"mmdet3d/ops/vscode:/vscode.git/clone" did not exist on "53271e3d8f7a448a2f6fa5bd0bc15621b89ad39c"
simplify_algebra.cpp 37.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
Paul's avatar
Paul committed
24
#include <migraphx/simplify_algebra.hpp>
Paul's avatar
Paul committed
25
#include <migraphx/dead_code_elimination.hpp>
Paul's avatar
Paul committed
26
#include <migraphx/program.hpp>
27
#include <migraphx/op/concat.hpp>
28
#include <migraphx/op/slice.hpp>
29
#include <migraphx/op/convolution.hpp>
Paul's avatar
Paul committed
30
#include <migraphx/op/broadcast.hpp>
31
32
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/transpose.hpp>
Paul's avatar
Paul committed
33
34
#include <migraphx/matcher.hpp>
#include <migraphx/literal.hpp>
35
36
37
#include <migraphx/make_op.hpp>
#include <migraphx/serialize.hpp>

38
#include <migraphx/algorithm.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
39
#include <unordered_set>
Paul's avatar
Paul committed
40

Paul's avatar
Paul committed
41
namespace migraphx {
Paul's avatar
Paul committed
42
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
43

Paul's avatar
Paul committed
44
auto lit_broadcast() { return match::any_of(match::is_constant(), match::name("broadcast")); }
Paul's avatar
Paul committed
45
auto not_lit_broadcast() { return match::none_of(match::is_constant(), match::name("broadcast")); }
Paul's avatar
Paul committed
46
47
auto op_lit_broadcast(std::string op, std::string x, std::string y)
{
Paul's avatar
Paul committed
48
49
    return match::name(std::move(op))(match::either_arg(0, 1)(
        lit_broadcast().bind(std::move(x)), not_lit_broadcast().bind(std::move(y))));
Paul's avatar
Paul committed
50
51
}

Paul's avatar
Paul committed
52
53
auto conv_const_weights()
{
Paul's avatar
Paul committed
54
    return match::name("convolution")(match::used_once(),
Paul's avatar
Paul committed
55
                                      match::args(match::any(), match::is_constant().bind("w")));
Paul's avatar
Paul committed
56
57
}

Shucai Xiao's avatar
Shucai Xiao committed
58
59
auto reduction() { return match::name_contains("reduce"); }

Paul's avatar
Paul committed
60
61
62
struct find_mul_conv
{
    auto matcher() const
Paul's avatar
Paul committed
63
    {
Paul's avatar
Paul committed
64
65
        return match::name("mul")(match::either_arg(0, 1)(conv_const_weights().bind("conv"),
                                                          match::name("broadcast").bind("a")));
Paul's avatar
Paul committed
66
    }
Paul's avatar
Paul committed
67

68
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
69
    {
Paul's avatar
Paul committed
70
        auto ins      = r.result;
Paul's avatar
Paul committed
71
        auto conv_ins = r.instructions["conv"];
Paul's avatar
Paul committed
72
73
74
        auto a_ins    = r.instructions["a"];
        auto w_ins    = r.instructions["w"];

Paul's avatar
Paul committed
75
        auto broadcast_op = any_cast<op::broadcast>(a_ins->get_operator());
Paul's avatar
Paul committed
76
        if(broadcast_op.axis != 1)
Paul's avatar
Paul committed
77
78
            return;

79
        auto new_a = m.insert_instruction(
80
            ins,
81
            make_op("broadcast", {{"axis", 0}, {"out_lens", w_ins->get_shape().lens()}}),
82
            a_ins->inputs().front());
83
84
        auto new_mul  = m.insert_instruction(ins, make_op("mul"), new_a, w_ins);
        auto new_conv = m.insert_instruction(
Paul's avatar
Paul committed
85
            ins, conv_ins->get_operator(), conv_ins->inputs().front(), new_mul);
86
        m.replace_instruction(ins, new_conv);
Paul's avatar
Paul committed
87
    }
Paul's avatar
Paul committed
88
89
};

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
struct find_mul_slice_conv
{
    static auto conv()
    {
        return match::name("convolution")(
            match::all_of[match::outputs()](match::name("slice")),
            match::args(match::any(), match::is_constant().bind("w")));
    }
    auto matcher() const
    {
        return match::name("mul")(match::either_arg(0, 1)(
            match::name("slice")(match::used_once(), match::arg(0)(conv().bind("conv")))
                .bind("slice"),
            match::name("broadcast")(match::is_constant()).bind("a")));
    }

106
    void apply(module& m, const match::matcher_result& r) const
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
    {
        auto ins       = r.result;
        auto slice_ins = r.instructions["slice"];
        auto conv_ins  = r.instructions["conv"];
        auto a_ins     = r.instructions["a"];
        auto w_ins     = r.instructions["w"];

        auto broadcast_op = any_cast<op::broadcast>(a_ins->get_operator());
        if(broadcast_op.axis != 1)
            return;

        auto slice_op = any_cast<op::slice>(slice_ins->get_operator());
        if(slice_op.axes.size() != 1)
            return;
        if(slice_op.axes.front() != 1)
            return;

        auto slice_idx = std::distance(conv_ins, slice_ins);
        if(std::any_of(conv_ins->outputs().begin(), conv_ins->outputs().end(), [&](auto i) {
               if(i == slice_ins)
                   return false;
               if(std::distance(conv_ins, i) < slice_idx)
                   return true;
               auto sop = any_cast<op::slice>(i->get_operator());
               if(sop.axes != slice_op.axes)
                   return true;
               if(std::max(sop.starts.front(), slice_op.starts.front()) <
                  std::min(sop.ends.front(), slice_op.ends.front()))
                   return true;
               return false;
           }))
            return;

        auto w_slice_op  = slice_op;
        w_slice_op.axes  = {0};
142
        auto slice_w_ins = m.insert_instruction(ins, w_slice_op, w_ins);
143

144
        auto new_a = m.insert_instruction(
145
            ins,
146
            make_op("broadcast", {{"axis", 0}, {"out_lens", slice_w_ins->get_shape().lens()}}),
147
            a_ins->inputs().front());
148
        auto new_mul = m.insert_instruction(ins, make_op("mul"), new_a, slice_w_ins);
149
150
151

        std::vector<instruction_ref> sliced_weights;
        if(slice_op.starts.front() != 0)
152
            sliced_weights.push_back(m.insert_instruction(
153
154
155
                ins,
                make_op("slice", {{"axes", {0}}, {"starts", {0}}, {"ends", slice_op.starts}}),
                w_ins));
156
157
158
        sliced_weights.push_back(new_mul);
        int64_t end_axis = w_ins->get_shape().lens().at(0);
        if(slice_op.ends.front() != end_axis)
159
            sliced_weights.push_back(m.insert_instruction(
160
161
162
                ins,
                make_op("slice", {{"axes", {0}}, {"starts", slice_op.ends}, {"ends", {end_axis}}}),
                w_ins));
163

164
        auto new_weights =
165
            m.insert_instruction(ins, make_op("concat", {{"axis", 0}}), sliced_weights);
166

167
        auto new_conv = m.insert_instruction(
168
169
170
            ins, conv_ins->get_operator(), conv_ins->inputs().front(), new_weights);
        assert(conv_ins->get_shape() == new_conv->get_shape());

171
        auto slice1 = m.insert_instruction(ins, slice_op, new_conv);
172
        assert(ins->get_shape().lens() == slice1->get_shape().lens());
173
        m.replace_instruction(ins, slice1);
174
        // TODO: Check each slice doesn't overlap and that it occurs after slice_ins
175
176
        auto outputs = conv_ins->outputs();
        for(auto output : outputs)
177
178
179
180
181
            if(output != slice_ins)
                instruction::replace_argument(output, conv_ins, new_conv);
    }
};

Paul's avatar
Paul committed
182
// a * (x + b) => a * x + a * b
Paul's avatar
Paul committed
183
184
185
186
187
struct find_mul_add
{
    auto matcher() const
    {
        return match::name("mul")(match::either_arg(0, 1)(
Paul's avatar
Paul committed
188
189
190
            match::name("add")(
                match::either_arg(0, 1)(
                    match::any().bind("x"),
Paul's avatar
Paul committed
191
                    match::any_of(conv_const_weights(), match::is_constant()).bind("b")),
Paul's avatar
Paul committed
192
                match::none_of(match::args(match::is_constant(), match::is_constant())),
Paul's avatar
Paul committed
193
                match::used_once()),
Paul's avatar
Paul committed
194
            match::is_constant().bind("a")));
Paul's avatar
Paul committed
195
196
    }

197
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
198
    {
Paul's avatar
Paul committed
199
        auto ins   = r.result;
Paul's avatar
Paul committed
200
        auto a_ins = r.instructions["a"];
Paul's avatar
Paul committed
201
        auto b_ins = r.instructions["b"];
Paul's avatar
Paul committed
202
        auto x_ins = r.instructions["x"];
Paul's avatar
Paul committed
203
        assert(x_ins != b_ins);
Paul's avatar
Paul committed
204

205
206
207
        auto ax_ins = m.insert_instruction(ins, make_op("mul"), a_ins, x_ins);
        auto ab_ins = m.insert_instruction(ins, make_op("mul"), a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), ax_ins, ab_ins);
Paul's avatar
Paul committed
208
209
210
    }
};

Paul's avatar
Paul committed
211
struct find_add_lit_broadcast
Paul's avatar
Paul committed
212
213
214
215
216
217
218
{
    auto matcher() const
    {
        return match::name("add")(
            match::either_arg(0, 1)(op_lit_broadcast("add", "a", "x"), lit_broadcast().bind("b")));
    }

219
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
220
221
222
223
224
225
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];

226
227
        auto sumab = m.insert_instruction(ins, make_op("add"), a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), x_ins, sumab);
Paul's avatar
Paul committed
228
229
230
231
    }
};

struct find_double_add_lit_broadcast
Paul's avatar
Paul committed
232
{
Paul's avatar
Paul committed
233
234
    auto matcher() const
    {
Paul's avatar
Paul committed
235
        return match::name("add")(
Paul's avatar
Paul committed
236
            match::args(op_lit_broadcast("add", "a", "x"), op_lit_broadcast("add", "b", "y")));
Paul's avatar
Paul committed
237
238
    }

239
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
240
    {
Paul's avatar
Paul committed
241
242
243
244
245
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto y_ins = r.instructions["y"];
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];
Paul's avatar
Paul committed
246
247
248

        instruction_ref sumab;

Paul's avatar
Paul committed
249
        if(a_ins->name() == "broadcast" and b_ins->name() == "broadcast")
Paul's avatar
Paul committed
250
251
252
        {
            if(a_ins->inputs().at(0)->get_shape() != b_ins->inputs().at(0)->get_shape())
                return;
253
            auto op     = a_ins->get_operator();
254
            auto presum = m.insert_instruction(
255
                ins, make_op("add"), a_ins->inputs().at(0), b_ins->inputs().at(0));
256
            sumab = m.insert_instruction(ins, op, presum);
Paul's avatar
Paul committed
257
258
259
        }
        else
        {
260
            sumab = m.insert_instruction(ins, make_op("add"), a_ins, b_ins);
Paul's avatar
Paul committed
261
262
        }

263
264
        auto sumxy = m.insert_instruction(ins, make_op("add"), x_ins, y_ins);
        m.replace_instruction(ins, make_op("add"), sumxy, sumab);
Paul's avatar
Paul committed
265
266
267
    }
};

Paul's avatar
Paul committed
268
269
270
271
struct find_inner_broadcast
{
    auto matcher() const
    {
272
273
        return pointwise(
            match::nargs(2),
Paul's avatar
Paul committed
274
            match::args(match::name("broadcast").bind("x"), match::name("broadcast").bind("y")));
Paul's avatar
Paul committed
275
276
    }

277
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
278
279
280
281
282
283
284
285
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto y_ins = r.instructions["y"];

        auto xbroadcast = any_cast<op::broadcast>(x_ins->get_operator());
        auto ybroadcast = any_cast<op::broadcast>(y_ins->get_operator());

Paul's avatar
Paul committed
286
        if(xbroadcast.axis != ybroadcast.axis)
Paul's avatar
Paul committed
287
288
            return;

289
        auto op = m.insert_instruction(
Paul's avatar
Paul committed
290
            ins, ins->get_operator(), x_ins->inputs().front(), y_ins->inputs().front());
291
        m.replace_instruction(ins, xbroadcast, op);
Paul's avatar
Paul committed
292
293
294
    }
};

295
struct find_concat_op
296
297
298
{
    auto matcher() const
    {
299
        return match::name("concat")(match::any_of[match::inputs()](
300
            match::any_of(match::pointwise(), match::name("broadcast")), match::used_once()));
301
302
    }

303
304
    template <class Iterator>
    static std::vector<std::size_t> get_output_lens(Iterator start, Iterator last, std::size_t axis)
305
    {
306
307
308
        assert(start != last);
        std::size_t dim = 0;
        for(auto ins : range(start, last))
309
        {
310
            dim += ins->get_shape().lens().at(axis);
311
        }
312
313
314
        auto lens  = (*start)->get_shape().lens();
        lens[axis] = dim;
        return lens;
315
316
    }

317
318
319
320
321
    static bool is_valid_op(const operation& op)
    {
        return op.name() == "broadcast" or op.attributes().contains("pointwise");
    }

322
    void apply(module& m, const match::matcher_result& r) const
323
    {
324
325
        auto ins  = r.result;
        auto axis = any_cast<op::concat>(ins->get_operator()).axis;
326

327
328
329
330
331
332
        auto each = [&](auto start, auto last) -> std::vector<instruction_ref> {
            if(std::distance(start, last) < 2)
                return {start, last};
            auto x = *start;
            if(x->inputs().size() > 2 or x->inputs().empty() or x->outputs().size() > 1)
                return {start, last};
333
334
            auto op = x->get_operator();
            if(not is_valid_op(op))
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
                return {start, last};
            auto iaxis = axis;
            // Adjust broadcast lens
            if(op.name() == "broadcast")
            {
                auto b = any_cast<op::broadcast>(op);
                if(b.axis != iaxis)
                    return {start, last};
                b.broadcast_lens = get_output_lens(start, last, iaxis);
                op               = b;
                iaxis            = 0;
            }

            std::vector<instruction_ref> concats;
            for(std::size_t i = 0; i < x->inputs().size(); i++)
            {
                std::vector<instruction_ref> inputs;
                std::transform(start, last, std::back_inserter(inputs), [&](auto j) {
                    return j->inputs().at(i);
                });
355
                auto concat =
356
                    m.insert_instruction(ins, make_op("concat", {{"axis", iaxis}}), inputs);
357
358
                concats.push_back(concat);
            }
359
            auto y = m.insert_instruction(ins, op, concats);
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
            return {y};
        };

        std::vector<instruction_ref> args;
        auto update_args = [&](auto start, auto last) {
            auto x = each(start, last);
            args.insert(args.end(), x.begin(), x.end());
        };
        auto pred = [](auto i, auto j) {
            return i->get_operator() == j->get_operator() and
                   i->inputs().size() == i->inputs().size() and
                   i->outputs().size() == i->outputs().size();
        };
        group_unique(ins->inputs().begin(), ins->inputs().end(), update_args, pred);
        if(args.size() == 1)
375
            m.replace_instruction(ins, args.front());
376
        else
377
            m.replace_instruction(ins, make_op("concat", {{"axis", axis}}), args);
378
379
380
    }
};

381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
std::vector<instruction_ref> get_splits(instruction_ref ins)
{
    std::vector<instruction_ref> result;
    std::copy_if(ins->outputs().begin(),
                 ins->outputs().end(),
                 std::back_inserter(result),
                 [&](auto i) { return i->name() == "slice"; });
    if(result.size() < 2)
        return {};
    auto get_slice = [](auto& i) -> auto& { return any_cast<op::slice>(i->get_operator()); };
    auto&& axes    = get_slice(result.front()).axes;
    if(std::any_of(result.begin(), result.end(), [&](auto i) { return get_slice(i).axes != axes; }))
        return {};
    auto get_start = [&](auto& i) -> auto& { return get_slice(i).starts; };
    auto get_end   = [&](auto& i) -> auto& { return get_slice(i).ends; };
    std::sort(
        result.begin(), result.end(), [&](auto x, auto y) { return get_start(x) < get_start(y); });
    if(std::any_of(get_start(result.front()).begin(), get_start(result.front()).end(), [&](auto i) {
           return i != 0;
       }))
        return {};
    auto it = std::adjacent_find(
        result.begin(), result.end(), [&](auto x, auto y) { return get_end(x) != get_start(y); });
    if(it != result.end())
        return {};
    for(std::size_t i = 0; i < axes.size(); i++)
    {
        auto axis = axes[i];
        if(ins->get_shape().lens()[axis] != get_slice(result.back()).ends[i])
            return {};
    }
    return result;
}

struct find_splits
{
    auto matcher() const
    {
419
420
        return match::any(match::any_of[match::outputs()](match::name("slice")(
            match::any_of[match::outputs()](match::pointwise(), reduction()))));
421
422
    }

Shucai Xiao's avatar
Shucai Xiao committed
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
    static bool is_dependent(const module& m, instruction_ref ins1, instruction_ref ins2)
    {

        std::unordered_set<instruction_ref> traversed;
        return fix<bool>([&](auto self, auto ins) -> bool {
            if(ins == ins2)
                return true;

            if(contains(traversed, ins))
                return false;

            traversed.insert(ins);
            const auto& inputs = ins->inputs();
            return std::any_of(inputs.begin(), inputs.end(), [&](auto in) {
                return m.has_instruction(in) and self(in);
            });
        })(ins1);
    }

442
    static std::vector<std::vector<instruction_ref>>
Shucai Xiao's avatar
Shucai Xiao committed
443
    get_split_groups(const module& m, const std::vector<instruction_ref>& splits)
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
    {
        std::vector<std::vector<instruction_ref>> groups;
        for(auto out : splits.front()->outputs())
        {
            if(out->name() == "slice")
                continue;
            std::vector<instruction_ref> group;
            for(auto split : splits)
            {
                auto it =
                    std::find_if(split->outputs().begin(), split->outputs().end(), [&](auto i) {
                        return i->get_operator() == out->get_operator();
                    });
                if(it == split->outputs().end())
                    break;
                assert((*it)->name() != "slice");
Shucai Xiao's avatar
Shucai Xiao committed
460

461
                // If there is a duplicate bail
Shucai Xiao's avatar
Shucai Xiao committed
462
463
464
465
466
                // there are should be no dependency between instructions in the group
                if(std::any_of(group.begin(), group.end(), [&](auto i) {
                       return is_dependent(m, *it, i) or is_dependent(m, i, *it);
                   }))
                {
467
                    return {};
Shucai Xiao's avatar
Shucai Xiao committed
468
469
                }

470
471
472
473
474
475
476
477
478
                group.push_back(*it);
            }
            if(group.size() != splits.size())
                continue;
            groups.push_back(group);
        }
        return groups;
    }

Shucai Xiao's avatar
Shucai Xiao committed
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
    bool is_fusable(instruction_ref start, instruction_ref split_front) const
    {
        auto op = start->get_operator();
        if(contains(op.name(), "reduce"))
        {
            auto slc         = any_cast<op::slice>(split_front->get_operator());
            auto slc_axes    = slc.axes;
            auto reduce_axes = start->get_operator().to_value()["axes"].to_vector<int64_t>();
            // axes of slice and reduce op cannot have overlap
            if(std::any_of(slc_axes.begin(), slc_axes.end(), [&](auto axis) {
                   return (std::find(reduce_axes.begin(), reduce_axes.end(), axis) !=
                           reduce_axes.end());
               }))
            {
                return false;
            }
        }
        else if(not op.attributes().contains("pointwise"))
        {
            return false;
        }

        return true;
    }

504
    void apply(module& m, const match::matcher_result& r) const
505
    {
Shucai Xiao's avatar
Shucai Xiao committed
506
        auto ins    = r.result;
507
508
509
        auto splits = get_splits(ins);
        if(splits.empty())
            return;
Shucai Xiao's avatar
Shucai Xiao committed
510

511
        for(const auto& group : get_split_groups(m, splits))
512
        {
Shucai Xiao's avatar
Shucai Xiao committed
513
514
515
516
517
            auto start       = group.front();
            auto split_front = splits.front();
            auto op          = start->get_operator();
            if(not is_fusable(start, split_front))
            {
518
                continue;
Shucai Xiao's avatar
Shucai Xiao committed
519
            }
520
521
522
523
524
525

            // Make sure there is no duplicates
            assert(std::none_of(
                std::next(group.begin()), group.end(), [&](auto i) { return i == start; }));

            auto split_idx    = 0;
526
            instruction_ref c = m.end();
527
528
            if(start->inputs().size() == 1)
            {
529
                c = m.insert_instruction(std::next(ins), op, ins);
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
            }
            else if(start->inputs().size() == 2)
            {
                assert(not std::none_of(start->inputs().begin(), start->inputs().end(), [](auto i) {
                    return i->name() == "slice";
                }) && "one argument must be a split");
                auto data_idx = 1;
                if(start->inputs().back()->name() == "slice")
                {
                    split_idx = 1;
                    data_idx  = 0;
                }

                std::vector<instruction_ref> data_args;
                std::transform(group.begin(),
                               group.end(),
                               std::back_inserter(data_args),
                               [&](auto i) { return i->inputs()[data_idx]; });

                // Data arguments must be a constant
                if(std::any_of(data_args.begin(), data_args.end(), [](auto i) {
                       return not i->can_eval();
                   }))
                    return;

                for(auto data : data_args)
556
                    m.move_instructions(data, ins);
557
558
559
560
561
562
563

                auto slice_op = any_cast<op::slice>(splits.front()->get_operator());
                assert(not slice_op.axes.empty());
                if(slice_op.axes.size() > 1)
                    return;
                auto concat_axis = slice_op.axes.front();
                // TODO: Check if axises match
564
                auto concat = m.insert_instruction(
565
                    ins, make_op("concat", {{"axis", concat_axis}}), data_args);
566
567
568
569
570

                std::vector<instruction_ref> args;
                args.resize(2);
                args[split_idx] = ins;
                args[data_idx]  = concat;
571
                c               = m.insert_instruction(std::next(ins), op, args);
572
            }
573
            if(c != m.end())
574
575
576
577
578
579
            {
                for(auto i : group)
                {
                    auto split = i->inputs()[split_idx];
                    assert(split->name() == "slice");
                    // Insert contiguous for reshapes
580
581
                    auto outputs = i->outputs();
                    for(auto output : outputs)
582
583
584
                    {
                        if(not contains({"reshape", "squeeze", "unsqueeze"}, output->name()))
                            continue;
585
                        auto x =
586
587
                            m.insert_instruction(output, make_op("contiguous"), output->inputs());
                        m.replace_instruction(output, output->get_operator(), x);
588
589
                    }

590
                    m.replace_instruction(i, split->get_operator(), c);
591
592
593
594
595
596
597
598
599
600
601
602
603
604
                }
            }
        }
    }
};

struct find_split_concat
{
    auto matcher() const
    {
        return match::any(match::any_of[match::outputs()](
            match::name("slice")(match::all_of[match::outputs()](match::name("concat")))));
    }

605
    void apply(module& m, const match::matcher_result& r) const
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
    {
        auto ins = r.result;

        auto splits = get_splits(ins);
        if(splits.empty())
            return;
        if(std::any_of(
               splits.begin(), splits.end(), [](auto i) { return i->outputs().size() != 1; }))
            return;
        // Check for concat operator
        auto concat = splits.front()->outputs().front();
        if(std::any_of(splits.begin(), splits.end(), [&](auto i) {
               return i->outputs().front() != concat;
           }))
            return;
        // Check axis match
        auto concat_op = any_cast<op::concat>(concat->get_operator());
        auto split_op  = any_cast<op::slice>(splits.front()->get_operator());
        if(split_op.axes.size() != 1)
            return;
        if(split_op.axes.front() != concat_op.axis)
            return;
        // Replace args
        auto args = concat->inputs();
        auto it =
            std::find_if(args.begin(), args.end(), [&](auto i) { return i == splits.front(); });
        if(std::distance(it, args.end()) < splits.size())
            return;
634
635
636
637
638
639
640
        // If the slices are not in order then stop
        if(not std::is_sorted(it, it + splits.size(), [](instruction_ref x, instruction_ref y) {
               auto xop = any_cast<op::slice>(x->get_operator());
               auto yop = any_cast<op::slice>(y->get_operator());
               return std::tie(xop.starts, xop.ends) < std::tie(yop.starts, yop.ends);
           }))
            return;
641
642
643
644
        *it = splits.front()->inputs().front();
        args.erase(std::next(it), it + splits.size());

        if(args.size() == 1)
645
            m.replace_instruction(concat, args.front());
646
        else
647
            m.replace_instruction(concat, concat->get_operator(), args);
648
649
650
    }
};

651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
bool axis_equal(const std::vector<std::size_t>& x,
                const std::vector<std::size_t>& y,
                std::size_t axis)
{
    return x.size() == y.size() and x.size() > axis and
           std::equal(x.begin(), x.begin() + axis, y.begin()) and
           std::equal(x.begin() + axis + 1, x.end(), y.begin() + axis + 1);
}

bool axis_shape_equal(const shape& x, const shape& y, std::size_t axis)
{
    // TODO: Check strides
    return axis_equal(x.lens(), y.lens(), axis);
}

struct find_add_convs
{
    auto matcher() const
    {
        return match::name("add")(
            match::args(conv_const_weights().bind("a"), conv_const_weights().bind("b")));
    }

    static bool symmetrical_strides(const op::convolution& op)
    {
        return op.stride[0] == op.stride[1];
    }

    static std::size_t compute_stride_factor(const op::convolution& x, const op::convolution& y)
    {
        if(not symmetrical_strides(x))
            return 0;
        if(not symmetrical_strides(y))
            return 0;
        if((x.stride[0] % y.stride[0]) != 0)
            return 0;
        return x.stride[0] / y.stride[0];
    }

690
    void apply(module& m, const match::matcher_result& r) const
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
    {
        auto ins       = r.result;
        auto a_conv    = r.instructions["a"];
        auto a_input   = a_conv->inputs().at(0);
        auto a_weights = a_conv->inputs().at(1);
        auto b_conv    = r.instructions["b"];
        auto b_input   = b_conv->inputs().at(0);
        auto b_weights = b_conv->inputs().at(1);

        if(not axis_shape_equal(a_weights->get_shape(), b_weights->get_shape(), 1))
            return;

        auto a_op   = any_cast<op::convolution>(a_conv->get_operator());
        auto b_op   = any_cast<op::convolution>(b_conv->get_operator());
        auto new_op = a_op;

        if(a_op != b_op)
        {
            if(std::tie(a_op.padding, a_op.dilation, a_op.group) ==
                   std::tie(b_op.padding, b_op.dilation, b_op.group) and
               a_weights->get_shape().lens()[2] == 1 and a_weights->get_shape().lens()[3] == 1)
            {
                if(a_op.stride < b_op.stride)
                {
                    auto n = compute_stride_factor(b_op, a_op);
                    if(n == 0)
                        return;
                    new_op  = a_op;
719
                    b_input = m.insert_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
720
                        ins, make_op("step", {{"axes", {2, 3}}, {"steps", {n, n}}}), b_input);
721
722
723
724
725
726
727
                }
                else if(b_op.stride < a_op.stride)
                {
                    auto n = compute_stride_factor(a_op, b_op);
                    if(n == 0)
                        return;
                    new_op  = b_op;
728
                    a_input = m.insert_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
729
                        ins, make_op("step", {{"axes", {2, 3}}, {"steps", {n, n}}}), a_input);
730
731
732
733
734
735
736
737
                }
                else
                    return;
            }
            else
                return;
        }

738
        auto concat_input =
739
            m.insert_instruction(ins, make_op("concat", {{"axis", 1}}), a_input, b_input);
740
        auto concat_weights =
741
742
            m.insert_instruction(ins, make_op("concat", {{"axis", 1}}), a_weights, b_weights);
        m.replace_instruction(ins, new_op, concat_input, concat_weights);
743
744
745
    }
};

746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
MIGRAPHX_PRED_MATCHER(horiz_conv_dot, instruction_ref ins)
{
    auto pred = [&](auto name) {
        return [=](auto i) {
            return i->name() == name and i->inputs().front() == ins and
                   i->inputs().at(1)->can_eval();
        };
    };
    auto dots  = std::count_if(ins->outputs().begin(), ins->outputs().end(), pred("dot"));
    auto convs = std::count_if(ins->outputs().begin(), ins->outputs().end(), pred("convolution"));
    return !(dots < 2 and convs < 2);
}

struct find_conv_dot_horiz_fusion
{
    auto matcher() const { return horiz_conv_dot(); }

763
    void apply(module& m, const match::matcher_result& r) const
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
    {
        auto ins = r.result;

        auto pred = [](auto i, auto j) {
            if(i->get_operator() != j->get_operator())
                return false;
            if(not contains({"dot", "convolution"}, i->name()))
                return true;
            auto x = i->inputs()[1]->get_shape().lens();
            auto y = j->inputs()[1]->get_shape().lens();
            if(x.size() != y.size())
                return false;
            // Check that non-axises match
            int axis = 1;
            if(i->name() == "dot")
            {
                axis = x.size() - 1;
            }
            return axis_equal(x, y, axis);
        };

        auto each = [&](auto start, auto last) {
            if(std::distance(start, last) < 2)
                return;
            auto&& name = (*start)->name();
            if(not contains({"dot", "convolution"}, name))
                return;
791
792
793
794
795
796
797
            auto op   = (*start)->get_operator();
            int group = 1;
            if(name == "convolution")
                group = any_cast<op::convolution>(op).group;
            // Skip group convolution
            if(group != 1)
                return;
798
799
800
801
802
803
804
805
806
807
808
809
810
            auto input = (*start)->inputs().front();
            std::vector<instruction_ref> args;
            std::transform(
                start, last, std::back_inserter(args), [&](auto x) { return x->inputs().at(1); });
            int axis        = 1;
            int concat_axis = 0;
            if(name == "dot")
            {
                axis        = int(args.front()->get_shape().lens().size() - 1);
                concat_axis = axis;
            }

            for(auto arg : args)
811
                m.move_instructions(arg, input);
812
            // TODO: Check if axises match
813
            auto concat =
814
815
                m.insert_instruction(input, make_op("concat", {{"axis", concat_axis}}), args);
            auto fused     = m.insert_instruction(std::next(input), op, input, concat);
816
817
818
819
            int64_t offset = 0;
            for(auto arg : range(start, last))
            {
                int64_t len = arg->get_shape().lens()[axis];
820
                m.replace_instruction(
821
822
823
824
                    arg,
                    make_op("slice",
                            {{"axes", {axis}}, {"starts", {offset}}, {"ends", {offset + len}}}),
                    fused);
825
826
827
828
829
830
831
832
833
                offset += len;
            }
        };

        auto outputs = ins->outputs();
        group_by(outputs.begin(), outputs.end(), each, pred);
    }
};

834
835
836
837
838
839
840
struct find_div_const
{
    auto matcher() const
    {
        return match::name("div")(match::arg(1)(match::is_constant().bind("c")));
    }

841
    void apply(module& m, const match::matcher_result& r) const
842
843
844
845
    {
        auto ins   = r.result;
        auto c_ins = r.instructions["c"];

846
        auto recip = m.insert_instruction(std::next(c_ins), make_op("recip"), c_ins);
847
848
849

        auto args = ins->inputs();

850
        m.replace_instruction(ins, make_op("mul"), args.front(), recip);
851
852
853
854
855
856
857
858
859
860
    }
};

struct find_sub_const
{
    auto matcher() const
    {
        return match::name("sub")(match::arg(1)(match::is_constant().bind("c")));
    }

861
    void apply(module& m, const match::matcher_result& r) const
862
863
864
865
    {
        auto ins   = r.result;
        auto c_ins = r.instructions["c"];

866
        auto neg = m.insert_instruction(std::next(c_ins), make_op("neg"), c_ins);
867
868
869

        auto args = ins->inputs();

870
        m.replace_instruction(ins, make_op("add"), args.front(), neg);
871
872
873
    }
};

kahmed10's avatar
kahmed10 committed
874
875
876
877
878
879
880
881
struct find_rsqrt
{
    auto matcher() const
    {
        return match::name("recip")(match::args(
            match::name("sqrt")(match::used_once(), match::args(match::any().bind("x")))));
    }

882
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
883
884
885
886
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];

887
        m.replace_instruction(ins, make_op("rsqrt"), x_ins);
kahmed10's avatar
kahmed10 committed
888
889
890
    }
};

891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
static bool same_ops(const std::vector<instruction_ref>& vec_ins)
{
    return std::all_of(vec_ins.begin(), vec_ins.end(), [&](auto i) {
        return i->get_operator() == vec_ins.front()->get_operator();
    });
}

struct find_split_reshape
{
    auto matcher() const
    {
        return match::name("reshape")(match::arg(0)(match::name("contiguous")(
                                          match::arg(0)(match::name("slice").bind("slice")))))
            .bind("reshape");
    }

907
    void apply(module& m, const match::matcher_result& r) const
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
    {
        auto slc = r.instructions["slice"];
        auto rsp = r.instructions["reshape"];

        auto input         = slc->inputs().front();
        auto split_outputs = get_splits(input);
        if(split_outputs.empty())
        {
            return;
        }

        std::vector<instruction_ref> vec_rsp(split_outputs.size());
        std::transform(split_outputs.begin(), split_outputs.end(), vec_rsp.begin(), [](auto i) {
            assert(i->outputs().size() == 1);
            auto cont = i->outputs().front();
            assert(cont->outputs().size() == 1);
            return cont->outputs().front();
        });

        // all outputs are reshape and of the same shape
        auto dims = any_cast<op::reshape>(rsp->get_operator()).dims;
        if(!same_ops(vec_rsp))
        {
            return;
        }

        // ensure reshape happens after the axis dimension
935
936
937
938
939
940
941
942
943
944
945
946
        auto axis         = any_cast<op::slice>(slc->get_operator()).axes[0];
        auto slc_lens     = slc->get_shape().lens();
        auto slc_dim_size = std::accumulate(
            slc_lens.begin() + axis, slc_lens.end(), 1, std::multiplies<std::size_t>());

        // search the reshape output (standard shape) to decide which axis are
        // in its output corresponding to the slc_dim_size
        auto rsp_lens    = rsp->get_shape().lens();
        auto rsp_strides = rsp->get_shape().strides();
        rsp_strides.insert(rsp_strides.begin(), rsp_strides[0] * rsp_lens[0]);
        auto ait = std::find(rsp_strides.begin(), rsp_strides.end(), slc_dim_size);
        if(ait == rsp_strides.end())
947
948
949
        {
            return;
        }
950
        int rsp_axis = std::distance(rsp_strides.begin(), ait);
951
952

        // calculate reshape output shape
953
954
955
956
957
958
959
        std::vector<int64_t> vec_dims(vec_rsp.size());
        std::transform(vec_rsp.begin(), vec_rsp.end(), vec_dims.begin(), [&](auto is) {
            return is->get_shape().lens()[rsp_axis];
        });

        std::vector<int64_t> rsp_out_lens(rsp_lens.begin(), rsp_lens.end());
        rsp_out_lens[rsp_axis] = std::accumulate(vec_dims.begin(), vec_dims.end(), std::int64_t{0});
960
961

        // insert the reshape instruction
962
        auto rsp_ins = m.insert_instruction(
963
            std::next(input), make_op("reshape", {{"dims", rsp_out_lens}}), input);
964
965

        // replace the original reshape with slice
966
967
        int64_t start = 0;
        for(std::size_t i = 0; i < vec_rsp.size(); ++i)
968
        {
969
            m.replace_instruction(
970
971
972
973
974
                vec_rsp[i],
                make_op(
                    "slice",
                    {{"axes", {rsp_axis}}, {"starts", {start}}, {"ends", {start + vec_dims[i]}}}),
                rsp_ins);
975
            start += vec_dims[i];
976
977
978
979
980
981
982
983
984
985
986
987
        }
    }
};

struct find_split_transpose
{
    auto matcher() const
    {
        return match::name("transpose")(match::arg(0)(match::name("slice").bind("slice")))
            .bind("trans");
    }

988
    void apply(module& m, const match::matcher_result& r) const
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
    {
        auto slc   = r.instructions["slice"];
        auto trans = r.instructions["trans"];

        auto input         = slc->inputs().front();
        auto split_outputs = get_splits(input);
        if(split_outputs.empty())
        {
            return;
        }

        std::vector<instruction_ref> vec_trans(split_outputs.size());
        std::transform(split_outputs.begin(), split_outputs.end(), vec_trans.begin(), [](auto i) {
            assert(i->outputs().size() == 1);
            return i->outputs().front();
        });

        // all transpose are the same
        auto perm = any_cast<op::transpose>(trans->get_operator()).dims;
        if(!same_ops(vec_trans))
        {
            return;
        }

        // insert an transpose instruction
1014
        auto tr = m.insert_instruction(
1015
            std::next(input), make_op("transpose", {{"permutation", perm}}), input);
1016
1017
1018
1019
1020

        // compute the axis in the slice
        auto axis = any_cast<op::slice>(slc->get_operator()).axes.front();
        auto it   = std::find(perm.begin(), perm.end(), axis);
        assert(it != perm.end());
Paul Fultz II's avatar
Paul Fultz II committed
1021
        int64_t axis_new = std::distance(perm.begin(), it);
1022
1023
1024
1025
1026
1027
1028

        for(auto in : split_outputs)
        {
            auto oper    = any_cast<op::slice>(in->get_operator());
            auto starts  = oper.starts;
            auto ends    = oper.ends;
            auto tr_orig = in->outputs().front();
1029
            m.replace_instruction(
1030
1031
1032
                tr_orig,
                make_op("slice", {{"axes", {axis_new}}, {"starts", starts}, {"ends", ends}}),
                tr);
1033
1034
1035
1036
        }
    }
};

1037
void simplify_algebra::apply(module& m) const
Paul's avatar
Paul committed
1038
{
Paul's avatar
Paul committed
1039
    // Run simplifications multiple times
1040
    for(int i = 0; i < 8; i++)
Paul's avatar
Paul committed
1041
    {
1042
        match::find_matches(m,
Paul's avatar
Paul committed
1043
                            find_inner_broadcast{},
Paul's avatar
Paul committed
1044
1045
                            find_double_add_lit_broadcast{},
                            find_add_lit_broadcast{},
1046
                            find_add_convs{},
1047
                            find_conv_dot_horiz_fusion{},
Paul's avatar
Paul committed
1048
                            find_mul_conv{},
1049
                            find_mul_slice_conv{},
1050
                            find_mul_add{},
1051
1052
                            find_div_const{},
                            find_sub_const{},
kahmed10's avatar
kahmed10 committed
1053
                            find_rsqrt{},
1054
                            find_concat_op{},
1055
                            find_split_concat{},
1056
1057
1058
                            find_splits{},
                            find_split_reshape{},
                            find_split_transpose{});
1059
        dead_code_elimination{}.apply(m);
Paul's avatar
Paul committed
1060
    }
Paul's avatar
Paul committed
1061
}
Paul's avatar
Paul committed
1062

Paul's avatar
Paul committed
1063
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1064
} // namespace migraphx