Unverified Commit eafd55de authored by Umang Yadav's avatar Umang Yadav Committed by GitHub
Browse files

FP8 GPU implementation (#2455)

parent 785ff7d7
......@@ -21,10 +21,13 @@
* ************************************************************************ */
#ifndef MIGRAPHX_GUARD_RTGLIB_BITCAST_HPP
#define MIGRAPHX_GUARD_RTGLIB_BITCAST_HPP
#include <type_traits>
#if defined(__GNUC__) && !defined(__clang__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wstrict-aliasing"
#endif
#include <migraphx/requires.hpp>
#include <migraphx/config.hpp>
// NOLINTNEXTLINE(cppcoreguidelines-macro-usage)
......@@ -32,7 +35,10 @@
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
template <typename To, typename From>
template <typename To,
typename From,
MIGRAPHX_REQUIRES(std::is_trivially_copyable<To>{} and
std::is_trivially_copyable<From>{})>
inline constexpr To bit_cast(From fr) noexcept
{
static_assert(sizeof(To) == sizeof(From));
......
......@@ -68,6 +68,7 @@ dnnl::memory::data_type to_dnnl_memory_data_type(shape::type_t t)
case st::int32_type: return dt::s32;
case st::int8_type: return dt::s8;
case st::uint8_type: return dt::u8;
case st::fp8e4m3fnuz_type: MIGRAPHX_THROW("fp8e4m3fnuz unsupported in DNNL");
default: MIGRAPHX_THROW("Unsupported data type");
}
}
......
......@@ -340,7 +340,6 @@ struct cpu_apply
{"reduce_min", "reduction_min"},
{"reduce_sum", "reduction_sum"},
});
extend_op("concat", "dnnl::concat");
extend_op("contiguous", "dnnl::reorder");
extend_op("convolution", "dnnl::convolution");
......@@ -376,6 +375,12 @@ struct cpu_apply
// Apply these operators first so the inputs can be const folded
for(auto it : iterator_for(*modl))
{
// skip lowering if input has fp8 as one of the inputs since oneDNN doesn't have fp8
// supported yet.
if(std::any_of(it->inputs().begin(), it->inputs().end(), [](const auto& i) {
return i->get_shape().type() == migraphx::shape::fp8e4m3fnuz_type;
}))
continue;
if(it->name() == "pow")
{
apply_pow(it);
......@@ -383,6 +388,12 @@ struct cpu_apply
}
for(auto it : iterator_for(*modl))
{
// skip lowering if input has fp8 as one of the inputs since oneDNN doesn't have fp8
// supported yet.
if(std::any_of(it->inputs().begin(), it->inputs().end(), [](const auto& i) {
return i->get_shape().type() == migraphx::shape::fp8e4m3fnuz_type;
}))
continue;
if(it->name() == "pooling")
{
apply_pooling(it);
......
......@@ -54,6 +54,11 @@ vectorize vectorize::elements(std::size_t axis,
const std::vector<shape>& inputs,
const std::vector<std::size_t>& sizes)
{
// disable vectorization for fp8 types
if(std::any_of(inputs.begin(), inputs.end(), [&](auto ishape) {
return ishape.type() == migraphx::shape::fp8e4m3fnuz_type;
}))
return {1, axis};
if(std::all_of(
inputs.begin(), inputs.end(), [&](const auto& s) { return s.lens()[axis] == 1; }))
return {1, axis};
......@@ -86,6 +91,11 @@ vectorize vectorize::elements(std::size_t axis,
vectorize vectorize::elements(context& ctx, std::size_t axis, const std::vector<shape>& inputs)
{
// disable vectorization for fp8 types
if(std::any_of(inputs.begin(), inputs.end(), [&](auto ishape) {
return ishape.type() == migraphx::shape::fp8e4m3fnuz_type;
}))
return {1, axis};
if(inputs.empty())
return {1, axis};
std::size_t n = std::max_element(inputs.begin(),
......
/* ************************************************************************
* Copyright (C) 2016-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell cop-
* ies of the Software, and to permit persons to whom the Software is furnished
* to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IM-
* PLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNE-
* CTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ************************************************************************ */
#ifndef MIGRAPHX_GUARD_KERNELS_BITCAST_HPP
#define MIGRAPHX_GUARD_KERNELS_BITCAST_HPP
#include <migraphx/kernels/type_traits.hpp>
namespace migraphx {
template <typename To,
typename From,
MIGRAPHX_REQUIRES(is_trivially_copyable<To>{} and is_trivially_copyable<From>{})>
inline constexpr To bit_cast(From fr) noexcept
{
static_assert(sizeof(To) == sizeof(From));
return __builtin_bit_cast(To, fr);
}
} // namespace migraphx
#endif // MIGRAPHX_GUARD_KERNELS_BITCAST_HPP
This diff is collapsed.
/* ************************************************************************
* Copyright (C) 2016-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell cop-
* ies of the Software, and to permit persons to whom the Software is furnished
* to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IM-
* PLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNE-
* CTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ************************************************************************ */
#ifndef MIGRAPHX_GUARD_KERNELS_FP8_IMPL_HPP
#define MIGRAPHX_GUARD_KERNELS_FP8_IMPL_HPP
#include <migraphx/kernels/bit_cast.hpp>
#include <migraphx/kernels/type_traits.hpp>
#if defined(__clang__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wreserved-identifier"
#endif
namespace migraphx {
namespace fp8 {
namespace impl {
// NOLINTBEGIN
template <int Wm, int We, typename T, bool NegativeZeroNan, bool Clip>
__device__ constexpr uint8_t cast_to_f8(T f_x, bool stoch = false, uint32_t rng = 0)
{
constexpr bool is_float = true;
// half is not supported for now
constexpr bool is_half = false;
static_assert(Wm + We == 7, "Wm+We==7");
static_assert(is_float or is_half, "Only float can be cast to f8");
const uint32_t mfmt = (sizeof(T) == 4) ? 23 : 10;
typename migraphx::conditional_t<sizeof(T) == 2, uint16_t, uint32_t> x;
if constexpr(sizeof(T) == 4)
x = migraphx::bit_cast<uint32_t>(f_x);
else
x = migraphx::bit_cast<uint16_t>(f_x);
uint32_t head = 0;
uint32_t mantissa = 0;
int exponent = 0;
uint32_t bias = 0;
uint32_t sign = 0;
if constexpr(sizeof(T) == 4)
{
head = x & 0xFF800000;
mantissa = x & 0x7FFFFF;
exponent = (head >> 23) & 0xFF;
sign = head >> 31;
bias = 127;
}
else
{
head = x & 0xFC00;
mantissa = x & 0x3FF;
exponent = (head >> 10) & 0x1F;
sign = head >> 15;
bias = 15;
}
uint32_t signed_inf = (sign << 7) + (((1 << We) - 1) << Wm);
uint32_t signed_all_ones = (sign << 7) + ((((1 << We) - 1) << Wm) + ((1 << Wm) - 1));
// Calcualte maximum singed value FLT_MAX, FLT_MIN
uint32_t signed_max = signed_all_ones;
if(not NegativeZeroNan)
signed_max = (Wm == 2) ? (signed_max - 4) : (signed_max - 1);
// Deal with inf and NaNs
if(NegativeZeroNan) // For the FNUZ cases, it is simple just return NaNs
{
if((sizeof(T) == 4 and ((x & 0x7F800000) == 0x7F800000)) or
(sizeof(T) == 2 and ((x & 0x7C00) == 0x7C00)))
return 0x80;
}
else
{
// calculate most common NaN mantissa for FP8, which is all Ones in binary
uint32_t nan_mantissa = 1;
for(auto i = 1; i < Wm; ++i)
{
nan_mantissa |= (nan_mantissa << 1);
}
if((sizeof(T) == 4 and ((x & 0x7F800000) == 0x7F800000)) or
(sizeof(T) == 2 and ((x & 0x7C00) == 0x7C00)))
{
// infinity
if(mantissa == 0)
{
if(sign == 0)
return (Wm == 2) ? 0x7B : 0x7E;
else
return (Wm == 2) ? 0xFB : 0xFE;
}
else // NaNs
return signed_inf + nan_mantissa;
}
}
// handle positive zero
if(x == 0)
return 0;
// handle negative zero
else if((sizeof(T) == 4 and x == 0x80000000) or (sizeof(T) == 2 and x == 0x8000))
{
return NegativeZeroNan ? 0 : 0x80; // For FNUZ types neg zero is just positive zero
}
/* First need to check if it is normal or denorm as there is a difference of implict 1
Then need to adjust the exponent to align with the F8 exponent, in the meanwhile, shift
The mantissa. Then for stochastic rounding, add rng to mantissa and truncate. And for
RNE, no need to add rng. Then probably need to check whether there is carry and adjust
exponent and mantissa again*/
// For IEEE bias mode, the bias is 2^(k-1) -1 where k is the width of exponent bits
const int f8_bias = (1 << (We - 1u)) - 1 + (NegativeZeroNan ? 1 : 0);
const int f8_denormal_act_exponent = 1 - f8_bias; // actual exponent of f8 denormal
/* act_exponent is the actual exponent of fp32/fp16 (after subtracting bias)
f8_exponent is the converted f8 exponent with bias encoding
exponent_diff is the diff between fp32/fp16 exponent and f8 exponent,
the difference needs to be adjusted and mantissa shifted*/
int act_exponent = 0;
int f8_exponent = 0;
int exponent_diff = 0;
if(exponent == 0 and mantissa != 0)
{ // fp32/fp16 is in denormal.
/* fp32 denormal is below 2^-127 so it is usually not a concern here, we mostly concern fp16
here. In this case, f8 is usually in denormal. But there could be exceptions. fp16 denormal
has exponent bias 15 while bf8 with FNUZ has exponent bias 16. It means that there are some
numbers in fp16 denormal but they are bf8 (FNUZ) normals - smallest bf8 (FNUZ) normal is
2^-15. fp16 numbers where exponent==0 (actual exponent -14) and highest bit of mantissa is 1
are bf8 (FNUZ) normal. In this case, the fp16 mantissa should be shift left by 1 */
act_exponent = 1 - bias;
exponent_diff = f8_denormal_act_exponent -
act_exponent; // actual exponent is exponent-bias+1 as it is denormal
}
else
{ // fp32/fp16 is normal with implicit 1
act_exponent = exponent - bias;
if(act_exponent <= f8_denormal_act_exponent)
{
/* This is the case where fp32/fp16 is normal but it is in f8 denormal range.
For example fp8 FNUZ mode, denormal exponent is -7, but if the fp32/fp16
actual exponent is -7, it is actually larger due to the implict 1,
Therefore it needs to be adjust to -6 and mantissa shift right by 1.
So for fp32/fp16, exponent -8 is the cut point to convert to fp8 FNUZ */
exponent_diff = f8_denormal_act_exponent - act_exponent;
}
else
{ // both fp32/fp16 and f8 are in normal range
exponent_diff =
0; // exponent_diff=0 does not mean there is no difference for this case,
// act_exponent could be larger. Just that it does not need shift mantissa
}
mantissa += (1 << mfmt); // Add the implicit 1 into mantissa
}
// need to know whether the number is right in the middle of two adjacent fp8 numbers. use max
// value of 31 to avoid undefined behaviour
bool midpoint = (mantissa & ((1u << (mfmt - Wm + exponent_diff)) - 1)) ==
(1u << (mfmt - Wm + exponent_diff - 1));
/* This part is a bit tricky. The judgment of whether it is a tie needs to be done before we
shift right as shift right could rip off some residual part and make something not midpoint look
like midpoint. For example, the fp16 number 0x1002 (0 00100 0000000010), it is larger than
midpoint, but after shift right by 4 bits, it would look like midpoint.
*/
if(exponent_diff > 0)
mantissa >>= exponent_diff;
else if(exponent_diff == -1)
mantissa <<= -exponent_diff;
bool implicit_one = mantissa & (1 << mfmt);
// if there is no implict 1, it means the f8 is denormal and need to adjust to denorm exponent
f8_exponent =
(act_exponent + exponent_diff) /*actual f8 exponent*/ + f8_bias - (implicit_one ? 0 : 1);
// Now we have the exponent and mantissa adjusted
uint32_t drop_mask = (1 << (mfmt - Wm)) - 1;
bool odd =
mantissa & (1 << (mfmt - Wm)); // if the least significant bit that is not truncated is 1
/*
This part is doing rounding by adding mantissa part that is going to get dropped.
e.g. if the dropped part for less than 0.5 than it would round down.
if the dropped part is more than 0.5 then it would round up by rolling carry to LSB of retained
mantissa.
For the mid point when bit pattern is like this for Odd: `xy1:10000000` for Odd and
`xy0:10000000` for the Even. where `:` is delimiter for dropped v/s retained part.
For the odd case :
this will add xy1:10000000 + 000:10000000 which would roll over carry to LSB of retained
part making it RNE.
For the even case : this will add xy0:10000000 + 000:01111111 which would
round down and keep number Even
*/
mantissa += (stoch ? rng : (midpoint ? (odd ? mantissa : mantissa - 1) : mantissa)) & drop_mask;
// Now we deal with overflow
if(f8_exponent == 0 and ((1 << mfmt) & mantissa))
{
f8_exponent = 1; // denormal overflow to become normal, promote exponent
}
else if((1 << (mfmt + 1)) & mantissa)
{
mantissa >>= 1;
f8_exponent++;
}
mantissa >>= (mfmt - Wm);
// above range: quantize to maximum possible float of the same sign
// for e5m2 case, max_exp is 14, since exp = 15 is reserved for Infs and Nans
const int max_exp = (1 << We) - ((NegativeZeroNan or Wm == 3) ? 1 : 2);
if(f8_exponent > max_exp)
{
if(Clip)
return signed_max;
else
{
// https://onnx.ai/onnx/technical/float8.html#cast
if(NegativeZeroNan)
return 0x80;
else
return (Wm == 2) ? signed_inf : signed_all_ones;
}
}
if(f8_exponent == 0 and mantissa == 0)
return NegativeZeroNan ? 0 : (sign << 7);
mantissa &= (1 << Wm) - 1;
return (sign << 7) | (f8_exponent << Wm) | mantissa;
}
// NOLINTEND
template <int Wm, int We, typename T, bool NegativeZeroNan>
__device__ constexpr T cast_from_f8(uint8_t x)
{
// half is not supported for now
constexpr bool is_half = false;
constexpr bool is_float = true;
static_assert(is_float or is_half, "Only float are supported");
constexpr int weo = is_half ? 5 : 8;
constexpr int wmo = is_half ? 10 : (is_float ? 23 : 7);
// NOLINTNEXTLINE
T f_inf, f_neg_inf, f_nan, f_neg0;
if constexpr(is_float)
{
const uint32_t if_inf = 0x7F800000;
const uint32_t if_neg_inf = 0xFF800000;
const uint32_t if_nan = 0x7F800001;
const uint32_t if_neg0 = 0x80000000;
f_inf = migraphx::bit_cast<float>(if_inf);
f_neg_inf = migraphx::bit_cast<float>(if_neg_inf);
f_nan = migraphx::bit_cast<float>(if_nan);
f_neg0 = migraphx::bit_cast<float>(if_neg0);
}
if(x == 0)
return 0;
uint32_t sign = x >> 7; // NOLINT
uint32_t mantissa = x & ((1 << Wm) - 1); // NOLINT
int exponent = (x & 0x7F) >> Wm; // NOLINT
if(NegativeZeroNan)
{
if(x == 0x80)
return f_nan;
}
else
{
if(x == 0x80)
return f_neg0;
if(exponent == ((1 << We) - 1) and Wm == 2) // NOLINT
return (mantissa == 0) ? (sign ? f_neg_inf : f_inf) : f_nan;
else if(Wm == 3 and (x == 0x7F or x == 0xFF))
return f_nan;
}
typename migraphx::conditional_t<sizeof(T) == 2, uint16_t, uint32_t> retval;
const int exp_low_cutoff =
(1 << (weo - 1)) - (1 << (We - 1)) + 1 - (NegativeZeroNan ? 1 : 0); // NOLINT
// subnormal input
if(exponent == 0)
{
// guaranteed mantissa!=0 since cases 0x0 and 0x80 are handled above
int sh = 1 + __builtin_clz(mantissa) - (32 - Wm);
mantissa <<= sh; // NOLINT
exponent += 1 - sh;
mantissa &= ((1 << Wm) - 1); // NOLINT
}
exponent += exp_low_cutoff - 1;
mantissa <<= wmo - Wm; // NOLINT
// subnormal output (occurs when T=half, We=5, negative_zero_nan=true)
if(exponent <= 0)
{
mantissa |= 1 << wmo; // NOLINT
mantissa >>= 1 - exponent; // NOLINT
exponent = 0;
}
if(sizeof(T) == 2)
retval = (sign << 15) | (exponent << 10) | mantissa; // NOLINT
else
retval = (sign << 31) | (exponent << 23) | mantissa; // NOLINT
return migraphx::bit_cast<T>(retval);
}
} // namespace impl
} // namespace fp8
} // namespace migraphx
#if defined(__clang__)
#pragma clang diagnostic pop
#endif
#endif // MIGRAPHX_GUARD_KERNELS_FP8_IMPL_HPP
......@@ -52,22 +52,25 @@ __device__ void generic_binary_layernorm(
block::template run<reduce_output>([&](auto, auto r) {
auto input = r.inner([&](auto x1, auto x2) { return op(x1, x2); })(input1, input2);
using value_type = typename Input1::type;
using vec_value_type = vec_type<value_type>;
constexpr auto relements = r.template elements<Input1>();
constexpr auto relements_r = vec_type<value_type>{1.0 / relements};
constexpr auto relements_r = vec_value_type{1.0 / relements};
auto relements_rsqrt = sqrt(relements_r);
auto means = r.reduce(op::sum{}, make_array<vec_type<value_type>>(0, 0), [&](auto x) {
auto x_out = x * relements_r;
// dividing x by sqrt(relements) before squaring allows computing higher values
// before overflow in low precision
auto x2_sqrt = x * relements_rsqrt;
return make_array(x_out, x2_sqrt * x2_sqrt);
})(input);
auto means = r.reduce(op::sum{},
make_array<vec_value_type>(vec_value_type{0}, vec_value_type{0}),
[&](auto x) {
auto x_out = x * relements_r;
// dividing x by sqrt(relements) before squaring allows computing
// higher values before overflow in low precision
auto x2_sqrt = x * relements_rsqrt;
return make_array(x_out, x2_sqrt * x2_sqrt);
})(input);
auto mean_x = means[0];
auto mean_x2 = means[1];
auto variance = mean_x2 - (mean_x * mean_x);
value_type eps_val = eps; // implicit conversion for eps
value_type eps_val = implicit_conversion(eps);
r.inner([&](auto& y, auto x, auto... xs) {
auto m = x - mean_x;
......
......@@ -29,11 +29,15 @@
#include <migraphx/kernels/functional.hpp>
#include <migraphx/kernels/type_traits.hpp>
#include <migraphx/kernels/hip.hpp>
#include <migraphx/kernels/float8.hpp>
namespace migraphx {
namespace math {
constexpr float as_float(migraphx::half x) { return x; }
constexpr float as_float(migraphx::fp8::fp8e4m3fnuz x) { return x; }
template <class T>
constexpr T as_float(T x)
{
......@@ -57,14 +61,14 @@ constexpr T as_float(T x)
// NOLINTNEXTLINE
#define MIGRAPHX_DEVICE_MATH_FOR(type, name, fname) \
template <class... Ts, MIGRAPHX_REQUIRES(not is_any_vec<Ts...>())> \
auto __device__ name(type x, Ts... xs)->type \
auto __device__ name(type x, Ts... xs) -> type \
{ \
return fname(x, xs...); \
}
// NOLINTNEXTLINE
#define MIGRAPHX_DEVICE_MATH_BINARY_FOR(type, name, fname) \
inline auto __device__ name(type x, type y)->type { return fname(x, y); }
inline auto __device__ name(type x, type y) -> type { return fname(x, y); }
// NOLINTNEXTLINE
#define MIGRAPHX_DEVICE_MATH_HALF(name, fname) \
......@@ -72,6 +76,12 @@ constexpr T as_float(T x)
auto __device__ name(migraphx::half x, Ts... xs) \
MIGRAPHX_RETURNS(fname(math::as_float(x), math::as_float(xs)...))
// NOLINTNEXTLINE
#define MIGRAPHX_DEVICE_MATH_FP8(name, fname) \
template <class... Ts, MIGRAPHX_REQUIRES(not is_any_vec<Ts...>())> \
auto __device__ name(migraphx::fp8::fp8e4m3fnuz x, Ts... xs) MIGRAPHX_RETURNS( \
migraphx::fp8::fp8e4m3fnuz(fname(math::as_float(x), math::as_float(xs)...)))
// Template with two overloads for math functions, one for half2 type and one for more generic
// <half, N> vectorization where N is 4 or another even number.
......@@ -162,6 +172,33 @@ MIGRAPHX_DEVICE_MATH_HALF(tan, ::tan)
MIGRAPHX_DEVICE_MATH_HALF(tanh, ::tanh)
MIGRAPHX_DEVICE_MATH_HALF(fmod, ::fmod)
// use float to compute fp8 overload
MIGRAPHX_DEVICE_MATH_FP8(abs, ::abs)
MIGRAPHX_DEVICE_MATH_FP8(acos, ::acos)
MIGRAPHX_DEVICE_MATH_FP8(acosh, ::acosh)
MIGRAPHX_DEVICE_MATH_FP8(asin, ::asin)
MIGRAPHX_DEVICE_MATH_FP8(asinh, ::asinh)
MIGRAPHX_DEVICE_MATH_FP8(atan, ::atan)
MIGRAPHX_DEVICE_MATH_FP8(atanh, ::atanh)
MIGRAPHX_DEVICE_MATH_FP8(ceil, ::ceil)
MIGRAPHX_DEVICE_MATH_FP8(cos, ::cos)
MIGRAPHX_DEVICE_MATH_FP8(cosh, ::cosh)
MIGRAPHX_DEVICE_MATH_FP8(erf, ::erf)
MIGRAPHX_DEVICE_MATH_FP8(exp, ::exp)
MIGRAPHX_DEVICE_MATH_FP8(floor, ::floor)
MIGRAPHX_DEVICE_MATH_FP8(isnan, ::isnan)
MIGRAPHX_DEVICE_MATH_FP8(log, ::log)
MIGRAPHX_DEVICE_MATH_FP8(pow, ::pow)
MIGRAPHX_DEVICE_MATH_FP8(remainder, ::remainder)
MIGRAPHX_DEVICE_MATH_FP8(round, ::round)
MIGRAPHX_DEVICE_MATH_FP8(rsqrt, ::rsqrt)
MIGRAPHX_DEVICE_MATH_FP8(sin, ::sin)
MIGRAPHX_DEVICE_MATH_FP8(sinh, ::sinh)
MIGRAPHX_DEVICE_MATH_FP8(sqrt, ::sqrt)
MIGRAPHX_DEVICE_MATH_FP8(tan, ::tan)
MIGRAPHX_DEVICE_MATH_FP8(tanh, ::tanh)
MIGRAPHX_DEVICE_MATH_FP8(fmod, ::fmod)
// Map math functions to hip half2 functions
// The half2 type is defined in include/hip/amd_detail/hip_fp16_gcc.h and is 2 16-bit floats
// packed into a 32-bit number. See include/hip/amd_detail/hip_fp16_math_fwd.h for the HIP names
......@@ -253,7 +290,7 @@ MIGRAPHX_DEVICE_MATH_VEC(where)
template <class T, class U>
constexpr auto convert(U v)
{
return vec_transform(v)([](auto x) -> T { return x; });
return vec_transform(v)([](auto x) -> T { return static_cast<T>(x); });
}
} // namespace migraphx
......
......@@ -28,6 +28,7 @@
#include <migraphx/kernels/index.hpp>
#include <migraphx/kernels/algorithm.hpp>
#include <migraphx/kernels/ranges.hpp>
#include <migraphx/kernels/vec.hpp>
namespace migraphx {
......@@ -53,9 +54,9 @@ __device__ void pad(const index& idx,
if(any_of(range_multi.begin(), range_multi.end(), [&](auto j) {
return multi[j] < offsets[j] or input_idx[j] >= input_bounds[j];
}))
output[multi] = pad_val;
output[multi] = implicit_conversion(pad_val);
else
output[multi] = input[input_idx];
output[multi] = implicit_conversion(input[input_idx]);
});
}
......
......@@ -106,7 +106,7 @@ __device__ auto block_reduce(index idx, Op op, T init, Index n, F f)
#endif
using type = decltype(index::invoke_loop(f, 0, _c<0>));
__shared__ type buffer[idx.max_nlocal() / lanes_per_thread];
type x = init;
type x = type(init);
idx.local_stride(n, [&](auto i, auto d) { x = op(x, index::invoke_loop(f, i, d)); });
dpp_reduce(x, op);
......@@ -117,7 +117,7 @@ __device__ auto block_reduce(index idx, Op op, T init, Index n, F f)
}
__syncthreads();
type y = init;
type y = type(init);
for(index_int i = 0; i < idx.nlocal() / lanes_per_thread; i++)
{
y = op(y, buffer[i]);
......@@ -244,9 +244,8 @@ struct reducer_base
{
auto&& derived = static_cast<const Derived&>(*this);
auto t = derived.slice(x);
return make_storage_access<typename decltype(t)::type>([=](auto i, auto...) -> auto& {
return t[i];
});
return make_storage_access<typename decltype(t)::type>(
[=](auto i, auto...) -> auto& { return t[i]; });
}
}
......@@ -393,7 +392,7 @@ struct block
{
using max_iterations = decltype(idx.max_local_stride_iterations(n));
inner_storage<R, max_iterations{}, N> storage;
idx.local_stride(n, [&](auto j, auto d) { storage(j, d) = f(xs(j, d)...); });
idx.local_stride(n, [&](auto j, auto d) { storage(j, d) = R{f(xs(j, d)...)}; });
return storage;
}
};
......@@ -482,7 +481,7 @@ struct lane
__device__ auto reduce_impl(Op op, T init, Read read, N n, U&& x, Us&&... xs) const
{
using type = remove_reference_t<decltype(x(0, _c<0>))>;
type r = init;
type r = type(init);
for(index_int j = 0; j < n; j++)
{
r = op(r, read(x(j, _c<0>), xs(j, _c<0>)...));
......
......@@ -62,7 +62,7 @@ struct avg_pool
template <class T>
MIGRAPHX_DEVICE_CONSTEXPR T final(T x, index_int y)
{
return (y == 0) ? 0.0 : (x / y);
return (y == 0) ? T{0.0} : T{x / y};
}
};
......@@ -76,7 +76,7 @@ MIGRAPHX_DEVICE_CONSTEXPR typename Iterator::value_type bilinear_interpolate(
{
if(xy[ii] < -1.0f or xy[ii] > dims[ii])
{
return 0;
return implicit_conversion(0);
}
xy[ii] = migraphx::max(xy[ii], 0.0f);
......@@ -92,15 +92,16 @@ MIGRAPHX_DEVICE_CONSTEXPR typename Iterator::value_type bilinear_interpolate(
high[0] * dims[1] + low[1],
high[0] * dims[1] + high[1]};
float ly = xy[0] - low[0];
float lx = xy[1] - low[1];
float hy = 1.0f - ly;
float hx = 1.0f - lx;
array<typename Iterator::value_type, 4> ws = {hy * hx, hy * lx, ly * hx, ly * lx};
float ly = xy[0] - low[0];
float lx = xy[1] - low[1];
float hy = 1.0f - ly;
float hx = 1.0f - lx;
// do calculations in floating point and convert final result to required type
array<float, 4> ws = {hy * hx, hy * lx, ly * hx, ly * lx};
auto v01 = pooling(data[locs[0]] * ws[0], data[locs[1]] * ws[1]);
auto v23 = pooling(data[locs[2]] * ws[2], data[locs[3]] * ws[3]);
return pooling(v01, v23);
return implicit_conversion(pooling(v01, v23));
}
template <class Iterator, class Op>
......@@ -113,8 +114,9 @@ MIGRAPHX_DEVICE_CONSTEXPR auto calc_pooling(const Iterator& data,
float roi_offset,
Op op)
{
typename Iterator::value_type output_val = op.init();
const int64_t count = bin_grid_size[0] * bin_grid_size[1];
using in_dtype = typename Iterator::value_type;
in_dtype output_val = in_dtype{op.init()};
const int64_t count = bin_grid_size[0] * bin_grid_size[1];
dfor(bin_grid_size[0], bin_grid_size[1])([&](auto iy, auto ix) {
array<index_int, 2> id = {iy, ix};
array<float, 2> locs =
......@@ -148,7 +150,6 @@ __device__ void roialign(const T& x_t, const U& rois_t, const V& ind_t, W& y_t,
const auto x = x_t.begin();
const auto rois = rois_t.begin();
const auto ind = ind_t.begin();
// input shape
auto x_lens = x_t.get_shape().lens;
auto channel_num = x_lens[1];
......@@ -176,10 +177,12 @@ __device__ void roialign(const T& x_t, const U& rois_t, const V& ind_t, W& y_t,
const auto offset_rois = rois + (n * roi_column_num);
const int batch_ind = ind[n];
array<float, 2> roi_starts = {offset_rois[1] * s.spatial_scale,
offset_rois[0] * s.spatial_scale};
array<float, 2> roi_ends = {offset_rois[3] * s.spatial_scale,
offset_rois[2] * s.spatial_scale};
array<float, 2> roi_starts = {
static_cast<float>(offset_rois[1]) * static_cast<float>(s.spatial_scale),
static_cast<float>(offset_rois[0]) * static_cast<float>(s.spatial_scale)};
array<float, 2> roi_ends = {
static_cast<float>(offset_rois[3]) * static_cast<float>(s.spatial_scale),
static_cast<float>(offset_rois[2]) * static_cast<float>(s.spatial_scale)};
array<float, 2> roi_size{};
array<float, 2> bin_size{};
......
......@@ -43,7 +43,7 @@ __device__ void softmax(Input input1, Output output)
auto exp_in = r.inner([&](auto x) { return migraphx::exp(x - c); })(input);
auto batch_sum =
r.reduce(op::sum{}, 0, [](auto x) { return migraphx::convert<float>(x); })(exp_in);
r.inner([&](auto& y, auto x) { y = x / batch_sum; })(output, exp_in);
r.inner([&](auto& y, auto x) { y = implicit_conversion(x / batch_sum); })(output, exp_in);
});
}
......
......@@ -27,6 +27,7 @@
#include <migraphx/kernels/shape.hpp>
#include <migraphx/kernels/debug.hpp>
#include <migraphx/kernels/iota_iterator.hpp>
#include <migraphx/kernels/float8.hpp>
namespace migraphx {
......
......@@ -251,7 +251,7 @@ constexpr T numeric_max()
}
template <class T>
constexpr T numeric_lowest()
constexpr auto numeric_lowest() -> decltype(numeric_max<T>())
{
if constexpr(is_integral<T>{})
{
......
......@@ -207,7 +207,7 @@ struct implicit_conversion_op
template <class U>
constexpr operator U() const
{
return x;
return static_cast<U>(x);
}
};
......
......@@ -98,6 +98,7 @@ std::vector<pass> target::get_passes(migraphx::context& gctx, const compile_opti
ctx.set_exhaustive_tune_flag(options.exhaustive_tune);
std::set<shape::type_t> unsupported_types(shape::types().begin(), shape::types().end());
unsupported_types.erase(shape::type_t::float_type);
unsupported_types.erase(shape::type_t::fp8e4m3fnuz_type);
unsupported_types.erase(shape::type_t::half_type);
unsupported_types.erase(shape::type_t::bool_type);
unsupported_types.erase(shape::type_t::int8_type);
......
......@@ -350,18 +350,19 @@ TEST_CASE(compile_math)
auto vec_sizes = {2, 4, 6};
for(auto&& t : migraphx::shape::types())
{
if(contains({migraphx::shape::bool_type,
migraphx::shape::fp8e4m3fnuz_type,
migraphx::shape::tuple_type},
t))
if(contains({migraphx::shape::bool_type, migraphx::shape::tuple_type}, t))
continue;
auto name = migraphx::shape::cpp_type(t);
if(t == migraphx::shape::half_type)
name.insert(0, "migraphx::");
data_types.push_back(name);
migraphx::transform(vec_sizes, std::back_inserter(data_types), [&](auto i) {
return "migraphx::vec<" + name + ", " + std::to_string(i) + ">";
});
// fp8 doesn't have vectorization support yet, therefore skip it for now.
if(t != migraphx::shape::fp8e4m3fnuz_type)
{
migraphx::transform(vec_sizes, std::back_inserter(data_types), [&](auto i) {
return "migraphx::vec<" + name + ", " + std::to_string(i) + ">";
});
}
}
migraphx::shape input{migraphx::shape::float_type, {5, 2}};
migraphx::gpu::hip_compile_options options;
......@@ -431,7 +432,6 @@ TEST_CASE(assert_type_min_max)
min = std::to_string(as.min());
max = std::to_string(as.max());
}
auto src = migraphx::interpolate_string(assert_template,
{{"type", name}, {"max", max}, {"min", min}});
migraphx::shape input{migraphx::shape::float_type, {5, 2}};
......
......@@ -1017,6 +1017,40 @@ TEST_CASE(simplify_concat_add_relu_broadcast_same_axis)
EXPECT(m1 == m2);
}
TEST_CASE(concat_convert_fusion)
{
auto s = migraphx::shape{migraphx::shape::float_type, {64}};
migraphx::module m1;
{
auto x = m1.add_parameter("x", s);
auto y = m1.add_parameter("y", s);
auto xh = m1.add_instruction(
migraphx::make_op("convert",
{{"target_type", migraphx::to_value(migraphx::shape::half_type)}}),
x);
auto yh = m1.add_instruction(
migraphx::make_op("convert",
{{"target_type", migraphx::to_value(migraphx::shape::half_type)}}),
y);
auto concat = m1.add_instruction(migraphx::make_op("concat", {{"axis", 0}}), xh, yh);
m1.add_instruction(pass_op{}, concat);
}
run_pass(m1);
migraphx::module m2;
{
auto x = m2.add_parameter("x", s);
auto y = m2.add_parameter("y", s);
auto concat = m2.add_instruction(migraphx::make_op("concat", {{"axis", 0}}), x, y);
auto concath = m2.add_instruction(
migraphx::make_op("convert",
{{"target_type", migraphx::to_value(migraphx::shape::half_type)}}),
concat);
m2.add_instruction(pass_op{}, concath);
}
EXPECT(m1 == m2);
}
TEST_CASE(simplify_div_const)
{
migraphx::module m1;
......
......@@ -27,14 +27,19 @@
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
struct test_abs : verify_program<test_abs>
template <migraphx::shape::type_t DType>
struct test_abs : verify_program<test_abs<DType>>
{
migraphx::program create_program() const
{
migraphx::program p;
auto* mm = p.get_main_module();
auto x = mm->add_parameter("x", migraphx::shape{migraphx::shape::float_type, {4, 3, 3, 3}});
auto x = mm->add_parameter("x", migraphx::shape{DType, {4, 3, 3, 3}});
mm->add_instruction(migraphx::make_op("abs"), x);
return p;
}
};
template struct test_abs<migraphx::shape::fp8e4m3fnuz_type>;
template struct test_abs<migraphx::shape::half_type>;
template struct test_abs<migraphx::shape::float_type>;
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment