simplify_algebra.cpp 37.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
Paul's avatar
Paul committed
24
#include <migraphx/simplify_algebra.hpp>
Paul's avatar
Paul committed
25
#include <migraphx/dead_code_elimination.hpp>
Paul's avatar
Paul committed
26
#include <migraphx/program.hpp>
27
#include <migraphx/op/concat.hpp>
28
#include <migraphx/op/slice.hpp>
29
#include <migraphx/op/convolution.hpp>
Paul's avatar
Paul committed
30
#include <migraphx/op/broadcast.hpp>
31
32
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/transpose.hpp>
Paul's avatar
Paul committed
33
34
#include <migraphx/matcher.hpp>
#include <migraphx/literal.hpp>
35
36
37
#include <migraphx/make_op.hpp>
#include <migraphx/serialize.hpp>

38
#include <migraphx/algorithm.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
39
#include <unordered_set>
Paul's avatar
Paul committed
40

Paul's avatar
Paul committed
41
namespace migraphx {
Paul's avatar
Paul committed
42
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
43

Paul's avatar
Paul committed
44
auto lit_broadcast() { return match::any_of(match::is_constant(), match::name("broadcast")); }
Paul's avatar
Paul committed
45
auto not_lit_broadcast() { return match::none_of(match::is_constant(), match::name("broadcast")); }
Paul's avatar
Paul committed
46
47
auto op_lit_broadcast(std::string op, std::string x, std::string y)
{
Paul's avatar
Paul committed
48
49
    return match::name(std::move(op))(match::either_arg(0, 1)(
        lit_broadcast().bind(std::move(x)), not_lit_broadcast().bind(std::move(y))));
Paul's avatar
Paul committed
50
51
}

Paul's avatar
Paul committed
52
53
auto conv_const_weights()
{
Paul's avatar
Paul committed
54
    return match::name("convolution")(match::used_once(),
Paul's avatar
Paul committed
55
                                      match::args(match::any(), match::is_constant().bind("w")));
Paul's avatar
Paul committed
56
57
}

Shucai Xiao's avatar
Shucai Xiao committed
58
59
auto reduction() { return match::name_contains("reduce"); }

Paul's avatar
Paul committed
60
61
62
struct find_mul_conv
{
    auto matcher() const
Paul's avatar
Paul committed
63
    {
Paul's avatar
Paul committed
64
65
        return match::name("mul")(match::either_arg(0, 1)(conv_const_weights().bind("conv"),
                                                          match::name("broadcast").bind("a")));
Paul's avatar
Paul committed
66
    }
Paul's avatar
Paul committed
67

68
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
69
    {
Paul's avatar
Paul committed
70
        auto ins      = r.result;
Paul's avatar
Paul committed
71
        auto conv_ins = r.instructions["conv"];
Paul's avatar
Paul committed
72
73
74
        auto a_ins    = r.instructions["a"];
        auto w_ins    = r.instructions["w"];

Paul's avatar
Paul committed
75
        auto broadcast_op = any_cast<op::broadcast>(a_ins->get_operator());
Paul's avatar
Paul committed
76
        if(broadcast_op.axis != 1)
Paul's avatar
Paul committed
77
78
            return;

79
        auto new_a = m.insert_instruction(
80
            ins,
81
            make_op("broadcast", {{"axis", 0}, {"out_lens", w_ins->get_shape().lens()}}),
82
            a_ins->inputs().front());
83
84
        auto new_mul  = m.insert_instruction(ins, make_op("mul"), new_a, w_ins);
        auto new_conv = m.insert_instruction(
Paul's avatar
Paul committed
85
            ins, conv_ins->get_operator(), conv_ins->inputs().front(), new_mul);
86
        m.replace_instruction(ins, new_conv);
Paul's avatar
Paul committed
87
    }
Paul's avatar
Paul committed
88
89
};

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
struct find_mul_slice_conv
{
    static auto conv()
    {
        return match::name("convolution")(
            match::all_of[match::outputs()](match::name("slice")),
            match::args(match::any(), match::is_constant().bind("w")));
    }
    auto matcher() const
    {
        return match::name("mul")(match::either_arg(0, 1)(
            match::name("slice")(match::used_once(), match::arg(0)(conv().bind("conv")))
                .bind("slice"),
            match::name("broadcast")(match::is_constant()).bind("a")));
    }

106
    void apply(module& m, const match::matcher_result& r) const
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
    {
        auto ins       = r.result;
        auto slice_ins = r.instructions["slice"];
        auto conv_ins  = r.instructions["conv"];
        auto a_ins     = r.instructions["a"];
        auto w_ins     = r.instructions["w"];

        auto broadcast_op = any_cast<op::broadcast>(a_ins->get_operator());
        if(broadcast_op.axis != 1)
            return;

        auto slice_op = any_cast<op::slice>(slice_ins->get_operator());
        if(slice_op.axes.size() != 1)
            return;
        if(slice_op.axes.front() != 1)
            return;

        auto slice_idx = std::distance(conv_ins, slice_ins);
        if(std::any_of(conv_ins->outputs().begin(), conv_ins->outputs().end(), [&](auto i) {
               if(i == slice_ins)
                   return false;
               if(std::distance(conv_ins, i) < slice_idx)
                   return true;
               auto sop = any_cast<op::slice>(i->get_operator());
               if(sop.axes != slice_op.axes)
                   return true;
               if(std::max(sop.starts.front(), slice_op.starts.front()) <
                  std::min(sop.ends.front(), slice_op.ends.front()))
                   return true;
               return false;
           }))
            return;

        auto w_slice_op  = slice_op;
        w_slice_op.axes  = {0};
142
        auto slice_w_ins = m.insert_instruction(ins, w_slice_op, w_ins);
143

144
        auto new_a = m.insert_instruction(
145
            ins,
146
            make_op("broadcast", {{"axis", 0}, {"out_lens", slice_w_ins->get_shape().lens()}}),
147
            a_ins->inputs().front());
148
        auto new_mul = m.insert_instruction(ins, make_op("mul"), new_a, slice_w_ins);
149
150
151

        std::vector<instruction_ref> sliced_weights;
        if(slice_op.starts.front() != 0)
152
            sliced_weights.push_back(m.insert_instruction(
153
154
155
                ins,
                make_op("slice", {{"axes", {0}}, {"starts", {0}}, {"ends", slice_op.starts}}),
                w_ins));
156
157
158
        sliced_weights.push_back(new_mul);
        int64_t end_axis = w_ins->get_shape().lens().at(0);
        if(slice_op.ends.front() != end_axis)
159
            sliced_weights.push_back(m.insert_instruction(
160
161
162
                ins,
                make_op("slice", {{"axes", {0}}, {"starts", slice_op.ends}, {"ends", {end_axis}}}),
                w_ins));
163

164
        auto new_weights =
165
            m.insert_instruction(ins, make_op("concat", {{"axis", 0}}), sliced_weights);
166

167
        auto new_conv = m.insert_instruction(
168
169
170
            ins, conv_ins->get_operator(), conv_ins->inputs().front(), new_weights);
        assert(conv_ins->get_shape() == new_conv->get_shape());

171
        auto slice1 = m.insert_instruction(ins, slice_op, new_conv);
172
        assert(ins->get_shape().lens() == slice1->get_shape().lens());
173
        m.replace_instruction(ins, slice1);
174
        // TODO: Check each slice doesn't overlap and that it occurs after slice_ins
175
176
        auto outputs = conv_ins->outputs();
        for(auto output : outputs)
177
178
179
180
181
            if(output != slice_ins)
                instruction::replace_argument(output, conv_ins, new_conv);
    }
};

Paul's avatar
Paul committed
182
// a * (x + b) => a * x + a * b
Paul's avatar
Paul committed
183
184
185
186
187
struct find_mul_add
{
    auto matcher() const
    {
        return match::name("mul")(match::either_arg(0, 1)(
Paul's avatar
Paul committed
188
189
190
            match::name("add")(
                match::either_arg(0, 1)(
                    match::any().bind("x"),
Paul's avatar
Paul committed
191
                    match::any_of(conv_const_weights(), match::is_constant()).bind("b")),
Paul's avatar
Paul committed
192
                match::none_of(match::args(match::is_constant(), match::is_constant())),
Paul's avatar
Paul committed
193
                match::used_once()),
Paul's avatar
Paul committed
194
            match::is_constant().bind("a")));
Paul's avatar
Paul committed
195
196
    }

197
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
198
    {
Paul's avatar
Paul committed
199
        auto ins   = r.result;
Paul's avatar
Paul committed
200
        auto a_ins = r.instructions["a"];
Paul's avatar
Paul committed
201
        auto b_ins = r.instructions["b"];
Paul's avatar
Paul committed
202
        auto x_ins = r.instructions["x"];
Paul's avatar
Paul committed
203
        assert(x_ins != b_ins);
Paul's avatar
Paul committed
204

205
206
207
        auto ax_ins = m.insert_instruction(ins, make_op("mul"), a_ins, x_ins);
        auto ab_ins = m.insert_instruction(ins, make_op("mul"), a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), ax_ins, ab_ins);
Paul's avatar
Paul committed
208
209
210
    }
};

Paul's avatar
Paul committed
211
struct find_add_lit_broadcast
Paul's avatar
Paul committed
212
213
214
215
216
217
218
{
    auto matcher() const
    {
        return match::name("add")(
            match::either_arg(0, 1)(op_lit_broadcast("add", "a", "x"), lit_broadcast().bind("b")));
    }

219
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
220
221
222
223
224
225
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];

226
227
        auto sumab = m.insert_instruction(ins, make_op("add"), a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), x_ins, sumab);
Paul's avatar
Paul committed
228
229
230
231
    }
};

struct find_double_add_lit_broadcast
Paul's avatar
Paul committed
232
{
Paul's avatar
Paul committed
233
234
    auto matcher() const
    {
Paul's avatar
Paul committed
235
        return match::name("add")(
Paul's avatar
Paul committed
236
            match::args(op_lit_broadcast("add", "a", "x"), op_lit_broadcast("add", "b", "y")));
Paul's avatar
Paul committed
237
238
    }

239
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
240
    {
Paul's avatar
Paul committed
241
242
243
244
245
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto y_ins = r.instructions["y"];
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];
Paul's avatar
Paul committed
246
247
248

        instruction_ref sumab;

Paul's avatar
Paul committed
249
        if(a_ins->name() == "broadcast" and b_ins->name() == "broadcast")
Paul's avatar
Paul committed
250
251
252
        {
            if(a_ins->inputs().at(0)->get_shape() != b_ins->inputs().at(0)->get_shape())
                return;
253
            auto op     = a_ins->get_operator();
254
            auto presum = m.insert_instruction(
255
                ins, make_op("add"), a_ins->inputs().at(0), b_ins->inputs().at(0));
256
            sumab = m.insert_instruction(ins, op, presum);
Paul's avatar
Paul committed
257
258
259
        }
        else
        {
260
            sumab = m.insert_instruction(ins, make_op("add"), a_ins, b_ins);
Paul's avatar
Paul committed
261
262
        }

263
264
        auto sumxy = m.insert_instruction(ins, make_op("add"), x_ins, y_ins);
        m.replace_instruction(ins, make_op("add"), sumxy, sumab);
Paul's avatar
Paul committed
265
266
267
    }
};

Paul's avatar
Paul committed
268
269
struct find_inner_broadcast
{
Paul's avatar
Format  
Paul committed
270
    auto matcher() const { return pointwise(match::all_of[match::inputs()](match::broadcast())); }
Paul's avatar
Paul committed
271

272
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
273
    {
Paul's avatar
Format  
Paul committed
274
        auto ins        = r.result;
275
        auto broadcasts = ins->inputs();
Paul's avatar
Format  
Paul committed
276
        if(broadcasts.empty())
277
            return;
Paul's avatar
Format  
Paul committed
278
279
280
        if(std::any_of(broadcasts.begin(), broadcasts.end(), [&](auto i) {
               return i->get_operator() != broadcasts.front()->get_operator();
           }))
281
282
            return;
        std::vector<instruction_ref> inputs;
Paul's avatar
Format  
Paul committed
283
284
285
286
287
288
289
        std::transform(broadcasts.begin(),
                       broadcasts.end(),
                       std::back_inserter(inputs),
                       [](auto i) { return i->inputs().front(); });
        if(std::any_of(inputs.begin(), inputs.end(), [&](auto i) {
               return i->get_shape() != inputs.front()->get_shape();
           }))
Paul's avatar
Paul committed
290
291
            return;

Paul's avatar
Format  
Paul committed
292
        auto op = m.insert_instruction(ins, ins->get_operator(), inputs);
293
        m.replace_instruction(ins, broadcasts.front()->get_operator(), op);
Paul's avatar
Paul committed
294
295
296
    }
};

297
struct find_concat_op
298
299
300
{
    auto matcher() const
    {
301
        return match::name("concat")(match::any_of[match::inputs()](
302
            match::any_of(match::pointwise(), match::name("broadcast")), match::used_once()));
303
304
    }

305
306
    template <class Iterator>
    static std::vector<std::size_t> get_output_lens(Iterator start, Iterator last, std::size_t axis)
307
    {
308
309
310
        assert(start != last);
        std::size_t dim = 0;
        for(auto ins : range(start, last))
311
        {
312
            dim += ins->get_shape().lens().at(axis);
313
        }
314
315
316
        auto lens  = (*start)->get_shape().lens();
        lens[axis] = dim;
        return lens;
317
318
    }

319
320
321
322
323
    static bool is_valid_op(const operation& op)
    {
        return op.name() == "broadcast" or op.attributes().contains("pointwise");
    }

324
    void apply(module& m, const match::matcher_result& r) const
325
    {
326
327
        auto ins  = r.result;
        auto axis = any_cast<op::concat>(ins->get_operator()).axis;
328

329
330
331
332
333
334
        auto each = [&](auto start, auto last) -> std::vector<instruction_ref> {
            if(std::distance(start, last) < 2)
                return {start, last};
            auto x = *start;
            if(x->inputs().size() > 2 or x->inputs().empty() or x->outputs().size() > 1)
                return {start, last};
335
336
            auto op = x->get_operator();
            if(not is_valid_op(op))
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
                return {start, last};
            auto iaxis = axis;
            // Adjust broadcast lens
            if(op.name() == "broadcast")
            {
                auto b = any_cast<op::broadcast>(op);
                if(b.axis != iaxis)
                    return {start, last};
                b.broadcast_lens = get_output_lens(start, last, iaxis);
                op               = b;
                iaxis            = 0;
            }

            std::vector<instruction_ref> concats;
            for(std::size_t i = 0; i < x->inputs().size(); i++)
            {
                std::vector<instruction_ref> inputs;
                std::transform(start, last, std::back_inserter(inputs), [&](auto j) {
                    return j->inputs().at(i);
                });
357
                auto concat =
358
                    m.insert_instruction(ins, make_op("concat", {{"axis", iaxis}}), inputs);
359
360
                concats.push_back(concat);
            }
361
            auto y = m.insert_instruction(ins, op, concats);
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
            return {y};
        };

        std::vector<instruction_ref> args;
        auto update_args = [&](auto start, auto last) {
            auto x = each(start, last);
            args.insert(args.end(), x.begin(), x.end());
        };
        auto pred = [](auto i, auto j) {
            return i->get_operator() == j->get_operator() and
                   i->inputs().size() == i->inputs().size() and
                   i->outputs().size() == i->outputs().size();
        };
        group_unique(ins->inputs().begin(), ins->inputs().end(), update_args, pred);
        if(args.size() == 1)
377
            m.replace_instruction(ins, args.front());
378
        else
379
            m.replace_instruction(ins, make_op("concat", {{"axis", axis}}), args);
380
381
382
    }
};

383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
std::vector<instruction_ref> get_splits(instruction_ref ins)
{
    std::vector<instruction_ref> result;
    std::copy_if(ins->outputs().begin(),
                 ins->outputs().end(),
                 std::back_inserter(result),
                 [&](auto i) { return i->name() == "slice"; });
    if(result.size() < 2)
        return {};
    auto get_slice = [](auto& i) -> auto& { return any_cast<op::slice>(i->get_operator()); };
    auto&& axes    = get_slice(result.front()).axes;
    if(std::any_of(result.begin(), result.end(), [&](auto i) { return get_slice(i).axes != axes; }))
        return {};
    auto get_start = [&](auto& i) -> auto& { return get_slice(i).starts; };
    auto get_end   = [&](auto& i) -> auto& { return get_slice(i).ends; };
    std::sort(
        result.begin(), result.end(), [&](auto x, auto y) { return get_start(x) < get_start(y); });
    if(std::any_of(get_start(result.front()).begin(), get_start(result.front()).end(), [&](auto i) {
           return i != 0;
       }))
        return {};
    auto it = std::adjacent_find(
        result.begin(), result.end(), [&](auto x, auto y) { return get_end(x) != get_start(y); });
    if(it != result.end())
        return {};
    for(std::size_t i = 0; i < axes.size(); i++)
    {
        auto axis = axes[i];
        if(ins->get_shape().lens()[axis] != get_slice(result.back()).ends[i])
            return {};
    }
    return result;
}

struct find_splits
{
    auto matcher() const
    {
Paul's avatar
Format  
Paul committed
421
422
423
        return match::any(
            match::any_of[match::outputs()](match::name("slice")(match::any_of[match::outputs()](
                match::pointwise(match::any_of(match::nargs(1), match::nargs(2))), reduction()))));
424
425
    }

Shucai Xiao's avatar
Shucai Xiao committed
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
    static bool is_dependent(const module& m, instruction_ref ins1, instruction_ref ins2)
    {

        std::unordered_set<instruction_ref> traversed;
        return fix<bool>([&](auto self, auto ins) -> bool {
            if(ins == ins2)
                return true;

            if(contains(traversed, ins))
                return false;

            traversed.insert(ins);
            const auto& inputs = ins->inputs();
            return std::any_of(inputs.begin(), inputs.end(), [&](auto in) {
                return m.has_instruction(in) and self(in);
            });
        })(ins1);
    }

445
    static std::vector<std::vector<instruction_ref>>
Shucai Xiao's avatar
Shucai Xiao committed
446
    get_split_groups(const module& m, const std::vector<instruction_ref>& splits)
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
    {
        std::vector<std::vector<instruction_ref>> groups;
        for(auto out : splits.front()->outputs())
        {
            if(out->name() == "slice")
                continue;
            std::vector<instruction_ref> group;
            for(auto split : splits)
            {
                auto it =
                    std::find_if(split->outputs().begin(), split->outputs().end(), [&](auto i) {
                        return i->get_operator() == out->get_operator();
                    });
                if(it == split->outputs().end())
                    break;
                assert((*it)->name() != "slice");
Shucai Xiao's avatar
Shucai Xiao committed
463

464
                // If there is a duplicate bail
Shucai Xiao's avatar
Shucai Xiao committed
465
466
467
468
469
                // there are should be no dependency between instructions in the group
                if(std::any_of(group.begin(), group.end(), [&](auto i) {
                       return is_dependent(m, *it, i) or is_dependent(m, i, *it);
                   }))
                {
470
                    return {};
Shucai Xiao's avatar
Shucai Xiao committed
471
472
                }

473
474
475
476
477
478
479
480
481
                group.push_back(*it);
            }
            if(group.size() != splits.size())
                continue;
            groups.push_back(group);
        }
        return groups;
    }

Shucai Xiao's avatar
Shucai Xiao committed
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
    bool is_fusable(instruction_ref start, instruction_ref split_front) const
    {
        auto op = start->get_operator();
        if(contains(op.name(), "reduce"))
        {
            auto slc         = any_cast<op::slice>(split_front->get_operator());
            auto slc_axes    = slc.axes;
            auto reduce_axes = start->get_operator().to_value()["axes"].to_vector<int64_t>();
            // axes of slice and reduce op cannot have overlap
            if(std::any_of(slc_axes.begin(), slc_axes.end(), [&](auto axis) {
                   return (std::find(reduce_axes.begin(), reduce_axes.end(), axis) !=
                           reduce_axes.end());
               }))
            {
                return false;
            }
        }
        else if(not op.attributes().contains("pointwise"))
        {
            return false;
        }

        return true;
    }

507
    void apply(module& m, const match::matcher_result& r) const
508
    {
Shucai Xiao's avatar
Shucai Xiao committed
509
        auto ins    = r.result;
510
511
512
        auto splits = get_splits(ins);
        if(splits.empty())
            return;
Shucai Xiao's avatar
Shucai Xiao committed
513

514
        for(const auto& group : get_split_groups(m, splits))
515
        {
Shucai Xiao's avatar
Shucai Xiao committed
516
517
518
519
520
            auto start       = group.front();
            auto split_front = splits.front();
            auto op          = start->get_operator();
            if(not is_fusable(start, split_front))
            {
521
                continue;
Shucai Xiao's avatar
Shucai Xiao committed
522
            }
523
524
525
526
527
528

            // Make sure there is no duplicates
            assert(std::none_of(
                std::next(group.begin()), group.end(), [&](auto i) { return i == start; }));

            auto split_idx    = 0;
529
            instruction_ref c = m.end();
530
531
            if(start->inputs().size() == 1)
            {
532
                c = m.insert_instruction(std::next(ins), op, ins);
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
            }
            else if(start->inputs().size() == 2)
            {
                assert(not std::none_of(start->inputs().begin(), start->inputs().end(), [](auto i) {
                    return i->name() == "slice";
                }) && "one argument must be a split");
                auto data_idx = 1;
                if(start->inputs().back()->name() == "slice")
                {
                    split_idx = 1;
                    data_idx  = 0;
                }

                std::vector<instruction_ref> data_args;
                std::transform(group.begin(),
                               group.end(),
                               std::back_inserter(data_args),
                               [&](auto i) { return i->inputs()[data_idx]; });

                // Data arguments must be a constant
                if(std::any_of(data_args.begin(), data_args.end(), [](auto i) {
                       return not i->can_eval();
                   }))
                    return;

                for(auto data : data_args)
559
                    m.move_instructions(data, ins);
560
561
562
563
564
565
566

                auto slice_op = any_cast<op::slice>(splits.front()->get_operator());
                assert(not slice_op.axes.empty());
                if(slice_op.axes.size() > 1)
                    return;
                auto concat_axis = slice_op.axes.front();
                // TODO: Check if axises match
567
                auto concat = m.insert_instruction(
568
                    ins, make_op("concat", {{"axis", concat_axis}}), data_args);
569
570
571
572
573

                std::vector<instruction_ref> args;
                args.resize(2);
                args[split_idx] = ins;
                args[data_idx]  = concat;
574
                c               = m.insert_instruction(std::next(ins), op, args);
575
            }
576
            if(c != m.end())
577
578
579
580
581
582
            {
                for(auto i : group)
                {
                    auto split = i->inputs()[split_idx];
                    assert(split->name() == "slice");
                    // Insert contiguous for reshapes
583
584
                    auto outputs = i->outputs();
                    for(auto output : outputs)
585
586
587
                    {
                        if(not contains({"reshape", "squeeze", "unsqueeze"}, output->name()))
                            continue;
588
                        auto x =
589
590
                            m.insert_instruction(output, make_op("contiguous"), output->inputs());
                        m.replace_instruction(output, output->get_operator(), x);
591
592
                    }

593
                    m.replace_instruction(i, split->get_operator(), c);
594
595
596
597
598
599
600
601
602
603
604
605
606
607
                }
            }
        }
    }
};

struct find_split_concat
{
    auto matcher() const
    {
        return match::any(match::any_of[match::outputs()](
            match::name("slice")(match::all_of[match::outputs()](match::name("concat")))));
    }

608
    void apply(module& m, const match::matcher_result& r) const
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
    {
        auto ins = r.result;

        auto splits = get_splits(ins);
        if(splits.empty())
            return;
        if(std::any_of(
               splits.begin(), splits.end(), [](auto i) { return i->outputs().size() != 1; }))
            return;
        // Check for concat operator
        auto concat = splits.front()->outputs().front();
        if(std::any_of(splits.begin(), splits.end(), [&](auto i) {
               return i->outputs().front() != concat;
           }))
            return;
        // Check axis match
        auto concat_op = any_cast<op::concat>(concat->get_operator());
        auto split_op  = any_cast<op::slice>(splits.front()->get_operator());
        if(split_op.axes.size() != 1)
            return;
        if(split_op.axes.front() != concat_op.axis)
            return;
        // Replace args
        auto args = concat->inputs();
        auto it =
            std::find_if(args.begin(), args.end(), [&](auto i) { return i == splits.front(); });
        if(std::distance(it, args.end()) < splits.size())
            return;
637
638
639
640
641
642
643
        // If the slices are not in order then stop
        if(not std::is_sorted(it, it + splits.size(), [](instruction_ref x, instruction_ref y) {
               auto xop = any_cast<op::slice>(x->get_operator());
               auto yop = any_cast<op::slice>(y->get_operator());
               return std::tie(xop.starts, xop.ends) < std::tie(yop.starts, yop.ends);
           }))
            return;
644
645
646
647
        *it = splits.front()->inputs().front();
        args.erase(std::next(it), it + splits.size());

        if(args.size() == 1)
648
            m.replace_instruction(concat, args.front());
649
        else
650
            m.replace_instruction(concat, concat->get_operator(), args);
651
652
653
    }
};

654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
bool axis_equal(const std::vector<std::size_t>& x,
                const std::vector<std::size_t>& y,
                std::size_t axis)
{
    return x.size() == y.size() and x.size() > axis and
           std::equal(x.begin(), x.begin() + axis, y.begin()) and
           std::equal(x.begin() + axis + 1, x.end(), y.begin() + axis + 1);
}

bool axis_shape_equal(const shape& x, const shape& y, std::size_t axis)
{
    // TODO: Check strides
    return axis_equal(x.lens(), y.lens(), axis);
}

struct find_add_convs
{
    auto matcher() const
    {
        return match::name("add")(
            match::args(conv_const_weights().bind("a"), conv_const_weights().bind("b")));
    }

    static bool symmetrical_strides(const op::convolution& op)
    {
        return op.stride[0] == op.stride[1];
    }

    static std::size_t compute_stride_factor(const op::convolution& x, const op::convolution& y)
    {
        if(not symmetrical_strides(x))
            return 0;
        if(not symmetrical_strides(y))
            return 0;
        if((x.stride[0] % y.stride[0]) != 0)
            return 0;
        return x.stride[0] / y.stride[0];
    }

693
    void apply(module& m, const match::matcher_result& r) const
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
    {
        auto ins       = r.result;
        auto a_conv    = r.instructions["a"];
        auto a_input   = a_conv->inputs().at(0);
        auto a_weights = a_conv->inputs().at(1);
        auto b_conv    = r.instructions["b"];
        auto b_input   = b_conv->inputs().at(0);
        auto b_weights = b_conv->inputs().at(1);

        if(not axis_shape_equal(a_weights->get_shape(), b_weights->get_shape(), 1))
            return;

        auto a_op   = any_cast<op::convolution>(a_conv->get_operator());
        auto b_op   = any_cast<op::convolution>(b_conv->get_operator());
        auto new_op = a_op;

        if(a_op != b_op)
        {
            if(std::tie(a_op.padding, a_op.dilation, a_op.group) ==
                   std::tie(b_op.padding, b_op.dilation, b_op.group) and
               a_weights->get_shape().lens()[2] == 1 and a_weights->get_shape().lens()[3] == 1)
            {
                if(a_op.stride < b_op.stride)
                {
                    auto n = compute_stride_factor(b_op, a_op);
                    if(n == 0)
                        return;
                    new_op  = a_op;
722
                    b_input = m.insert_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
723
                        ins, make_op("step", {{"axes", {2, 3}}, {"steps", {n, n}}}), b_input);
724
725
726
727
728
729
730
                }
                else if(b_op.stride < a_op.stride)
                {
                    auto n = compute_stride_factor(a_op, b_op);
                    if(n == 0)
                        return;
                    new_op  = b_op;
731
                    a_input = m.insert_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
732
                        ins, make_op("step", {{"axes", {2, 3}}, {"steps", {n, n}}}), a_input);
733
734
735
736
737
738
739
740
                }
                else
                    return;
            }
            else
                return;
        }

741
        auto concat_input =
742
            m.insert_instruction(ins, make_op("concat", {{"axis", 1}}), a_input, b_input);
743
        auto concat_weights =
744
745
            m.insert_instruction(ins, make_op("concat", {{"axis", 1}}), a_weights, b_weights);
        m.replace_instruction(ins, new_op, concat_input, concat_weights);
746
747
748
    }
};

749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
MIGRAPHX_PRED_MATCHER(horiz_conv_dot, instruction_ref ins)
{
    auto pred = [&](auto name) {
        return [=](auto i) {
            return i->name() == name and i->inputs().front() == ins and
                   i->inputs().at(1)->can_eval();
        };
    };
    auto dots  = std::count_if(ins->outputs().begin(), ins->outputs().end(), pred("dot"));
    auto convs = std::count_if(ins->outputs().begin(), ins->outputs().end(), pred("convolution"));
    return !(dots < 2 and convs < 2);
}

struct find_conv_dot_horiz_fusion
{
    auto matcher() const { return horiz_conv_dot(); }

766
    void apply(module& m, const match::matcher_result& r) const
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
    {
        auto ins = r.result;

        auto pred = [](auto i, auto j) {
            if(i->get_operator() != j->get_operator())
                return false;
            if(not contains({"dot", "convolution"}, i->name()))
                return true;
            auto x = i->inputs()[1]->get_shape().lens();
            auto y = j->inputs()[1]->get_shape().lens();
            if(x.size() != y.size())
                return false;
            // Check that non-axises match
            int axis = 1;
            if(i->name() == "dot")
            {
                axis = x.size() - 1;
            }
            return axis_equal(x, y, axis);
        };

        auto each = [&](auto start, auto last) {
            if(std::distance(start, last) < 2)
                return;
            auto&& name = (*start)->name();
            if(not contains({"dot", "convolution"}, name))
                return;
794
795
796
797
798
799
800
            auto op   = (*start)->get_operator();
            int group = 1;
            if(name == "convolution")
                group = any_cast<op::convolution>(op).group;
            // Skip group convolution
            if(group != 1)
                return;
801
802
803
804
805
806
807
808
809
810
811
812
813
            auto input = (*start)->inputs().front();
            std::vector<instruction_ref> args;
            std::transform(
                start, last, std::back_inserter(args), [&](auto x) { return x->inputs().at(1); });
            int axis        = 1;
            int concat_axis = 0;
            if(name == "dot")
            {
                axis        = int(args.front()->get_shape().lens().size() - 1);
                concat_axis = axis;
            }

            for(auto arg : args)
814
                m.move_instructions(arg, input);
815
            // TODO: Check if axises match
816
            auto concat =
817
818
                m.insert_instruction(input, make_op("concat", {{"axis", concat_axis}}), args);
            auto fused     = m.insert_instruction(std::next(input), op, input, concat);
819
820
821
822
            int64_t offset = 0;
            for(auto arg : range(start, last))
            {
                int64_t len = arg->get_shape().lens()[axis];
823
                m.replace_instruction(
824
825
826
827
                    arg,
                    make_op("slice",
                            {{"axes", {axis}}, {"starts", {offset}}, {"ends", {offset + len}}}),
                    fused);
828
829
830
831
832
833
834
835
836
                offset += len;
            }
        };

        auto outputs = ins->outputs();
        group_by(outputs.begin(), outputs.end(), each, pred);
    }
};

837
838
839
840
841
842
843
struct find_div_const
{
    auto matcher() const
    {
        return match::name("div")(match::arg(1)(match::is_constant().bind("c")));
    }

844
    void apply(module& m, const match::matcher_result& r) const
845
846
847
848
    {
        auto ins   = r.result;
        auto c_ins = r.instructions["c"];

849
        auto recip = m.insert_instruction(std::next(c_ins), make_op("recip"), c_ins);
850
851
852

        auto args = ins->inputs();

853
        m.replace_instruction(ins, make_op("mul"), args.front(), recip);
854
855
856
857
858
859
860
861
862
863
    }
};

struct find_sub_const
{
    auto matcher() const
    {
        return match::name("sub")(match::arg(1)(match::is_constant().bind("c")));
    }

864
    void apply(module& m, const match::matcher_result& r) const
865
866
867
868
    {
        auto ins   = r.result;
        auto c_ins = r.instructions["c"];

869
        auto neg = m.insert_instruction(std::next(c_ins), make_op("neg"), c_ins);
870
871
872

        auto args = ins->inputs();

873
        m.replace_instruction(ins, make_op("add"), args.front(), neg);
874
875
876
    }
};

kahmed10's avatar
kahmed10 committed
877
878
879
880
881
882
883
884
struct find_rsqrt
{
    auto matcher() const
    {
        return match::name("recip")(match::args(
            match::name("sqrt")(match::used_once(), match::args(match::any().bind("x")))));
    }

885
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
886
887
888
889
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];

890
        m.replace_instruction(ins, make_op("rsqrt"), x_ins);
kahmed10's avatar
kahmed10 committed
891
892
893
    }
};

894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
static bool same_ops(const std::vector<instruction_ref>& vec_ins)
{
    return std::all_of(vec_ins.begin(), vec_ins.end(), [&](auto i) {
        return i->get_operator() == vec_ins.front()->get_operator();
    });
}

struct find_split_reshape
{
    auto matcher() const
    {
        return match::name("reshape")(match::arg(0)(match::name("contiguous")(
                                          match::arg(0)(match::name("slice").bind("slice")))))
            .bind("reshape");
    }

910
    void apply(module& m, const match::matcher_result& r) const
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
    {
        auto slc = r.instructions["slice"];
        auto rsp = r.instructions["reshape"];

        auto input         = slc->inputs().front();
        auto split_outputs = get_splits(input);
        if(split_outputs.empty())
        {
            return;
        }

        std::vector<instruction_ref> vec_rsp(split_outputs.size());
        std::transform(split_outputs.begin(), split_outputs.end(), vec_rsp.begin(), [](auto i) {
            assert(i->outputs().size() == 1);
            auto cont = i->outputs().front();
            assert(cont->outputs().size() == 1);
            return cont->outputs().front();
        });

        // all outputs are reshape and of the same shape
        auto dims = any_cast<op::reshape>(rsp->get_operator()).dims;
        if(!same_ops(vec_rsp))
        {
            return;
        }

        // ensure reshape happens after the axis dimension
938
939
940
941
942
943
944
945
946
947
948
949
        auto axis         = any_cast<op::slice>(slc->get_operator()).axes[0];
        auto slc_lens     = slc->get_shape().lens();
        auto slc_dim_size = std::accumulate(
            slc_lens.begin() + axis, slc_lens.end(), 1, std::multiplies<std::size_t>());

        // search the reshape output (standard shape) to decide which axis are
        // in its output corresponding to the slc_dim_size
        auto rsp_lens    = rsp->get_shape().lens();
        auto rsp_strides = rsp->get_shape().strides();
        rsp_strides.insert(rsp_strides.begin(), rsp_strides[0] * rsp_lens[0]);
        auto ait = std::find(rsp_strides.begin(), rsp_strides.end(), slc_dim_size);
        if(ait == rsp_strides.end())
950
951
952
        {
            return;
        }
953
        int rsp_axis = std::distance(rsp_strides.begin(), ait);
954
955

        // calculate reshape output shape
956
957
958
959
960
961
962
        std::vector<int64_t> vec_dims(vec_rsp.size());
        std::transform(vec_rsp.begin(), vec_rsp.end(), vec_dims.begin(), [&](auto is) {
            return is->get_shape().lens()[rsp_axis];
        });

        std::vector<int64_t> rsp_out_lens(rsp_lens.begin(), rsp_lens.end());
        rsp_out_lens[rsp_axis] = std::accumulate(vec_dims.begin(), vec_dims.end(), std::int64_t{0});
963
964

        // insert the reshape instruction
965
        auto rsp_ins = m.insert_instruction(
966
            std::next(input), make_op("reshape", {{"dims", rsp_out_lens}}), input);
967
968

        // replace the original reshape with slice
969
970
        int64_t start = 0;
        for(std::size_t i = 0; i < vec_rsp.size(); ++i)
971
        {
972
            m.replace_instruction(
973
974
975
976
977
                vec_rsp[i],
                make_op(
                    "slice",
                    {{"axes", {rsp_axis}}, {"starts", {start}}, {"ends", {start + vec_dims[i]}}}),
                rsp_ins);
978
            start += vec_dims[i];
979
980
981
982
983
984
985
986
987
988
989
990
        }
    }
};

struct find_split_transpose
{
    auto matcher() const
    {
        return match::name("transpose")(match::arg(0)(match::name("slice").bind("slice")))
            .bind("trans");
    }

991
    void apply(module& m, const match::matcher_result& r) const
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
    {
        auto slc   = r.instructions["slice"];
        auto trans = r.instructions["trans"];

        auto input         = slc->inputs().front();
        auto split_outputs = get_splits(input);
        if(split_outputs.empty())
        {
            return;
        }

        std::vector<instruction_ref> vec_trans(split_outputs.size());
        std::transform(split_outputs.begin(), split_outputs.end(), vec_trans.begin(), [](auto i) {
            assert(i->outputs().size() == 1);
            return i->outputs().front();
        });

        // all transpose are the same
        auto perm = any_cast<op::transpose>(trans->get_operator()).dims;
        if(!same_ops(vec_trans))
        {
            return;
        }

        // insert an transpose instruction
1017
        auto tr = m.insert_instruction(
1018
            std::next(input), make_op("transpose", {{"permutation", perm}}), input);
1019
1020
1021
1022
1023

        // compute the axis in the slice
        auto axis = any_cast<op::slice>(slc->get_operator()).axes.front();
        auto it   = std::find(perm.begin(), perm.end(), axis);
        assert(it != perm.end());
Paul Fultz II's avatar
Paul Fultz II committed
1024
        int64_t axis_new = std::distance(perm.begin(), it);
1025
1026
1027
1028
1029
1030
1031

        for(auto in : split_outputs)
        {
            auto oper    = any_cast<op::slice>(in->get_operator());
            auto starts  = oper.starts;
            auto ends    = oper.ends;
            auto tr_orig = in->outputs().front();
1032
            m.replace_instruction(
1033
1034
1035
                tr_orig,
                make_op("slice", {{"axes", {axis_new}}, {"starts", starts}, {"ends", ends}}),
                tr);
1036
1037
1038
1039
        }
    }
};

1040
void simplify_algebra::apply(module& m) const
Paul's avatar
Paul committed
1041
{
Paul's avatar
Paul committed
1042
    // Run simplifications multiple times
1043
    for(int i = 0; i < 8; i++)
Paul's avatar
Paul committed
1044
    {
1045
        match::find_matches(m,
Paul's avatar
Paul committed
1046
                            find_inner_broadcast{},
Paul's avatar
Paul committed
1047
1048
                            find_double_add_lit_broadcast{},
                            find_add_lit_broadcast{},
1049
                            find_add_convs{},
1050
                            find_conv_dot_horiz_fusion{},
Paul's avatar
Paul committed
1051
                            find_mul_conv{},
1052
                            find_mul_slice_conv{},
1053
                            find_mul_add{},
1054
1055
                            find_div_const{},
                            find_sub_const{},
kahmed10's avatar
kahmed10 committed
1056
                            find_rsqrt{},
1057
                            find_concat_op{},
1058
                            find_split_concat{},
1059
1060
1061
                            find_splits{},
                            find_split_reshape{},
                            find_split_transpose{});
1062
        dead_code_elimination{}.apply(m);
Paul's avatar
Paul committed
1063
    }
Paul's avatar
Paul committed
1064
}
Paul's avatar
Paul committed
1065

Paul's avatar
Paul committed
1066
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1067
} // namespace migraphx