::make_op("random_uniform"), seed_input, rand_dummy);
}
......
......@@ -22,14 +22,8 @@
* THE SOFTWARE.
*/
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/onnx/checks.hpp>
#include <migraphx/onnx/padding.hpp>
#include <migraphx/op/pad.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/onnx/pooling.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/make_op.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
......@@ -39,76 +33,14 @@ struct parse_pooling : op_parser<parse_pooling>
{
std::vector<op_desc> operators() const
{
return {{"AveragePool", "average"},
{"GlobalAveragePool", "average"},
{"GlobalMaxPool", "max"},
{"MaxPool", "max"},
{"LpPool", "lpnorm"},
{"GlobalLpPool", "lpnorm"}};
}
value handle_values(const op_desc& opd,
onnx_parser::node_info info,
const shape& in_shape,
value values) const
{
auto kdims = in_shape.ndim() - 2;
if(starts_with(opd.onnx_name, "Global"))
{
// if spatial dimensions are dynamic use dyn_global flag
if(in_shape.dynamic() and std::any_of(in_shape.dyn_dims().cbegin() + 2,
in_shape.dyn_dims().cend(),
[](auto dd) { return not dd.is_fixed(); }))
{
values["dyn_global"] = true;
values["lengths"] = std::vector<size_t>();
}
else
{
// works with static and fixed dynamic shape
auto m_lens = in_shape.max_lens();
values["lengths"] = std::vector<size_t>(m_lens.begin() + 2, m_lens.end());
}
}
if(contains(info.attributes, "ceil_mode"))
{
values["ceil_mode"] = static_cast<bool>(info.attributes.at("ceil_mode").i());
}
if(contains(info.attributes, "strides"))
{
values["stride"].clear();
copy(info.attributes["strides"].ints(), std::back_inserter(values["stride"]));
check_attr_sizes(kdims, values["stride"].size(), "PARSE_POOLING: inconsistent strides");
}
if(contains(info.attributes, "kernel_shape"))
{
values["lengths"].clear();
copy(info.attributes["kernel_shape"].ints(), std::back_inserter(values["lengths"]));
check_attr_sizes(
kdims, values["lengths"].size(), "PARSE_POOLING: inconsistent lengths");
}
if(contains(info.attributes, "dilations"))
{
values["dilations"].clear();
copy(info.attributes["dilations"].ints(), std::back_inserter(values["dilations"]));
check_attr_sizes(
kdims, values["dilations"].size(), "PARSE_POOLING: inconsistent dilations");
}
// lp_order attribute
if(contains(info.attributes, "p"))
{
values["lp_order"] = info.attributes.at("p").i();
}
// ensure pads available only when auto_pad is "NOT_SET"
check_padding_mode(info, "POOLING");
return values;
return {
{"AveragePool", "average"},
{"GlobalAveragePool", "average"},
{"GlobalMaxPool", "max"},
{"MaxPool", "max"},
{"LpPool", "lpnorm"},
{"GlobalLpPool", "lpnorm"},
};
}
instruction_ref parse(const op_desc& opd,
......@@ -116,148 +48,8 @@ struct parse_pooling : op_parser<parse_pooling>
onnx_parser::node_info info,
std::vector<instruction_ref> args) const
{
std::string mode = opd.op_name;
const std::unordered_map<std::string, op::pooling_mode> mode_map = {
{"max", op::pooling_mode::max},
{"average", op::pooling_mode::average},
{"lpnorm", op::pooling_mode::lpnorm}};
if(not contains(mode_map, mode))
{
MIGRAPHX_THROW(
"PARSE_POOLING: onnx pooling mode must be [\"max\", \"average\", \"lpnorm\"]");
}
operation op = make_op("pooling", {{"mode", mode_map.at(mode)}});
value values = op.to_value();
auto l0 = args[0];
auto in_shape = l0->get_shape();
assert(in_shape.ndim() > 2);
auto kdims = in_shape.ndim() - 2;
values = handle_values(opd, info, in_shape, values);
// count include padding, if count include pad is 1, we always use
// explicit pad
int count_include_pad = 0;
if(contains(info.attributes, "count_include_pad"))
{
if(in_shape.dynamic())
{
MIGRAPHX_THROW("PARSE_POOLING: count_include_pad attribute is not supported for "
"dynamic input shape");
}
count_include_pad = info.attributes.at("count_include_pad").i();
}
std::vector<int64_t> paddings;
float pad_val = ((mode == "max") ? std::numeric_limits<float>::lowest() : 0.0f);
if(contains(info.attributes, "pads"))
{
values["padding"].clear();
copy(info.attributes["pads"].ints(), std::back_inserter(paddings));
check_attr_sizes(
kdims, paddings.size() / 2, "PARSE_POOLING: inconsistent explicit paddings");
}
if(paddings.size() != 2 * kdims)
{
paddings.resize(kdims * 2);
std::fill_n(paddings.begin(), 2 * kdims, 0);
}
if(values["padding"].size() != kdims)
{
values["padding"].resize(kdims);
std::fill_n(values["padding"].begin(), kdims, 0);
}
if(values["stride"].size() != kdims)
{
values["stride"].resize(kdims);
std::fill_n(values["stride"].begin(), kdims, 1);
}
if(values["dilations"].size() != kdims)
{
values["dilations"].resize(kdims);
std::fill_n(values["dilations"].begin(), kdims, 1);
}
// used to calculate the supposed output shape
std::vector<int64_t> orig_padding = paddings;
if(contains(info.attributes, "auto_pad") and
to_upper(info.attributes["auto_pad"].s()) != "NOTSET")
{
auto auto_pad = to_upper(info.attributes["auto_pad"].s());
// don't use the given padding sizes, if any
// values["padding"].clear();
if(in_shape.dynamic())
{
// set padding_mode to trigger auto padding at runtime
bool is_same_upper = (auto_pad.find("SAME_UPPER") != std::string::npos);
values["padding_mode"] = is_same_upper ? to_value(op::padding_mode_t::same_upper)
: to_value(op::padding_mode_t::same_lower);
}
else
{
// Calculate auto padding
cal_auto_padding_size(info,
values,
values["lengths"].to_vector<std::size_t>(),
values["dilations"].to_vector<std::size_t>(),
in_shape.lens(),
paddings);
values["padding"] = paddings;
// default padding_mode indicates that padding sizes are not calculated dynamically
values["padding_mode"] = migraphx::op::padding_mode_t::default_;
}
}
std::vector<int64_t> slice_start;
std::vector<int64_t> slice_end;
tune_padding_size(values, paddings, count_include_pad, slice_start);
if(not slice_start.empty())
{
if(in_shape.dynamic())
{
MIGRAPHX_THROW(
"PARSE_POOLING: asymmetric padding not supported for dynamic input shape");
}
// calculate expected output shape
orig_padding.insert(orig_padding.begin() + kdims, 2, 0);
orig_padding.insert(orig_padding.begin(), 2, 0);
op::pad pad{orig_padding, 0.0f};
shape padded_shape = pad.compute_shape({l0->get_shape()});
// make an op just to get its output shape
auto out_lens = make_op("pooling", values).compute_shape({padded_shape}).lens();
// compute slice_end information
slice_end.resize(slice_start.size());
std::transform(out_lens.begin() + 2,
out_lens.end(),
slice_start.begin(),
slice_end.begin(),
[](auto i, auto j) { return i + j; });
}
values["padding"] = std::vector<size_t>(paddings.begin(), paddings.end());
check_asym_padding(info, l0, paddings, values, count_include_pad, pad_val);
op.from_value(values);
auto l1 = info.add_instruction(op, l0);
if(not slice_start.empty())
{
std::vector<int64_t> axes(kdims);
std::iota(axes.begin(), axes.end(), 2);
l1 = info.add_instruction(
make_op("slice", {{"axes", axes}, {"starts", slice_start}, {"ends", slice_end}}),
l1);
}
return l1;
}
return add_pooling_op(opd, std::move(info), args[0]);
};
};
} // namespace onnx
......
......@@ -23,6 +23,7 @@
*/
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/onnx/pooling.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/make_op.hpp>
......@@ -36,90 +37,56 @@ namespace onnx {
/*
*********************************************************************************
* Reference: see QLinearGlobalAveragePool in *
* Reference: see QLinearAveragePool and QLinearGlobalAveragePool in *
* github.com/microsoft/onnxruntime/blob/main/docs/ContribOperators.md *
*********************************************************************************
*/
QLinearGlobalAveragePool consumes an input tensor X and applies
Average pooling across the values in the same channel. This is
equivalent to AveragePool with kernel size equal to the spatial
dimension of input tensor. Input is of type uint8_t or int8_t.
Version
This version of the operator has been available since version 1 of the 'com.microsoft' operator set.
Attributes
channels_last : int
Inputs
X : T
Input data tensor from the previous operator; According to channels_last, dimensions for image case
are (N x C x H x W), or (N x H x W x C) where N is the batch size, C is the number of channels, and
H and W are the height and the width of the data. For non image case, the dimensions are in the form
of (N x C x D1 x D2 ... Dn), or (N x D1 X D2 ... Dn x C) where N is the batch size.
x_scale : tensor(float)
Scale of quantized input 'X'. It must be a scalar.
x_zero_point : T
Zero point tensor for input 'X'. It must be a scalar.
y_scale : tensor(float)
Scale of quantized output 'Y'. It must be a scalar.
y_zero_point : T
Zero point tensor for output 'Y'. It must be a scalar.
Outputs
Y : T
Output data tensor from pooling across the input tensor. The output tensor has the same rank as the
input. with the N and C value keep it value, while the other dimensions are all 1. Type Constraints
T : tensor(uint8), tensor(int8)
Constrain input and output types to signed/unsigned int8 tensors.
*/
struct parse_qlinearglobalaveragepool : op_parser<parse_qlinearglobalaveragepool>
struct parse_qlinearpooling : op_parser<parse_qlinearpooling>
{
std::vector<op_desc> operators() const { return {{"QLinearGlobalAveragePool"}}; }
// basic type checking for QLinearGlobalAveragePool Operator
void check_inputs(const std::vector<instruction_ref>& args) const
std::vector<op_desc> operators() const
{
if(args.size() < 5)
MIGRAPHX_THROW("QLINEARGLOBALAVERAGEPOOL: missing inputs");
return {{"QLinearGlobalAveragePool", "average"}, {"QLinearAveragePool", "average"}};
}
const auto& in_x = args[0];
const auto& zero_pt_x = args[2];
const auto& zero_pt_y = args[4];
void check_inputs(const op_desc& opd, const std::vector<instruction_ref>& args) const
{
const auto& in_x = args[0];
const auto onnx_name = opd.onnx_name;
if(in_x->get_shape().ndim() <= 2)
MIGRAPHX_THROW("QLINEARGLOBALAVERAGEPOOL: input dimensions too small");
MIGRAPHX_THROW(onnx_name + ": input dimensions too small");
auto type_x = in_x->get_shape().type();
if(type_x != migraphx::shape::int8_type and type_x != migraphx::shape::uint8_type)
MIGRAPHX_THROW("QLINEARGLOBALAVERAGEPOOL: unsupported input type");
MIGRAPHX_THROW(onnx_name + ": unsupported input type");
const auto& zero_pt_x = args[2];
if(type_x != zero_pt_x->get_shape().type())
MIGRAPHX_THROW("QLINEARGLOBALAVERAGEPOOL: mismatched type: input zero point");
if(type_x != zero_pt_y->get_shape().type())
MIGRAPHX_THROW("QLINEARGLOBALAVERAGEPOOL: mismatched type: output zero point");
MIGRAPHX_THROW(onnx_name + ": mismatched type: input zero point");
if(args.size() == 5)
{
const auto& zero_pt_y = args[4];
if(type_x != zero_pt_y->get_shape().type())
MIGRAPHX_THROW(onnx_name + ": mismatched type: output zero point");
}
}
instruction_ref parse(const op_desc& /* opd */,
instruction_ref parse(const op_desc& opd,
const onnx_parser& parser,
const onnx_parser::node_info& info,
const std::vector<instruction_ref>& args) const
{
int channels_last =
parser.parse_value(info.attributes.at("channels_last")).template at<int>();
if(channels_last != 0)
MIGRAPHX_THROW(
"QLINEARGLOBALAVERAGEPOOL: channels_last (N x D1..Dn x C) is not supported");
if(contains(info.attributes, "channel_last"))
{
int channels_last =
parser.parse_value(info.attributes.at("channels_last")).template at<int>();
if(channels_last != 0)
MIGRAPHX_THROW(opd.onnx_name + ": channels_last (N x D1..Dn x C) is not supported");
}
check_inputs(args);
check_inputs(opd, args);
// Input: X
......@@ -128,21 +95,18 @@ struct parse_qlinearglobalaveragepool : op_parser<parse_qlinearglobalaveragepool
const auto& zero_pt_x = args[2];
auto dquant_x = bcast_qdq_instr("dequantizelinear", in_x, scale_x, zero_pt_x, info);
// Output Y = globalaveragepool(X)
auto op = migraphx::op::pooling{migraphx::op::pooling_mode::average};
auto lens = in_x->get_shape().lens();
std::vector<size_t> lengths(lens.begin() + 2, lens.end());
op.lengths = lengths;
op.padding = std::vector<size_t>(lens.size());
auto out_y = info.add_instruction(op, dquant_x);
// Output Y = pooling_op(X)
const auto& scale_y = args[3];
const auto& zero_pt_y = args[4];
auto out_y = add_pooling_op(opd, info, dquant_x);
auto out_quant_y = bcast_qdq_instr("quantizelinear", out_y, scale_y, zero_pt_y, info);
const auto& in_scale_y = args[3];
// zero_pt for Y is supplied as the last optional argument..
if(args.size() == 5)
return (bcast_qdq_instr("quantizelinear", out_y, in_scale_y, args[4], info));
return out_quant_y;
// if no zero_pt: just broadcast the scale..
auto bcast_scale_y = bcast_scalar_instr(out_y->get_shape(), in_scale_y, info);
return (info.add_instruction(migraphx::make_op("quantizelinear"), out_y, bcast_scale_y));
}
};
......
......@@ -39,15 +39,17 @@ struct parse_scatternd : op_parser<parse_scatternd>
const onnx_parser::node_info& info,
std::vector<instruction_ref>& args) const
{
std::string reduction = "none";
if(contains(info.attributes, "reduction"))
{
if(info.attributes.at("reduction").s() == "add")
return info.add_instruction(migraphx::make_op("scatternd_add"), args);
if(info.attributes.at("reduction").s() == "mul")
return info.add_instruction(migraphx::make_op("scatternd_mul"), args);
reduction = info.attributes.at("reduction").s();
if(not contains({"none", "add", "mul", "min", "max"}, reduction))
{
MIGRAPHX_THROW("PARSE_SCATTERND: unsupported reduction mode " + reduction);
}
}
return info.add_instruction(migraphx::make_op("scatternd_none"), args);
return info.add_instruction(migraphx::make_op("scatternd_" + reduction), args);
}
};
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/tune_axis.hpp>
#include <optional>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace onnx {
// generate unique output stream y, given input stream x;
//
// case unsorted:
// input x: [2, 1, 1, 3, 4, 3], attr_sorted = 0;
// output(s):
// y: [2, 1, 3, 4] --- the unique output
// y_indices: [0, 1, 3, 4] --- first incidence, in terms of indices of x
// x_rev_indices: [0, 1, 1, 2, 3, 2] --- x seen in terms of indices of y
// y_count: [1, 2, 2, 1] -- count at each y_index. sum = len(x)
//
// case sorted:
// input x: [2, 1, 1, 3, 4, 3], attr_sorted = 1;
// output(s):
// y: [1, 2, 3, 4] --- the unique output
// y_indices: [1, 0, 3, 4] --- first incidence, in terms of indices of x
// x_rev_indices: [1, 0, 0, 2, 3, 2] --- x seen in terms of indices of y
// y_count: [2, 1, 2, 1] -- count at each y_index. sum = len(x)
struct parse_unique : op_parser<parse_unique>
{
std::vector<op_desc> operators() const { return {{"Unique"}}; }
std::vector<instruction_ref> parse(const op_desc& opd,
const onnx_parser& parser,
const onnx_parser::node_info& info,
std::vector<instruction_ref> args) const
{
int64_t sorted = 1; // default = sorted.
if(contains(info.attributes, "sorted"))
sorted = parser.parse_value(info.attributes.at("sorted")).at<int>();
std::optional<int64_t> axis;
if(contains(info.attributes, "axis"))
{
auto n_dim = args[0]->get_shape().ndim();
axis = parser.parse_value(info.attributes.at("axis")).at<int>();
axis = tune_axis(n_dim, *axis, opd.op_name);
}
migraphx::argument data_arg = args.back()->eval();
auto opr = axis ? migraphx::make_op("unique", {{"axis", *axis}, {"sorted", sorted}})
: migraphx::make_op("unique", {{"sorted", sorted}});
auto u_opr = info.add_instruction(opr, args.at(0));
auto i_y = info.add_instruction(make_op("get_tuple_elem", {{"index", 0}}), u_opr);
auto i_y_idx = info.add_instruction(make_op("get_tuple_elem", {{"index", 1}}), u_opr);
auto i_x_idx = info.add_instruction(make_op("get_tuple_elem", {{"index", 2}}), u_opr);
auto i_count = info.add_instruction(make_op("get_tuple_elem", {{"index", 3}}), u_opr);
return {i_y, i_y_idx, i_x_idx, i_count};
}
};
} // namespace onnx
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/onnx/pooling.hpp>
#include <migraphx/onnx/checks.hpp>
#include <migraphx/onnx/padding.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/op/pad.hpp>
#include <migraphx/ranges.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace onnx {
value handle_pooling_values(const op_desc& opd,
onnx_parser::node_info info,
const shape& in_shape,
value values)
{
auto kdims = in_shape.ndim() - 2;
if(starts_with(opd.onnx_name, "Global") or starts_with(opd.onnx_name, "QLinearGlobal"))
{
// if spatial dimensions are dynamic use dyn_global flag
if(in_shape.dynamic() and std::any_of(in_shape.dyn_dims().cbegin() + 2,
in_shape.dyn_dims().cend(),
[](auto dd) { return not dd.is_fixed(); }))
{
values["dyn_global"] = true;
values["lengths"] = std::vector<size_t>();
}
else
{
// works with static and fixed dynamic shape
auto m_lens = in_shape.max_lens();
values["lengths"] = std::vector<size_t>(m_lens.begin() + 2, m_lens.end());
}
}
if(contains(info.attributes, "ceil_mode"))
{
values["ceil_mode"] = static_cast<bool>(info.attributes.at("ceil_mode").i());
}
if(contains(info.attributes, "strides"))
{
values["stride"].clear();
copy(info.attributes["strides"].ints(), std::back_inserter(values["stride"]));
check_attr_sizes(kdims, values["stride"].size(), "PARSE_POOLING: inconsistent strides");
}
if(contains(info.attributes, "kernel_shape"))
{
values["lengths"].clear();
copy(info.attributes["kernel_shape"].ints(), std::back_inserter(values["lengths"]));
check_attr_sizes(kdims, values["lengths"].size(), "PARSE_POOLING: inconsistent lengths");
}
if(contains(info.attributes, "dilations"))
{
values["dilations"].clear();
copy(info.attributes["dilations"].ints(), std::back_inserter(values["dilations"]));
check_attr_sizes(
kdims, values["dilations"].size(), "PARSE_POOLING: inconsistent dilations");
}
// lp_order attribute
if(contains(info.attributes, "p"))
{
values["lp_order"] = info.attributes.at("p").i();
}
// ensure pads available only when auto_pad is "NOT_SET"
check_padding_mode(info, "POOLING");
return values;
}
instruction_ref add_pooling_op(const op_desc& opd, onnx_parser::node_info info, instruction_ref l0)
{
std::string mode = opd.op_name;
const std::unordered_map<std::string, op::pooling_mode> mode_map = {
{"max", op::pooling_mode::max},
{"average", op::pooling_mode::average},
{"lpnorm", op::pooling_mode::lpnorm}};
if(not contains(mode_map, mode))
{
MIGRAPHX_THROW(
"PARSE_POOLING: onnx pooling mode must be [\"max\", \"average\", \"lpnorm\"]");
}
operation op = make_op("pooling", {{"mode", mode_map.at(mode)}});
value values = op.to_value();
auto in_shape = l0->get_shape();
assert(in_shape.ndim() > 2);
auto kdims = in_shape.ndim() - 2;
values = handle_pooling_values(opd, info, in_shape, values);
// count include padding, if count include pad is 1, we always use
// explicit pad
int count_include_pad = 0;
if(contains(info.attributes, "count_include_pad"))
{
if(in_shape.dynamic())
{
MIGRAPHX_THROW("PARSE_POOLING: count_include_pad attribute is not supported for "
"dynamic input shape");
}
count_include_pad = info.attributes.at("count_include_pad").i();
}
std::vector<int64_t> paddings;
float pad_val = ((mode == "max") ? std::numeric_limits<float>::lowest() : 0.0f);
if(contains(info.attributes, "pads"))
{
values["padding"].clear();
copy(info.attributes["pads"].ints(), std::back_inserter(paddings));
check_attr_sizes(
kdims, paddings.size() / 2, "PARSE_POOLING: inconsistent explicit paddings");
}
if(paddings.size() != 2 * kdims)
{
paddings.resize(kdims * 2);
std::fill_n(paddings.begin(), 2 * kdims, 0);
}
if(values["padding"].size() != kdims)
{
values["padding"].resize(kdims);
std::fill_n(values["padding"].begin(), kdims, 0);
}
if(values["stride"].size() != kdims)
{
values["stride"].resize(kdims);
std::fill_n(values["stride"].begin(), kdims, 1);
}
if(values["dilations"].size() != kdims)
{
values["dilations"].resize(kdims);
std::fill_n(values["dilations"].begin(), kdims, 1);
}
// used to calculate the supposed output shape
std::vector<int64_t> orig_padding = paddings;
// TODO: add parsing for dilations
if(contains(info.attributes, "auto_pad") and
to_upper(info.attributes["auto_pad"].s()) != "NOTSET")
{
auto auto_pad = to_upper(info.attributes["auto_pad"].s());
// don't use the given padding sizes, if any
// values["padding"].clear();
if(in_shape.dynamic())
{
// set padding_mode to trigger auto padding at runtime
bool is_same_upper = (auto_pad.find("SAME_UPPER") != std::string::npos);
values["padding_mode"] = is_same_upper ? to_value(op::padding_mode_t::same_upper)
: to_value(op::padding_mode_t::same_lower);
}
else
{
// Calculate auto padding
// dilations (argument 4) not supported; default to all 1's
cal_auto_padding_size(info,
values,
values["lengths"].to_vector<std::size_t>(),
values["dilations"].to_vector<std::size_t>(),
in_shape.lens(),
paddings);
values["padding"] = paddings;
// default padding_mode indicates that padding sizes are not calculated dynamically
values["padding_mode"] = migraphx::op::padding_mode_t::default_;
}
}
std::vector<int64_t> slice_start;
std::vector<int64_t> slice_end;
tune_padding_size(values, paddings, count_include_pad, slice_start);
if(not slice_start.empty())
{
if(in_shape.dynamic())
{
MIGRAPHX_THROW(
"PARSE_POOLING: asymmetric padding not supported for dynamic input shape");
}
// calculate expected output shape
orig_padding.insert(orig_padding.begin() + kdims, 2, 0);
orig_padding.insert(orig_padding.begin(), 2, 0);
op::pad pad{orig_padding, 0.0f};
shape padded_shape = pad.compute_shape({l0->get_shape()});
// make an op just to get its output shape
auto out_lens = make_op("pooling", values).compute_shape({padded_shape}).lens();
// compute slice_end information
slice_end.resize(slice_start.size());
std::transform(out_lens.begin() + 2,
out_lens.end(),
slice_start.begin(),
slice_end.begin(),
[](auto i, auto j) { return i + j; });
}
values["padding"] = std::vector<size_t>(paddings.begin(), paddings.end());
check_asym_padding(info, l0, paddings, values, count_include_pad, pad_val);
op.from_value(values);
auto l1 = info.add_instruction(op, l0);
if(not slice_start.empty())
{
std::vector<int64_t> axes(kdims);
std::iota(axes.begin(), axes.end(), 2);
l1 = info.add_instruction(
make_op("slice", {{"axes", axes}, {"starts", slice_start}, {"ends", slice_end}}), l1);
}
return l1;
}
} // namespace onnx
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
......@@ -68,6 +68,7 @@ dnnl::memory::data_type to_dnnl_memory_data_type(shape::type_t t)
case st::int32_type: return dt::s32;
case st::int8_type: return dt::s8;
case st::uint8_type: return dt::u8;
case st::fp8e4m3fnuz_type: MIGRAPHX_THROW("fp8e4m3fnuz unsupported in DNNL");
default: MIGRAPHX_THROW("Unsupported data type");
}
}
......
......@@ -340,7 +340,6 @@ struct cpu_apply
{"reduce_min", "reduction_min"},
{"reduce_sum", "reduction_sum"},
});
extend_op("concat", "dnnl::concat");
extend_op("contiguous", "dnnl::reorder");
extend_op("convolution", "dnnl::convolution");
......@@ -376,6 +375,12 @@ struct cpu_apply
// Apply these operators first so the inputs can be const folded
for(auto it : iterator_for(*modl))
{
// skip lowering if input has fp8 as one of the inputs since oneDNN doesn't have fp8
// supported yet.
if(std::any_of(it->inputs().begin(), it->inputs().end(), [](const auto& i) {
return i->get_shape().type() == migraphx::shape::fp8e4m3fnuz_type;
}))
continue;
if(it->name() == "pow")
{
apply_pow(it);
......@@ -383,6 +388,12 @@ struct cpu_apply
}
for(auto it : iterator_for(*modl))
{
// skip lowering if input has fp8 as one of the inputs since oneDNN doesn't have fp8
// supported yet.
if(std::any_of(it->inputs().begin(), it->inputs().end(), [](const auto& i) {
return i->get_shape().type() == migraphx::shape::fp8e4m3fnuz_type;
}))
continue;
if(it->name() == "pooling")
{
apply_pooling(it);
......
......@@ -54,6 +54,11 @@ vectorize vectorize::elements(std::size_t axis,
const std::vector<shape>& inputs,
const std::vector<std::size_t>& sizes)
{
// disable vectorization for fp8 types
if(std::any_of(inputs.begin(), inputs.end(), [&](auto ishape) {
return ishape.type() == migraphx::shape::fp8e4m3fnuz_type;
}))
return {1, axis};
if(std::all_of(
inputs.begin(), inputs.end(), [&](const auto& s) { return s.lens()[axis] == 1; }))
return {1, axis};
......@@ -86,6 +91,11 @@ vectorize vectorize::elements(std::size_t axis,
vectorize vectorize::elements(context& ctx, std::size_t axis, const std::vector<shape>& inputs)
{
// disable vectorization for fp8 types
if(std::any_of(inputs.begin(), inputs.end(), [&](auto ishape) {
return ishape.type() == migraphx::shape::fp8e4m3fnuz_type;
}))
return {1, axis};
if(inputs.empty())
return {1, axis};
std::size_t n = std::max_element(inputs.begin(),
......
This diff is collapsed.
......@@ -34,10 +34,11 @@ struct module_pass_manager;
namespace gpu {
MIGRAPHX_GPU_EXPORT bool mlir_enabled();
MIGRAPHX_GPU_EXPORT bool mlir_attention_enabled();
struct MIGRAPHX_GPU_EXPORT fuse_mlir
{
context* ctx = nullptr;
context* ctx = nullptr;
bool enable_extra = false;
std::string name() const { return "gpu::fuse_mlir"; }
void apply(module_pass_manager& mpm) const;
......
......@@ -66,6 +66,10 @@ struct gemm_softmax_gemm
}
static bool is_ck_supported_type(shape::type_t t) { return contains({shape::half_type}, t); }
static bool is_mlir_supported_type(shape::type_t t)
{
return contains({shape::type_t::float_type, shape::half_type}, t);
}
};
} // namespace gpu
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_JIT_SCATTER_HPP
#define MIGRAPHX_GUARD_JIT_SCATTER_HPP
#include <migraphx/gpu/compiler.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/compile_hip_code_object.hpp>
#include <migraphx/gpu/compile_hip.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
template <typename Derived>
struct scatter_compiler : compiler<Derived>
{
compiler_replace compile(context& ctx, instruction_ref ins, const operation& op) const
{
const auto inputs =
to_shapes(std::vector<instruction_ref>{ins->inputs().begin() + 1, ins->inputs().end()});
hip_compile_options options;
options.set_launch_params(op.to_value(), compute_global_for(ctx, inputs.at(1).elements()));
options.inputs = inputs;
options.output = inputs.back();
options.kernel_name = derived().get_kernel_name(op);
options.virtual_inputs = inputs;
// The compiler protests the inequality comparison in assign_mul when pertaining to floating
// point, despite it making sense in the context. Thus the warning removal.
options.params += "-Wno-float-equal";
const auto src = derived().make_interpolated_string(op);
return prepend_copy_data_to_output(compile_hip_code_object(src, options));
}
compiler_replace prepend_copy_data_to_output(const operation& co) const
{
return {co, [](module& m, instruction_ref ins, const operation& op) {
auto args = ins->inputs();
args.back() =
m.insert_instruction(ins, make_op("hip::copy"), args.front(), args.back());
args.erase(args.begin());
return m.replace_instruction(ins, op, args);
}};
}
std::string get_kernel_name(const operation& op) const { return op.name() + "_kernel"; }
const Derived& derived() const { return static_cast<const Derived&>(*this); }
};
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
......@@ -21,11 +21,7 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/gpu/compiler.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/compile_hip_code_object.hpp>
#include <migraphx/gpu/compile_hip.hpp>
#include "scatter.hpp"
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
......@@ -55,46 +51,21 @@ MIGRAPHX_GLOBAL void scatternd_kernel(void* in_indices, void* in_updates, void*
)__migraphx__";
struct scatternd_compiler : compiler<scatternd_compiler>
struct scatternd_compiler : scatter_compiler<scatternd_compiler>
{
std::vector<std::string> names() const
{
return {"scatternd_none", "scatternd_add", "scatternd_mul"};
return {
"scatternd_none", "scatternd_add", "scatternd_mul", "scatternd_min", "scatternd_max"};
}
operation compile_op(context& ctx, const std::vector<shape>& inputs, const value& v) const
std::string make_interpolated_string(const operation& op) const
{
hip_compile_options options;
options.set_launch_params(v, compute_global_for(ctx, inputs.at(1).elements()));
options.inputs = inputs;
options.output = inputs.back();
options.kernel_name = "scatternd_kernel";
options.virtual_inputs = inputs;
auto reduction = "assign_" + v.get("reduction", std::string{"none"});
auto src = interpolate_string(scatternd_kernel, {{"reduction", reduction}});
return compile_hip_code_object(src, options);
const auto reduction = op.name().substr(std::char_traits<char>::length("scatternd_"));
return interpolate_string(scatternd_kernel, {{"reduction", "assign_" + reduction}});
}
compiler_replace compile(context& ctx, instruction_ref ins, const operation& op) const
{
assert(starts_with(op.name(), "scatternd_"));
auto reduction = op.name().substr(10);
return insert(compile_op(
ctx,
to_shapes(std::vector<instruction_ref>{ins->inputs().begin() + 1, ins->inputs().end()}),
{{"reduction", reduction}}));
}
compiler_replace insert(const operation& co) const
{
return {co, [](module& m, instruction_ref ins, const operation& op) {
auto args = ins->inputs();
args.back() =
m.insert_instruction(ins, make_op("hip::copy"), args.front(), args.back());
args.erase(args.begin());
return m.replace_instruction(ins, op, args);
}};
}
std::string get_kernel_name(const operation&) const { return "scatternd_kernel"; }
};
} // namespace gpu
......
/* ************************************************************************
* Copyright (C) 2016-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell cop-
* ies of the Software, and to permit persons to whom the Software is furnished
* to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IM-
* PLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNE-
* CTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ************************************************************************ */
#ifndef MIGRAPHX_GUARD_KERNELS_BITCAST_HPP
#define MIGRAPHX_GUARD_KERNELS_BITCAST_HPP
#include <migraphx/kernels/type_traits.hpp>
namespace migraphx {
template <typename To,
typename From,
MIGRAPHX_REQUIRES(is_trivially_copyable<To>{} and is_trivially_copyable<From>{})>
inline constexpr To bit_cast(From fr) noexcept
{
static_assert(sizeof(To) == sizeof(From));
return __builtin_bit_cast(To, fr);
}
} // namespace migraphx
#endif // MIGRAPHX_GUARD_KERNELS_BITCAST_HPP
This diff is collapsed.
/* ************************************************************************
* Copyright (C) 2016-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell cop-
* ies of the Software, and to permit persons to whom the Software is furnished
* to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IM-
* PLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNE-
* CTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ************************************************************************ */
#ifndef MIGRAPHX_GUARD_KERNELS_FP8_IMPL_HPP
#define MIGRAPHX_GUARD_KERNELS_FP8_IMPL_HPP
#include <migraphx/kernels/bit_cast.hpp>
#include <migraphx/kernels/type_traits.hpp>
#if defined(__clang__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wreserved-identifier"
#endif
namespace migraphx {
namespace fp8 {
namespace impl {
// NOLINTBEGIN
template <int Wm, int We, typename T, bool NegativeZeroNan, bool Clip>
__device__ constexpr uint8_t cast_to_f8(T f_x, bool stoch = false, uint32_t rng = 0)
{
constexpr bool is_float = true;
// half is not supported for now
constexpr bool is_half = false;
static_assert(Wm + We == 7, "Wm+We==7");
static_assert(is_float or is_half, "Only float can be cast to f8");
const uint32_t mfmt = (sizeof(T) == 4) ? 23 : 10;
typename migraphx::conditional_t<sizeof(T) == 2, uint16_t, uint32_t> x;
if constexpr(sizeof(T) == 4)
x = migraphx::bit_cast<uint32_t>(f_x);
else
x = migraphx::bit_cast<uint16_t>(f_x);
uint32_t head = 0;
uint32_t mantissa = 0;
int exponent = 0;
uint32_t bias = 0;
uint32_t sign = 0;
if constexpr(sizeof(T) == 4)
{
head = x & 0xFF800000;
mantissa = x & 0x7FFFFF;
exponent = (head >> 23) & 0xFF;
sign = head >> 31;
bias = 127;
}
else
{
head = x & 0xFC00;
mantissa = x & 0x3FF;
exponent = (head >> 10) & 0x1F;
sign = head >> 15;
bias = 15;
}
uint32_t signed_inf = (sign << 7) + (((1 << We) - 1) << Wm);
uint32_t signed_all_ones = (sign << 7) + ((((1 << We) - 1) << Wm) + ((1 << Wm) - 1));
// Calcualte maximum singed value FLT_MAX, FLT_MIN
uint32_t signed_max = signed_all_ones;
if(not NegativeZeroNan)
signed_max = (Wm == 2) ? (signed_max - 4) : (signed_max - 1);
// Deal with inf and NaNs
if(NegativeZeroNan) // For the FNUZ cases, it is simple just return NaNs
{
if((sizeof(T) == 4 and ((x & 0x7F800000) == 0x7F800000)) or
(sizeof(T) == 2 and ((x & 0x7C00) == 0x7C00)))
return 0x80;
}
else
{
// calculate most common NaN mantissa for FP8, which is all Ones in binary
uint32_t nan_mantissa = 1;
for(auto i = 1; i < Wm; ++i)
{
nan_mantissa |= (nan_mantissa << 1);
}
if((sizeof(T) == 4 and ((x & 0x7F800000) == 0x7F800000)) or
(sizeof(T) == 2 and ((x & 0x7C00) == 0x7C00)))
{
// infinity
if(mantissa == 0)
{
if(sign == 0)
return (Wm == 2) ? 0x7B : 0x7E;
else
return (Wm == 2) ? 0xFB : 0xFE;
}
else // NaNs
return signed_inf + nan_mantissa;
}
}
// handle positive zero
if(x == 0)
return 0;
// handle negative zero
else if((sizeof(T) == 4 and x == 0x80000000) or (sizeof(T) == 2 and x == 0x8000))
{
return NegativeZeroNan ? 0 : 0x80; // For FNUZ types neg zero is just positive zero
}
/* First need to check if it is normal or denorm as there is a difference of implict 1
Then need to adjust the exponent to align with the F8 exponent, in the meanwhile, shift
The mantissa. Then for stochastic rounding, add rng to mantissa and truncate. And for
RNE, no need to add rng. Then probably need to check whether there is carry and adjust
exponent and mantissa again*/
// For IEEE bias mode, the bias is 2^(k-1) -1 where k is the width of exponent bits
const int f8_bias = (1 << (We - 1u)) - 1 + (NegativeZeroNan ? 1 : 0);
const int f8_denormal_act_exponent = 1 - f8_bias; // actual exponent of f8 denormal
/* act_exponent is the actual exponent of fp32/fp16 (after subtracting bias)
f8_exponent is the converted f8 exponent with bias encoding
exponent_diff is the diff between fp32/fp16 exponent and f8 exponent,
the difference needs to be adjusted and mantissa shifted*/
int act_exponent = 0;
int f8_exponent = 0;
int exponent_diff = 0;
if(exponent == 0 and mantissa != 0)
{ // fp32/fp16 is in denormal.
/* fp32 denormal is below 2^-127 so it is usually not a concern here, we mostly concern fp16
here. In this case, f8 is usually in denormal. But there could be exceptions. fp16 denormal
has exponent bias 15 while bf8 with FNUZ has exponent bias 16. It means that there are some
numbers in fp16 denormal but they are bf8 (FNUZ) normals - smallest bf8 (FNUZ) normal is
2^-15. fp16 numbers where exponent==0 (actual exponent -14) and highest bit of mantissa is 1
are bf8 (FNUZ) normal. In this case, the fp16 mantissa should be shift left by 1 */
act_exponent = 1 - bias;
exponent_diff = f8_denormal_act_exponent -
act_exponent; // actual exponent is exponent-bias+1 as it is denormal
}
else
{ // fp32/fp16 is normal with implicit 1
act_exponent = exponent - bias;
if(act_exponent <= f8_denormal_act_exponent)
{
/* This is the case where fp32/fp16 is normal but it is in f8 denormal range.
For example fp8 FNUZ mode, denormal exponent is -7, but if the fp32/fp16
actual exponent is -7, it is actually larger due to the implict 1,
Therefore it needs to be adjust to -6 and mantissa shift right by 1.
So for fp32/fp16, exponent -8 is the cut point to convert to fp8 FNUZ */
exponent_diff = f8_denormal_act_exponent - act_exponent;
}
else
{ // both fp32/fp16 and f8 are in normal range
exponent_diff =
0; // exponent_diff=0 does not mean there is no difference for this case,
// act_exponent could be larger. Just that it does not need shift mantissa
}
mantissa += (1 << mfmt); // Add the implicit 1 into mantissa
}
// need to know whether the number is right in the middle of two adjacent fp8 numbers. use max
// value of 31 to avoid undefined behaviour
bool midpoint = (mantissa & ((1u << (mfmt - Wm + exponent_diff)) - 1)) ==
(1u << (mfmt - Wm + exponent_diff - 1));
/* This part is a bit tricky. The judgment of whether it is a tie needs to be done before we
shift right as shift right could rip off some residual part and make something not midpoint look
like midpoint. For example, the fp16 number 0x1002 (0 00100 0000000010), it is larger than
midpoint, but after shift right by 4 bits, it would look like midpoint.
*/
if(exponent_diff > 0)
mantissa >>= exponent_diff;
else if(exponent_diff == -1)
mantissa <<= -exponent_diff;
bool implicit_one = mantissa & (1 << mfmt);
// if there is no implict 1, it means the f8 is denormal and need to adjust to denorm exponent
f8_exponent =
(act_exponent + exponent_diff) /*actual f8 exponent*/ + f8_bias - (implicit_one ? 0 : 1);
// Now we have the exponent and mantissa adjusted
uint32_t drop_mask = (1 << (mfmt - Wm)) - 1;
bool odd =
mantissa & (1 << (mfmt - Wm)); // if the least significant bit that is not truncated is 1
/*
This part is doing rounding by adding mantissa part that is going to get dropped.
e.g. if the dropped part for less than 0.5 than it would round down.
if the dropped part is more than 0.5 then it would round up by rolling carry to LSB of retained
mantissa.
For the mid point when bit pattern is like this for Odd: `xy1:10000000` for Odd and
`xy0:10000000` for the Even. where `:` is delimiter for dropped v/s retained part.
For the odd case :
this will add xy1:10000000 + 000:10000000 which would roll over carry to LSB of retained
part making it RNE.
For the even case : this will add xy0:10000000 + 000:01111111 which would
round down and keep number Even
*/
mantissa += (stoch ? rng : (midpoint ? (odd ? mantissa : mantissa - 1) : mantissa)) & drop_mask;
// Now we deal with overflow
if(f8_exponent == 0 and ((1 << mfmt) & mantissa))
{
f8_exponent = 1; // denormal overflow to become normal, promote exponent
}
else if((1 << (mfmt + 1)) & mantissa)
{
mantissa >>= 1;
f8_exponent++;
}
mantissa >>= (mfmt - Wm);
// above range: quantize to maximum possible float of the same sign
// for e5m2 case, max_exp is 14, since exp = 15 is reserved for Infs and Nans
const int max_exp = (1 << We) - ((NegativeZeroNan or Wm == 3) ? 1 : 2);
if(f8_exponent > max_exp)
{
if(Clip)
return signed_max;
else
{
// https://onnx.ai/onnx/technical/float8.html#cast
if(NegativeZeroNan)
return 0x80;
else
return (Wm == 2) ? signed_inf : signed_all_ones;
}
}
if(f8_exponent == 0 and mantissa == 0)
return NegativeZeroNan ? 0 : (sign << 7);
mantissa &= (1 << Wm) - 1;
return (sign << 7) | (f8_exponent << Wm) | mantissa;
}
// NOLINTEND
template <int Wm, int We, typename T, bool NegativeZeroNan>
__device__ constexpr T cast_from_f8(uint8_t x)
{
// half is not supported for now
constexpr bool is_half = false;
constexpr bool is_float = true;
static_assert(is_float or is_half, "Only float are supported");
constexpr int weo = is_half ? 5 : 8;
constexpr int wmo = is_half ? 10 : (is_float ? 23 : 7);
// NOLINTNEXTLINE
T f_inf, f_neg_inf, f_nan, f_neg0;
if constexpr(is_float)
{
const uint32_t if_inf = 0x7F800000;
const uint32_t if_neg_inf = 0xFF800000;
const uint32_t if_nan = 0x7F800001;
const uint32_t if_neg0 = 0x80000000;
f_inf = migraphx::bit_cast<float>(if_inf);
f_neg_inf = migraphx::bit_cast<float>(if_neg_inf);
f_nan = migraphx::bit_cast<float>(if_nan);
f_neg0 = migraphx::bit_cast<float>(if_neg0);
}
if(x == 0)
return 0;
uint32_t sign = x >> 7; // NOLINT
uint32_t mantissa = x & ((1 << Wm) - 1); // NOLINT
int exponent = (x & 0x7F) >> Wm; // NOLINT
if(NegativeZeroNan)
{
if(x == 0x80)
return f_nan;
}
else
{
if(x == 0x80)
return f_neg0;
if(exponent == ((1 << We) - 1) and Wm == 2) // NOLINT
return (mantissa == 0) ? (sign ? f_neg_inf : f_inf) : f_nan;
else if(Wm == 3 and (x == 0x7F or x == 0xFF))
return f_nan;
}
typename migraphx::conditional_t<sizeof(T) == 2, uint16_t, uint32_t> retval;
const int exp_low_cutoff =
(1 << (weo - 1)) - (1 << (We - 1)) + 1 - (NegativeZeroNan ? 1 : 0); // NOLINT
// subnormal input
if(exponent == 0)
{
// guaranteed mantissa!=0 since cases 0x0 and 0x80 are handled above
int sh = 1 + __builtin_clz(mantissa) - (32 - Wm);
mantissa <<= sh; // NOLINT
exponent += 1 - sh;
mantissa &= ((1 << Wm) - 1); // NOLINT
}
exponent += exp_low_cutoff - 1;
mantissa <<= wmo - Wm; // NOLINT
// subnormal output (occurs when T=half, We=5, negative_zero_nan=true)
if(exponent <= 0)
{
mantissa |= 1 << wmo; // NOLINT
mantissa >>= 1 - exponent; // NOLINT
exponent = 0;
}
if(sizeof(T) == 2)
retval = (sign << 15) | (exponent << 10) | mantissa; // NOLINT
else
retval = (sign << 31) | (exponent << 23) | mantissa; // NOLINT
return migraphx::bit_cast<T>(retval);
}
} // namespace impl
} // namespace fp8
} // namespace migraphx
#if defined(__clang__)
#pragma clang diagnostic pop
#endif
#endif // MIGRAPHX_GUARD_KERNELS_FP8_IMPL_HPP
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment