lowering.cpp 28.5 KB
Newer Older
Paul's avatar
Paul committed
1

Paul's avatar
Paul committed
2
3
4
5
6
7
#include <migraphx/cpu/lowering.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/dfor.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/iterator_for.hpp>
Paul's avatar
Paul committed
8
#include <migraphx/par_dfor.hpp>
Paul's avatar
Paul committed
9
#include <migraphx/cpu/gemm.hpp>
Paul's avatar
Paul committed
10
#include <unordered_map>
Paul's avatar
Paul committed
11
#include <utility>
Paul's avatar
Paul committed
12

Paul's avatar
Paul committed
13
namespace migraphx {
Paul's avatar
Paul committed
14
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
15
16
17
18
19
20
21
22
namespace cpu {

template <typename T>
T zero(const T&)
{
    return T(0);
}

Khalique's avatar
Khalique committed
23
24
25
26
template <class T>
typename std::conditional_t<std::is_integral<T>{}, std::make_signed<T>, std::enable_if<true, T>>::
    type
    make_signed(T x)
Khalique's avatar
Khalique committed
27
28
29
30
{
    return x;
}

31
32
33
34
//
// cpu implemenataion of batch norm for inference
//
// inputs are:
35
36
37
38
// args[0] -> input data buffer
// args[1] -> mini batch mean
// args[2] -> mini batch variance
// args[3] -> gamma
Aditya Atluri's avatar
Aditya Atluri committed
39
// args[4] -> bias
40
41
42
//
// The equation to compute batch norm for inference is:
//
Aditya Atluri's avatar
Aditya Atluri committed
43
// output[i] = bias + gamma * (input[i] + mean) / sqrt(variance + epsilon)
44
45
46
47
48
//
// the input data format should be nchw
//
struct cpu_batch_norm_inference
{
49
    op::batch_norm_inference op;
50

51
52
53
54
55
56
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

57
58
    std::string name() const { return "cpu::batch_norm_inference"; }

Paul's avatar
Paul committed
59
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
60

Paul's avatar
Paul committed
61
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
62
    {
63
64
        argument output{output_shape};

Aditya Atluri's avatar
Aditya Atluri committed
65
66
        double epsilon           = op.epsilon;
        auto input               = args[0];
Paul's avatar
Paul committed
67
68
69
70
        auto arg_gamma           = args[1];
        auto arg_bias            = args[2];
        auto mini_batch_mean     = args[3];
        auto mini_batch_variance = args[4];
71

72
        auto num_batch    = output_shape.lens()[0];
Aditya Atluri's avatar
Aditya Atluri committed
73
74
        auto num_channels = output_shape.lens()[1];
        auto image_height = output_shape.lens()[2];
75
        auto image_width  = output_shape.lens()[3];
Aditya Atluri's avatar
Aditya Atluri committed
76

77
        if(op.bn_mode == op::batch_norm_inference::spatial)
Scott Thornton's avatar
Scott Thornton committed
78
79
80
81
        {
            visit_all(output, input, mini_batch_mean, mini_batch_variance, arg_gamma, arg_bias)(
                [&](auto result, auto buffer, auto mean, auto variance, auto gamma, auto bias) {

Paul's avatar
Paul committed
82
                    par_dfor(num_batch, num_channels, image_height, image_width)(
Scott Thornton's avatar
Scott Thornton committed
83
                        [&](std::size_t n, std::size_t c, std::size_t h, std::size_t w) {
84
85
86
87
                            assert((variance[c] + epsilon) > 0);
                            result(n, c, h, w) = gamma[c] * (buffer(n, c, h, w) - mean[c]) /
                                                     std::sqrt(variance[c] + epsilon) +
                                                 bias[c];
Scott Thornton's avatar
Scott Thornton committed
88
89
                        });
                });
90
91
        }

92
        if(op.bn_mode == op::batch_norm_inference::per_activation)
Scott Thornton's avatar
Scott Thornton committed
93
        {
94
95
96
            visit_all(output, input, mini_batch_mean, mini_batch_mean, arg_gamma, arg_bias)(
                [&](auto result, auto buffer, auto mean, auto variance, auto gamma, auto bias) {

Paul's avatar
Paul committed
97
                    par_dfor(num_batch, num_channels, image_height, image_width)(
98
                        [&](std::size_t n, std::size_t c, std::size_t h, std::size_t w) {
Paul's avatar
Paul committed
99
                            assert((variance(c, h, w) + epsilon) > 0);
Scott Thornton's avatar
Scott Thornton committed
100
101
102
103
104
105
                            result(n, c, h, w) = gamma(c, h, w) *
                                                     (buffer(n, c, h, w) - mean(c, h, w)) /
                                                     std::sqrt(variance(c, h, w) + epsilon) +
                                                 bias(c, h, w);
                        });
                });
106
        }
107
108
109
110
111

        return output;
    }
};

Khalique's avatar
Khalique committed
112
struct cpu_lrn
Khalique's avatar
Khalique committed
113
{
Khalique's avatar
Khalique committed
114
    op::lrn op;
Khalique's avatar
Khalique committed
115

116
117
118
119
120
121
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Khalique's avatar
Khalique committed
122
    std::string name() const { return "cpu::lrn"; }
Khalique's avatar
Khalique committed
123
124
125
126
127
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
Khalique's avatar
Khalique committed
128
129
130
131
            int n_batch         = output_shape.lens()[0];
            int channels        = output_shape.lens()[1];
            int height          = output_shape.lens()[2];
            int width           = output_shape.lens()[3];
Paul's avatar
Paul committed
132
            float alphaoverarea = op.alpha / float(op.size);
Khalique's avatar
Khalique committed
133
            int radius          = (op.size - 1) / 2;
Khalique's avatar
Khalique committed
134

135
            par_dfor(n_batch, height, width)([&](int b, int h, int w) {
Khalique's avatar
Khalique committed
136
                float scale = 0;
Khalique's avatar
Khalique committed
137
138
                dfor(channels)([&](int c) {
                    auto start = (c - radius) < 0 ? 0 : (c - radius);
Khalique's avatar
Khalique committed
139
                    auto end   = (c + radius) > channels ? channels : (c + radius);
Khalique's avatar
Khalique committed
140
141
                    for(auto k = start; k < end; ++k)
                    {
Khalique's avatar
Khalique committed
142
                        scale += std::pow(input(b, k, h, w), 2);
Khalique's avatar
Khalique committed
143
144
145
                    }
                    scale *= alphaoverarea;
                    scale += op.bias;
Khalique's avatar
Khalique committed
146
                    scale              = std::pow(scale, -op.beta);
Khalique's avatar
Khalique committed
147
148
149
150
151
152
153
154
                    output(b, c, h, w) = input(b, c, h, w) * scale;
                });
            });
        });
        return result;
    }
};

Paul's avatar
Paul committed
155
156
struct cpu_convolution
{
157
    op::convolution op;
Paul's avatar
Paul committed
158

159
160
161
162
163
164
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Paul's avatar
Paul committed
165
    std::string name() const { return "cpu::convolution"; }
Paul's avatar
Paul committed
166
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Paul's avatar
Paul committed
167
168
169
170
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        visit_all(result, args[0], args[1])([&](auto output, auto input, auto weights) {
Khalique's avatar
Khalique committed
171
            auto in   = input.get_shape().lens();
Khalique's avatar
Khalique committed
172
173
            auto in_h = in[2];
            auto in_w = in[3];
Paul's avatar
Paul committed
174

Khalique's avatar
Khalique committed
175
            auto wei   = weights.get_shape().lens();
Khalique's avatar
Khalique committed
176
177
178
179
            auto wei_n = wei[0];
            auto wei_c = wei[1];
            auto wei_h = wei[2];
            auto wei_w = wei[3];
Paul's avatar
Paul committed
180

Paul's avatar
Paul committed
181
            par_dfor(output_shape.lens()[0],
Paul's avatar
Paul committed
182
183
184
                     output_shape.lens()[1],
                     output_shape.lens()[2],
                     output_shape.lens()[3])(
Paul's avatar
Paul committed
185
                [&](std::size_t o, std::size_t w, std::size_t i, std::size_t j) {
Paul's avatar
Paul committed
186
187
188
                    const auto start_x  = i * op.stride[0] - op.padding[0];
                    const auto start_y  = j * op.stride[1] - op.padding[1];
                    const auto group_id = w / (wei_n / op.group);
Paul's avatar
Paul committed
189
190
191

                    double acc = 0;
                    dfor(wei_c, wei_h, wei_w)([&](std::size_t k, std::size_t x, std::size_t y) {
Paul's avatar
Paul committed
192
193
194
                        const auto in_x  = start_x + x;
                        const auto in_y  = start_y + y;
                        const auto in_ch = group_id * wei_c + k;
Paul's avatar
Paul committed
195
196
                        if(in_x >= 0 && in_x < in_h && in_y >= 0 && in_y < in_w)
                        {
Khalique's avatar
Khalique committed
197
                            acc += input(o, in_ch, in_x, in_y) * weights(w, k, x, y);
Paul's avatar
Paul committed
198
199
200
201
202
203
204
205
206
                        }
                    });
                    output(o, w, i, j) = acc;
                });
        });
        return result;
    }
};

207
208
209
210
struct cpu_quant_convolution
{
    op::quant_convolution op;

211
212
213
214
215
216
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

217
218
219
220
221
    std::string name() const { return "cpu::quant_convolution"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
Shucai Xiao's avatar
Shucai Xiao committed
222
223
224
225
226
227
228
229
230
231
232
233
234
        auto output = result.get<float>();
        visit_all(args[0], args[1])([&](auto input, auto weights) {
            auto in   = input.get_shape().lens();
            auto in_h = in[2];
            auto in_w = in[3];

            auto wei   = weights.get_shape().lens();
            auto wei_n = wei[0];
            auto wei_c = wei[1];
            auto wei_h = wei[2];
            auto wei_w = wei[3];

            par_dfor(output_shape.lens()[0],
Shucai Xiao's avatar
Shucai Xiao committed
235
236
237
                     output_shape.lens()[1],
                     output_shape.lens()[2],
                     output_shape.lens()[3])(
Shucai Xiao's avatar
Shucai Xiao committed
238
239
240
241
242
243
244
245
246
247
248
249
250
251
                [&](std::size_t o, std::size_t w, std::size_t i, std::size_t j) {
                    const auto start_x  = i * op.stride[0] - op.padding[0];
                    const auto start_y  = j * op.stride[1] - op.padding[1];
                    const auto group_id = w / (wei_n / op.group);

                    float acc = 0;
                    dfor(wei_c, wei_h, wei_w)([&](std::size_t k, std::size_t x, std::size_t y) {
                        const auto in_x  = start_x + x;
                        const auto in_y  = start_y + y;
                        const auto in_ch = group_id * wei_c + k;
                        if(in_x >= 0 && in_x < in_h && in_y >= 0 && in_y < in_w)
                        {
                            acc += input(o, in_ch, in_x, in_y) * weights(w, k, x, y);
                        }
252
                    });
Shucai Xiao's avatar
Shucai Xiao committed
253
254
                    output(o, w, i, j) = acc;
                });
255
        });
Shucai Xiao's avatar
Shucai Xiao committed
256

257
258
259
260
        return result;
    }
};

Scott Thornton's avatar
Scott Thornton committed
261
262
struct cpu_im2col
{
263
    op::im2col op;
Scott Thornton's avatar
Scott Thornton committed
264

265
266
267
268
269
270
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Scott Thornton's avatar
Scott Thornton committed
271
272
    static std::string name() { return "cpu::im2col"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Scott Thornton's avatar
Scott Thornton committed
273

wsttiger's avatar
wsttiger committed
274
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Scott Thornton's avatar
Scott Thornton committed
275
    {
Scott Thornton's avatar
Scott Thornton committed
276
        argument result{output_shape};
Scott Thornton's avatar
Scott Thornton committed
277
        auto input_shape   = args[0].get_shape();
Scott Thornton's avatar
Scott Thornton committed
278
279
        auto weights_shape = args[1].get_shape();
        visit_all(result, args[0])([&](auto col, auto input) {
Scott Thornton's avatar
Scott Thornton committed
280
281
            const std::size_t& height   = input_shape.lens()[2];
            const std::size_t& width    = input_shape.lens()[3];
Scott Thornton's avatar
Scott Thornton committed
282
283
284
            const std::size_t& channels = weights_shape.lens()[1];
            const std::size_t& kernel_h = weights_shape.lens()[2];
            const std::size_t& kernel_w = weights_shape.lens()[3];
Scott Thornton's avatar
Scott Thornton committed
285
286
            const std::size_t& pad_h    = op.padding[0];
            const std::size_t& pad_w    = op.padding[1];
Scott Thornton's avatar
Scott Thornton committed
287
288
289
            const std::size_t& stride_h = op.stride[0];
            const std::size_t& stride_w = op.stride[1];

Paul's avatar
Paul committed
290
291
            auto kdiv2_h = kernel_h / 2;
            auto kdiv2_w = kernel_w / 2;
Scott Thornton's avatar
Scott Thornton committed
292
            // calculate output sizes
Scott Thornton's avatar
Scott Thornton committed
293
294
            const std::size_t col_height = (height - kernel_h + 2 * pad_h) / stride_h + 1;
            const std::size_t col_width  = (width - kernel_w + 2 * pad_w) / stride_w + 1;
wsttiger's avatar
wsttiger committed
295
            // account for padding for the starting position of the input pixels
Scott Thornton's avatar
Scott Thornton committed
296
            std::size_t iinput = kdiv2_h - pad_h;
wsttiger's avatar
wsttiger committed
297
            // loop over output pixels (ioutput, joutput)
Scott Thornton's avatar
Scott Thornton committed
298
299
300
301
302
303
304
305
            for(std::size_t ioutput = 0; ioutput < col_height; ioutput++, iinput += stride_h)
            {
                std::size_t jinput = kdiv2_w - pad_w;
                for(std::size_t joutput = 0; joutput < col_width; joutput++, jinput += stride_w)
                {
                    // compute linear index for output
                    std::size_t ldx = ioutput * col_width + joutput;
                    std::size_t p   = 0;
wsttiger's avatar
wsttiger committed
306
307
308
                    dfor(channels,
                         kernel_h,
                         kernel_w)([&](std::size_t c, std::size_t koffset, std::size_t loffset) {
Paul's avatar
Paul committed
309
310
                        auto idx    = iinput + koffset - kdiv2_h;
                        auto jdx    = jinput + loffset - kdiv2_w;
wsttiger's avatar
wsttiger committed
311
312
313
314
315
                        col(ldx, p) = ((idx >= 0) && (idx < height) && (jdx >= 0) && (jdx < width))
                                          ? input(0, c, idx, jdx)
                                          : 0;
                        p++;
                    });
Scott Thornton's avatar
Scott Thornton committed
316
317
                }
            }
Scott Thornton's avatar
Scott Thornton committed
318
        });
Scott Thornton's avatar
Scott Thornton committed
319
320
321
322
        return result;
    }
};

Paul's avatar
Paul committed
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
struct max_pool
{
    static std::string name() { return "max"; }
    static double start() { return std::numeric_limits<double>::lowest(); }

    static double apply(double x, double y)
    {
        double m = std::max(x, y);
        return (m);
    }

    static double final(double x, double) { return (x); }
};

struct avg_pool
{
    static std::string name() { return "average"; }
    static double start() { return 0.0; }

    static double apply(double x, double y) { return x + y; }

    static double final(double x, double y) { return x / y; }
};

template <class Op>
struct cpu_pooling
{
350
    op::pooling op;
Paul's avatar
Paul committed
351

352
353
354
355
356
357
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Paul's avatar
Paul committed
358
    std::string name() const { return "cpu::pooling_" + Op::name(); }
Paul's avatar
Paul committed
359
360
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
361
362
363
364
365
366
367
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
            using type = typename decltype(output)::value_type;
            auto in_h  = input.get_shape().lens()[2];
            auto in_w  = input.get_shape().lens()[3];

Paul's avatar
Paul committed
368
            par_dfor(output_shape.lens()[0],
Paul's avatar
Paul committed
369
370
371
                     output_shape.lens()[1],
                     output_shape.lens()[2],
                     output_shape.lens()[3])(
Paul's avatar
Paul committed
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
                [&](std::size_t o, std::size_t w, std::size_t i, std::size_t j) {
                    const int start_x0 = i * op.stride[0] - op.padding[0];
                    const int start_y0 = j * op.stride[1] - op.padding[1];

                    const int hend = std::min(start_x0 + op.lengths[0], in_h);
                    const int wend = std::min(start_y0 + op.lengths[1], in_w);

                    const int start_x = std::max(start_x0, 0);
                    const int start_y = std::max(start_y0, 0);

                    const int w_h       = (hend - start_x);
                    const int w_w       = (wend - start_y);
                    const int pool_size = std::max(w_h * w_w, 1);

                    double acc = Op::start();
                    dfor(w_h, w_w)([&](int x, int y) {
                        const int in_x = start_x + x;
                        const int in_y = start_y + y;
                        if(in_x >= 0 && in_x < in_h && in_y >= 0 && in_y < in_w)
                        {
                            acc = Op::apply(acc, input(o, w, in_x, in_y));
                        }
                    });
                    output(o, w, i, j) = type(Op::final(acc, pool_size));
                });
        });
        return result;
    }
};

402
struct cpu_op
Paul's avatar
Paul committed
403
{
404
405
    operation op;
    std::string name() const { return "cpu::" + op.name(); }
Paul's avatar
Paul committed
406
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Paul's avatar
Paul committed
407
    argument compute(context&, const shape& output_shape, const std::vector<argument>& args) const
Paul's avatar
Paul committed
408
    {
Paul's avatar
Paul committed
409
        return op.compute(output_shape, args);
Paul's avatar
Paul committed
410
    }
Paul's avatar
Paul committed
411
    friend bool operator==(const cpu_op& x, const cpu_op& y) { return x.op == y.op; }
412
    friend bool operator==(const cpu_op& x, const operation& y)
Paul's avatar
Paul committed
413
    {
414
415
416
        if(x.name() != y.name())
            return false;
        return x == any_cast<cpu_op>(y);
Paul's avatar
Paul committed
417
    }
Paul's avatar
Paul committed
418
    friend bool operator==(const operation& x, const cpu_op& y) { return y == x; }
Paul's avatar
Paul committed
419
420
};

Khalique's avatar
Khalique committed
421
struct cpu_pad
422
{
Khalique's avatar
Khalique committed
423
    op::pad op;
424
425
426
427
428
429
430

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Khalique's avatar
Khalique committed
431
    std::string name() const { return "cpu::contiguous"; }
432
433
434
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
Khalique's avatar
Khalique committed
435
        assert(output_shape.standard());
436
        argument result{output_shape};
Khalique's avatar
Khalique committed
437
        result.visit([&](auto output) { std::fill(output.begin(), output.end(), op.value); });
Khalique's avatar
Khalique committed
438
439

        visit_all(result, args[0])([&](auto output, auto input) {
440
            shape_for_each(input.get_shape(), [&](const auto& idx) {
Khalique's avatar
Khalique committed
441
                std::vector<std::size_t> new_idx(idx.size());
Khalique's avatar
Khalique committed
442
443
444
445
                std::transform(
                    idx.begin(), idx.end(), op.pads.begin(), new_idx.begin(), [](auto i, auto j) {
                        return i + j;
                    });
Khalique's avatar
Khalique committed
446
                output(new_idx.begin(), new_idx.end()) = input(idx.begin(), idx.end());
447
            });
Khalique's avatar
Khalique committed
448
449
        });

450
451
452
453
        return result;
    }
};

Paul's avatar
Paul committed
454
455
struct cpu_gemm
{
Shucai Xiao's avatar
Shucai Xiao committed
456
    op::dot op;
457
458
459
460
461
462

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }
Shucai Xiao's avatar
Shucai Xiao committed
463
    std::string name() const { return "cpu::dot"; }
Shucai Xiao's avatar
Shucai Xiao committed
464
465
    shape compute_shape(const std::vector<shape>& inputs) const
    {
Shucai Xiao's avatar
Shucai Xiao committed
466
467
468
469
470
        if(inputs.size() == 3)
        {
            auto c_shape = inputs.at(2);
            check_shapes{{c_shape}}.not_broadcasted();
        }
Shucai Xiao's avatar
Shucai Xiao committed
471
        return op.compute_shape(inputs);
Shucai Xiao's avatar
Shucai Xiao committed
472
    }
Paul's avatar
Paul committed
473

Paul's avatar
Paul committed
474
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
475
476
    {
        argument result{output_shape};
Shucai Xiao's avatar
Shucai Xiao committed
477
        // 3 inputs, it is alpha * A * B + beta * C, then
478
        // A and B are matrices, and C is of the same shape as A * B
Shucai Xiao's avatar
Shucai Xiao committed
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
        if(args.size() == 3)
        {
            // no need to consider the value of args[2]
            if(op.beta == 0.0f)
            {
                result.visit([&](auto output) { std::fill(output.begin(), output.end(), 0); });
            }
            else
            {
                visit_all(result, args[2])([&](auto output, auto input) {
                    std::copy(input.begin(), input.end(), output.begin());
                });
            }

            migemm(result, args[0], args[1], op.alpha, op.beta);

            return result;
        }

        // 2 input arguments
        migemm(result, args[0], args[1], op.alpha, 0.0f);

Paul's avatar
Paul committed
501
502
503
504
        return result;
    }
};

505
506
507
struct cpu_quant_gemm
{
    op::quant_dot op;
508
509
510
511
512
513
514

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
    std::string name() const { return "cpu::quant_dot"; }
    shape compute_shape(const std::vector<shape>& inputs) const
    {
        if(inputs.size() == 3)
        {
            auto c_shape = inputs.at(2);
            check_shapes{{c_shape}}.not_broadcasted();
        }
        return op.compute_shape(inputs);
    }

    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        // 3 inputs, it is alpha * A * B + beta * C, then
        // A and B are matrices, and C is of the same shape to A * B

        // first, convert the args[0] and args[1] from int8_t to int32_t
        argument arg_0{{shape::int32_type, {args.at(0).get_shape().lens()}}};
        argument arg_1{{shape::int32_type, {args.at(1).get_shape().lens()}}};
        arg_0.visit([&](auto output) {
Shucai Xiao's avatar
Shucai Xiao committed
536
537
            args.at(0).visit(
                [&](auto input) { std::copy(input.begin(), input.end(), output.begin()); });
538
539
540
        });

        arg_1.visit([&](auto output) {
Shucai Xiao's avatar
Shucai Xiao committed
541
542
            args.at(1).visit(
                [&](auto input) { std::copy(input.begin(), input.end(), output.begin()); });
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
        });

        if(args.size() == 3)
        {
            // no need to consider the value of args[2]
            if(op.beta == 0)
            {
                result.visit([&](auto output) { std::fill(output.begin(), output.end(), 0); });
            }
            else
            {
                visit_all(result, args[2])([&](auto output, auto input) {
                    std::copy(input.begin(), input.end(), output.begin());
                });
            }

            migemm(result, arg_0, arg_1, op.alpha, op.beta);

            return result;
        }

        // 2 input arguments
565
        int32_t beta = 0;
566
567
568
569
570
571
        migemm(result, arg_0, arg_1, op.alpha, beta);

        return result;
    }
};

Khalique's avatar
Khalique committed
572
573
574
575
576
577
578
579
580
581
582
struct leaky_relu_op
{
    op::leaky_relu op;
    std::string name() const { return "cpu::leaky_relu"; }
    auto fcn() const
    {
        auto& a = op.alpha;
        return [a](auto x) { return x > 0 ? x : x * a; };
    }
};

Khalique's avatar
Khalique committed
583
584
585
586
587
588
589
590
591
592
593
struct elu_op
{
    op::elu op;
    std::string name() const { return "cpu::elu"; }
    auto fcn() const
    {
        auto& a = op.alpha;
        return [a](auto x) { return x > 0 ? x : a * std::expm1(x); };
    }
};

Paul's avatar
Paul committed
594
595
596
597
template <typename Op>
struct cpu_unary
{
    Op op;
598
599
600
601
602
603

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op.op, f);
    }
Paul's avatar
Paul committed
604
    std::string name() const { return op.name(); }
Shucai Xiao's avatar
Shucai Xiao committed
605
    shape compute_shape(const std::vector<shape>& inputs) const
606
    {
Shucai Xiao's avatar
Shucai Xiao committed
607
608
609
        check_shapes{inputs}.has(1);
        auto s = inputs.at(0);
        if(s.packed())
610
        {
Shucai Xiao's avatar
Shucai Xiao committed
611
            return s;
612
613
614
        }
        else
        {
Shucai Xiao's avatar
Shucai Xiao committed
615
            return {s.type(), s.lens()};
616
617
618
        }
    }

Paul's avatar
Paul committed
619
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
620
621
622
623
    {
        argument result{output_shape};
        result.visit([&](auto output) {
            args[0].visit([&](auto input) {
Shucai Xiao's avatar
Shucai Xiao committed
624
                if(input.get_shape().standard())
625
626
627
628
629
630
631
632
633
                {
                    std::transform(input.begin(), input.end(), output.begin(), op.fcn());
                }
                else
                {
                    shape_for_each(output.get_shape(), [&](const auto& idx) {
                        output(idx.begin(), idx.end()) = op.fcn()(input(idx.begin(), idx.end()));
                    });
                }
Paul's avatar
Paul committed
634
635
            });
        });
636

Paul's avatar
Paul committed
637
638
639
640
641
642
643
        return result;
    }
};

struct softmax2d
{
    std::string name() const { return "cpu::softmax2d"; }
Paul's avatar
Paul committed
644
645
    shape compute_shape(const std::vector<shape>& inputs) const { return inputs.front(); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
646
647
648
649
650
651
652
653
654
655
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
            using value_type = typename decltype(input)::value_type;
            auto nb          = input.get_shape().lens()[0];
            auto nc          = input.get_shape().lens()[1];
            auto nh          = input.get_shape().lens()[2];
            auto nw          = input.get_shape().lens()[3];
            dfor(nb, nh, nw)([&](std::size_t b, std::size_t i, std::size_t j) {
                value_type cmax = std::numeric_limits<value_type>::lowest();
Paul's avatar
Paul committed
656
                for(std::size_t c = 0; c < nc; c++)
Paul's avatar
Paul committed
657
658
659
                {
                    cmax = std::max(cmax, input(b, c, i, j));
                }
Paul's avatar
Paul committed
660
                for(std::size_t c = 0; c < nc; c++)
Paul's avatar
Paul committed
661
662
663
664
                {
                    output(b, c, i, j) = std::exp(input(b, c, i, j) - cmax);
                }
                value_type sum = value_type(0);
Paul's avatar
Paul committed
665
                for(std::size_t c = 0; c < nc; c++)
Paul's avatar
Paul committed
666
667
668
                {
                    sum += output(b, c, i, j);
                }
Paul's avatar
Paul committed
669
                for(std::size_t c = 0; c < nc; c++)
Paul's avatar
Paul committed
670
671
672
673
674
675
676
677
678
                {
                    output(b, c, i, j) = output(b, c, i, j) / sum;
                }
            });
        });
        return result;
    }
};

Shucai Xiao's avatar
Shucai Xiao committed
679
680
681
struct cpu_logsoftmax
{
    op::logsoftmax op;
682
683
684
685
686
687
688

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Shucai Xiao's avatar
Shucai Xiao committed
689
690
691
    std::string name() const { return "cpu::logsoftmax"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }

Shucai Xiao's avatar
Shucai Xiao committed
692
    template <typename T>
Shucai Xiao's avatar
Shucai Xiao committed
693
694
    std::size_t compute_batch_index(const T& idx, shape& batch_shape, int axis) const
    {
Shucai Xiao's avatar
Shucai Xiao committed
695
        if(axis == 0)
696
697
698
699
700
701
        {
            return 0;
        }
        else
        {
            std::vector<std::size_t> batch_idx(idx.begin(), idx.begin() + axis);
Shucai Xiao's avatar
Shucai Xiao committed
702
            return batch_shape.index(batch_idx.begin(), batch_idx.end());
703
        }
Shucai Xiao's avatar
Shucai Xiao committed
704
705
706
707
708
709
    }

    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        auto lens = output_shape.lens();
710
        std::vector<std::size_t> batch_lens{};
Shucai Xiao's avatar
Shucai Xiao committed
711
        if(op.axis == 0)
712
713
714
        {
            batch_lens.push_back(1);
        }
Shucai Xiao's avatar
Shucai Xiao committed
715
        else
716
717
718
        {
            batch_lens.insert(batch_lens.begin(), lens.begin(), lens.begin() + op.axis);
        }
Shucai Xiao's avatar
Shucai Xiao committed
719
720
721
        shape batch_shape{migraphx::shape::uint32_type, batch_lens};
        visit_all(result, args[0])([&](auto output, auto input) {
            using value_type = typename decltype(input)::value_type;
Shucai Xiao's avatar
Shucai Xiao committed
722
723
            std::vector<value_type> batch_max(batch_shape.elements(),
                                              std::numeric_limits<value_type>::lowest());
Shucai Xiao's avatar
Shucai Xiao committed
724
            shape_for_each(output_shape, [&](auto idx) {
725
                auto index       = this->compute_batch_index(idx, batch_shape, op.axis);
Shucai Xiao's avatar
Shucai Xiao committed
726
727
728
729
                batch_max[index] = std::max(batch_max[index], input(idx.begin(), idx.end()));
            });

            shape_for_each(output_shape, [&](auto idx) {
Shucai Xiao's avatar
Shucai Xiao committed
730
                auto index = this->compute_batch_index(idx, batch_shape, op.axis);
Shucai Xiao's avatar
Shucai Xiao committed
731
732
733
734
735
                output(idx.begin(), idx.end()) = input(idx.begin(), idx.end()) - batch_max[index];
            });

            std::vector<value_type> batch_sum(batch_shape.elements(), value_type(0));
            shape_for_each(output_shape, [&](auto idx) {
736
                auto index = this->compute_batch_index(idx, batch_shape, op.axis);
Shucai Xiao's avatar
Shucai Xiao committed
737
738
739
                batch_sum[index] += std::exp(output(idx.begin(), idx.end()));
            });

Shucai Xiao's avatar
Shucai Xiao committed
740
            for(std::size_t i = 0; i < batch_sum.size(); ++i)
Shucai Xiao's avatar
Shucai Xiao committed
741
742
743
744
745
            {
                batch_sum[i] = std::log(batch_sum[i]);
            }

            shape_for_each(output_shape, [&](auto idx) {
746
                auto index = this->compute_batch_index(idx, batch_shape, op.axis);
747
                output(idx.begin(), idx.end()) -= batch_sum[index];
Shucai Xiao's avatar
Shucai Xiao committed
748
749
750
751
752
753
754
            });
        });

        return result;
    }
};

Paul's avatar
Paul committed
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
struct cpu_apply
{
    program* prog;
    std::unordered_map<std::string, std::function<void(instruction_ref)>> apply_map{};

    template <class T>
    auto simple_op()
    {
        return [this](instruction_ref ins) { apply_simple_op<T>(ins); };
    }

    template <class T, class Op>
    auto extend_op()
    {
        return [this](instruction_ref ins) { apply_extend_op<T, Op>(ins); };
    }

    void init()
    {
Aditya Atluri's avatar
Aditya Atluri committed
774
        apply_map["batch_norm_inference"] =
775
            extend_op<cpu_batch_norm_inference, op::batch_norm_inference>();
Shucai Xiao's avatar
Shucai Xiao committed
776
777
        apply_map["convolution"]       = extend_op<cpu_convolution, op::convolution>();
        apply_map["dot"]               = extend_op<cpu_gemm, op::dot>();
778
779
        apply_map["quant_dot"]         = extend_op<cpu_quant_gemm, op::quant_dot>();
        apply_map["quant_convolution"] = extend_op<cpu_quant_convolution, op::quant_convolution>();
Shucai Xiao's avatar
Shucai Xiao committed
780
781
782
783
784
785
786
        apply_map["elu"]               = extend_op<cpu_unary<elu_op>, op::elu>();
        apply_map["im2col"]            = extend_op<cpu_im2col, op::im2col>();
        apply_map["leaky_relu"]        = extend_op<cpu_unary<leaky_relu_op>, op::leaky_relu>();
        apply_map["logsoftmax"]        = extend_op<cpu_logsoftmax, op::logsoftmax>();
        apply_map["lrn"]               = extend_op<cpu_lrn, op::lrn>();
        apply_map["pad"]               = extend_op<cpu_pad, op::pad>();
        apply_map["softmax"]           = simple_op<softmax2d>();
Paul's avatar
Paul committed
787
788
789
790
791
792
793
    }

    void apply()
    {
        init();
        for(auto it : iterator_for(*prog))
        {
Khalique's avatar
Khalique committed
794
            if(it->name() == "pooling")
Paul's avatar
Paul committed
795
796
797
            {
                apply_pooling(it);
            }
Paul's avatar
Paul committed
798
            else if(apply_map.count(it->name()) > 0)
Paul's avatar
Paul committed
799
            {
Paul's avatar
Paul committed
800
                apply_map.at(it->name())(it);
Paul's avatar
Paul committed
801
            }
Paul's avatar
Paul committed
802
            else if(is_context_free(it->get_operator()))
803
804
805
            {
                apply_cpu_op(it);
            }
Paul's avatar
Paul committed
806
807
808
        }
    }

809
810
811
812
813
    void apply_cpu_op(instruction_ref ins)
    {
        prog->replace_instruction(ins, cpu_op{ins->get_operator()}, ins->inputs());
    }

Paul's avatar
Paul committed
814
815
816
    template <class T>
    void apply_simple_op(instruction_ref ins)
    {
Paul's avatar
Paul committed
817
        prog->replace_instruction(ins, T{}, ins->inputs());
Paul's avatar
Paul committed
818
819
820
821
822
    }

    template <class T, class Op>
    void apply_extend_op(instruction_ref ins)
    {
823
        auto&& op = any_cast<Op>(ins->get_operator());
Paul's avatar
Paul committed
824
        prog->replace_instruction(ins, T{op}, ins->inputs());
Paul's avatar
Paul committed
825
826
827
828
    }

    void apply_pooling(instruction_ref ins)
    {
829
        auto&& op = any_cast<op::pooling>(ins->get_operator());
Paul's avatar
Paul committed
830
        if(op.mode == "max")
Paul's avatar
Paul committed
831
            prog->replace_instruction(ins, cpu_pooling<max_pool>{op}, ins->inputs());
Paul's avatar
Paul committed
832
        else if(op.mode == "average")
Paul's avatar
Paul committed
833
            prog->replace_instruction(ins, cpu_pooling<avg_pool>{op}, ins->inputs());
Paul's avatar
Paul committed
834
835
836
    }
};

Shucai Xiao's avatar
Shucai Xiao committed
837
void lowering::apply(program& p) const { cpu_apply{&p}.apply(); }
Paul's avatar
Paul committed
838
839

} // namespace cpu
Paul's avatar
Paul committed
840
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
841
} // namespace migraphx