fuse_ops.cpp 33.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
kahmed10's avatar
kahmed10 committed
24
25
#include <migraphx/pass_manager.hpp>
#include <migraphx/dead_code_elimination.hpp>
Paul's avatar
Paul committed
26
27
28
#include <migraphx/gpu/fuse_ops.hpp>
#include <migraphx/matcher.hpp>
#include <migraphx/gpu/miopen.hpp>
kahmed10's avatar
kahmed10 committed
29
#include <migraphx/gpu/clip.hpp>
Paul's avatar
Paul committed
30
#include <migraphx/gpu/convolution.hpp>
31
#include <migraphx/gpu/device_name.hpp>
32
#include <migraphx/gpu/oper.hpp>
kahmed10's avatar
kahmed10 committed
33
34
#include <migraphx/gpu/add.hpp>
#include <migraphx/gpu/mul.hpp>
35
#include <migraphx/gpu/gemm.hpp>
kahmed10's avatar
kahmed10 committed
36
#include <migraphx/gpu/device/layernorm.hpp>
kahmed10's avatar
kahmed10 committed
37
#include <migraphx/gpu/device/gelu.hpp>
Paul's avatar
Paul committed
38
#include <migraphx/gpu/device/mul_add.hpp>
39
40
41
42
43
#include <migraphx/gpu/device/add_clip.hpp>
#include <migraphx/gpu/device/add_relu.hpp>
#include <migraphx/gpu/device/add_sigmoid.hpp>
#include <migraphx/gpu/device/add_tanh.hpp>
#include <migraphx/gpu/device/mul_add_relu.hpp>
Paul's avatar
Paul committed
44
#include <migraphx/gpu/device/add.hpp>
45
46
47
#include <migraphx/match/layernorm.hpp>
#include <migraphx/match/gelu_erf.hpp>
#include <migraphx/match/gelu_tanh.hpp>
Paul's avatar
Paul committed
48
#include <migraphx/instruction.hpp>
49
#include <migraphx/register_op.hpp>
Paul's avatar
Paul committed
50
#include <migraphx/array.hpp>
51
#include <migraphx/make_op.hpp>
kahmed10's avatar
kahmed10 committed
52
#include <migraphx/op/clip.hpp>
kahmed10's avatar
kahmed10 committed
53
#include <cmath>
54
#include <set>
Paul's avatar
Paul committed
55
56

namespace migraphx {
Paul's avatar
Paul committed
57
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
58
59
namespace gpu {

60
61
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_DISABLE_MIOPEN_FUSION)

Paul's avatar
Paul committed
62
63
64
65
66
67
68
69
struct fusion
{
    using op_t = miopenFusionOpDescriptor_t;
    shared<fusion_plan_descriptor> fp;

    // Used as a temporary hack to keep descriptor references alive
    std::vector<std::shared_ptr<void>> storage;

Paul's avatar
Paul committed
70
    template <class T>
Paul's avatar
Paul committed
71
72
73
74
75
76
77
    auto keep_alive(T x)
    {
        auto result = share(std::move(x));
        storage.push_back(result);
        return result;
    }

78
79
    fusion() = default;

Paul's avatar
Paul committed
80
81
    fusion(const shape& input)
    {
82
        assert(input.standard());
Paul's avatar
Paul committed
83
        auto t = make_tensor(input);
Paul's avatar
Paul committed
84
        fp     = make_fusion_plan(t);
85
        assert(fp);
Paul's avatar
Paul committed
86
87
88
        keep_alive(std::move(t));
    }

89
90
    bool empty() const { return fp == nullptr; }

Paul's avatar
Paul committed
91
92
    op_t operator[](std::size_t i) const
    {
93
        assert(fp);
Paul's avatar
Paul committed
94
95
96
        op_t result;
        auto status = miopenFusionPlanGetOp(fp.get(), i, &result);
        if(status != miopenStatusSuccess)
Paul's avatar
Paul committed
97
            MIGRAPHX_THROW("Failed retrieving operator at " + std::to_string(i));
Paul's avatar
Paul committed
98
99
100
        return result;
    }

101
102
103
104
105
    auto get() const
    {
        assert(fp);
        return fp.get();
    }
Paul's avatar
Paul committed
106
107
108

    op_t create_bias(const shape& bias)
    {
109
        assert(fp);
Paul's avatar
Paul committed
110
        op_t result;
Paul's avatar
Paul committed
111
112
        auto b      = shape{bias.type(), {1, bias.lens().at(1), 1, 1}};
        auto t      = keep_alive(make_tensor(b));
Paul's avatar
Paul committed
113
114
        auto status = miopenCreateOpBiasForward(fp.get(), &result, t.get());
        if(status != miopenStatusSuccess)
Paul's avatar
Paul committed
115
            MIGRAPHX_THROW("Creating operator failed");
Paul's avatar
Paul committed
116
117
118
119
120
        return result;
    }

    op_t create_relu()
    {
121
        assert(fp);
Paul's avatar
Paul committed
122
123
124
        op_t result;
        auto status = miopenCreateOpActivationForward(fp.get(), &result, miopenActivationRELU);
        if(status != miopenStatusSuccess)
Paul's avatar
Paul committed
125
            MIGRAPHX_THROW("Creating operator failed");
Paul's avatar
Paul committed
126
127
128
129
130
        return result;
    }

    op_t create_conv(const op::convolution& op, const shape& weights)
    {
131
        assert(fp);
Paul's avatar
Paul committed
132
        op_t result;
Paul's avatar
Paul committed
133
134
        auto cd     = keep_alive(make_conv(op));
        auto t      = keep_alive(make_tensor(weights));
Paul's avatar
Paul committed
135
136
        auto status = miopenCreateOpConvForward(fp.get(), &result, cd.get(), t.get());
        if(status != miopenStatusSuccess)
Paul's avatar
Paul committed
137
            MIGRAPHX_THROW("Creating operator failed");
Paul's avatar
Paul committed
138
139
        return result;
    }
Paul's avatar
Paul committed
140
141
142

    shape get_workspace(context&)
    {
143
        // assert(fp);
Paul's avatar
Paul committed
144
145
146
147
148
        // TODO: Use zero workspace for now
        std::size_t ws_size = 0;
        // int algo_count = 1;
        // miopenConvFwdAlgorithm_t algo;
        // miopenFusionPlanConvolutionGetAlgo(fp.get(), 1, &algo_count, &algo);
Paul's avatar
Paul committed
149
150
        // miopenFusionPlanGetWorkSpaceSize(ctx.get_stream().get_miopen(), fp.get(), &ws_size,
        // algo);
Paul's avatar
Paul committed
151
152
153
        return shape{shape::int8_type, {ws_size}};
    }

154
    bool compile(context& ctx)
Paul's avatar
Paul committed
155
    {
156
        assert(fp);
157
158
        return miopenCompileFusionPlan(ctx.get_stream().get_miopen(), fp.get()) ==
               miopenStatusSuccess;
Paul's avatar
Paul committed
159
160
    }

Paul's avatar
Paul committed
161
162
163
164
    argument execute(context& ctx,
                     const fused_operator_args& fargs,
                     const argument& x,
                     const argument& y) const
Paul's avatar
Paul committed
165
    {
166
        assert(fp);
Paul's avatar
Paul committed
167
168
        auto x_td   = make_tensor(x.get_shape());
        auto y_td   = make_tensor(y.get_shape());
Paul's avatar
Paul committed
169
        auto status = miopenExecuteFusionPlan(ctx.get_stream().get_miopen(),
Paul's avatar
Paul committed
170
171
172
173
174
175
                                              fp.get(),
                                              x_td.get(),
                                              x.implicit(),
                                              y_td.get(),
                                              y.implicit(),
                                              fargs.get());
Paul's avatar
Paul committed
176
        if(status != miopenStatusSuccess)
Paul's avatar
Paul committed
177
            MIGRAPHX_THROW("Failed to execute fusion plan");
Paul's avatar
Paul committed
178
179
        return y;
    }
Paul's avatar
Paul committed
180
181
};

182
183
184
185
186
187
const std::unordered_set<std::string>& get_supported_archs()
{
    static std::unordered_set<std::string> supported_archs{"gfx900", "gfx906", "gfx908", "gfx1030"};
    return supported_archs;
}

Paul's avatar
Paul committed
188
MIGRAPHX_PRED_MATCHER(bias_shape, instruction_ref ins)
Paul's avatar
Paul committed
189
190
{
    auto&& s = ins->get_shape();
Paul's avatar
Paul committed
191
192
    return s.broadcasted() and s.strides().size() == 4 and s.strides()[0] == 0 and
           s.strides()[1] != 0 and s.strides()[2] == 0 and s.strides()[3] == 0;
Paul's avatar
Paul committed
193
194
}

Paul's avatar
Paul committed
195
MIGRAPHX_PRED_MATCHER(fusable_conv, instruction_ref ins)
Paul's avatar
Paul committed
196
{
197
    const auto device_name = trim(split_string(get_device_name(), ':').front());
198
199
    if(not contains(get_supported_archs(), device_name))
        return false;
200
201
    if(enabled(MIGRAPHX_DISABLE_MIOPEN_FUSION{}))
        return false;
Paul's avatar
Paul committed
202
203
    if(ins->name() != "gpu::convolution")
        return false;
Paul's avatar
Paul committed
204
205
    if(ins->get_shape().type() != shape::float_type)
        return false;
Paul's avatar
Paul committed
206
207
208
    auto wei = ins->inputs().at(1)->get_shape();
    assert(wei.lens().size() == 4);
    auto conv = any_cast<miopen_convolution>(ins->get_operator());
Khalique's avatar
Khalique committed
209
    if(conv.op.group > 1)
Khalique's avatar
Khalique committed
210
        return false;
Paul's avatar
Paul committed
211
    if(wei.lens()[1] > 512 and conv.algo != miopenConvolutionFwdAlgoWinograd)
Paul's avatar
Paul committed
212
        return false;
213
214
215
216
217
218

    // Do not fuse non-symmetric input
    auto input_lens = ins->inputs().at(0)->get_shape().lens();
    if(input_lens[2] != input_lens[3] or wei.lens()[2] != wei.lens()[3])
        return false;

Paul's avatar
Paul committed
219
    auto op = conv.op;
220
221
    // Dont fuse winograd for non-3x3s since there is no fused windograd for those configs
    if(conv.algo == miopenConvolutionFwdAlgoWinograd and wei.lens()[2] != 3 and
222
       wei.lens()[3] != 3 and contains({{1, 1}}, op.stride))
223
        return false;
kahmed10's avatar
kahmed10 committed
224
    return contains({{0, 0, 0, 0}, {1, 1, 1, 1}, {2, 2, 2, 2}}, op.padding) and
225
           contains({{0, 0}, {1, 1}}, op.stride) and contains({{1, 1}}, op.dilation);
Paul's avatar
Paul committed
226
227
}

228
struct hip_triadd : ternary_device<hip_triadd, &device::add>
Paul's avatar
Paul committed
229
230
{
};
231
MIGRAPHX_REGISTER_OP(hip_triadd)
Paul's avatar
Paul committed
232

233
struct hip_triadd_clip : quinary_device<hip_triadd_clip, &device::add_clip>
kahmed10's avatar
kahmed10 committed
234
235
{
};
236
MIGRAPHX_REGISTER_OP(hip_triadd_clip)
kahmed10's avatar
kahmed10 committed
237

238
struct hip_add_clip : quaternary_device<hip_add_clip, &device::add_clip>
kahmed10's avatar
kahmed10 committed
239
240
{
};
241
MIGRAPHX_REGISTER_OP(hip_add_clip)
kahmed10's avatar
kahmed10 committed
242

243
struct hip_triadd_relu : ternary_device<hip_triadd_relu, &device::add_relu>
Paul's avatar
Paul committed
244
245
{
};
246
MIGRAPHX_REGISTER_OP(hip_triadd_relu)
Paul's avatar
Paul committed
247

248
249
250
struct hip_triadd_sigmoid : ternary_device<hip_triadd_sigmoid, &device::add_sigmoid>
{
};
251
MIGRAPHX_REGISTER_OP(hip_triadd_sigmoid)
252
253
254
255

struct hip_triadd_tanh : ternary_device<hip_triadd_tanh, &device::add_tanh>
{
};
256
MIGRAPHX_REGISTER_OP(hip_triadd_tanh)
257
258
259
260

struct hip_add_relu : binary_device<hip_add_relu, &device::add_relu>
{
};
261
MIGRAPHX_REGISTER_OP(hip_add_relu)
262
263
264
265

struct hip_add_sigmoid : binary_device<hip_add_relu, &device::add_sigmoid>
{
};
266
MIGRAPHX_REGISTER_OP(hip_add_sigmoid)
267
268

struct hip_add_tanh : binary_device<hip_add_tanh, &device::add_tanh>
Paul's avatar
Paul committed
269
270
{
};
271
MIGRAPHX_REGISTER_OP(hip_add_tanh)
Paul's avatar
Paul committed
272

kahmed10's avatar
kahmed10 committed
273
274
struct hip_layernorm : unary_device<hip_layernorm, &device::layernorm>
{
275
276
    // Empty finalize to skip dimension reduction
    void finalize(context&, const shape&, const std::vector<shape>&) {}
kahmed10's avatar
kahmed10 committed
277
};
278
MIGRAPHX_REGISTER_OP(hip_layernorm)
kahmed10's avatar
kahmed10 committed
279

Paul Fultz II's avatar
Paul Fultz II committed
280
281
282
283
284
285
286
struct hip_triadd_layernorm : ternary_device<hip_triadd_layernorm, &device::triadd_layernorm>
{
    // Empty finalize to skip dimension reduction
    void finalize(context&, const shape&, const std::vector<shape>&) {}
};
MIGRAPHX_REGISTER_OP(hip_triadd_layernorm)

kahmed10's avatar
kahmed10 committed
287
288
289
struct hip_gelu : unary_device<hip_gelu, &device::gelu>
{
};
290
MIGRAPHX_REGISTER_OP(hip_gelu)
kahmed10's avatar
kahmed10 committed
291
292
293
294

struct hip_add_gelu : binary_device<hip_add_gelu, &device::add_gelu>
{
};
295
MIGRAPHX_REGISTER_OP(hip_add_gelu)
kahmed10's avatar
kahmed10 committed
296
297
298
299

struct hip_gelu_new : unary_device<hip_gelu_new, &device::gelu_new>
{
};
300
MIGRAPHX_REGISTER_OP(hip_gelu_new)
kahmed10's avatar
kahmed10 committed
301
302
303
304

struct hip_add_gelu_new : binary_device<hip_add_gelu_new, &device::add_gelu_new>
{
};
305
MIGRAPHX_REGISTER_OP(hip_add_gelu_new)
kahmed10's avatar
kahmed10 committed
306

307
struct hip_mul_add : ternary_device<hip_mul_add, &device::mul_add>
Paul's avatar
Paul committed
308
309
{
};
310
MIGRAPHX_REGISTER_OP(hip_mul_add)
Paul's avatar
Paul committed
311

312
struct hip_mul_add_relu : ternary_device<hip_mul_add_relu, &device::mul_add_relu>
Paul's avatar
Paul committed
313
314
{
};
315
MIGRAPHX_REGISTER_OP(hip_mul_add_relu)
Paul's avatar
Paul committed
316

Paul's avatar
Paul committed
317
318
319
void move_broadcasted_back(std::vector<instruction_ref>& args)
{
    // Ensure the last arguments is the broadcasted one
Paul's avatar
Paul committed
320
    auto last = std::prev(args.end());
Paul's avatar
Paul committed
321
322
    auto it =
        std::find_if(args.begin(), last, [](auto arg) { return arg->get_shape().broadcasted(); });
Paul's avatar
Paul committed
323
324
    if(it != last)
        std::swap(*it, *std::prev(last));
Paul's avatar
Paul committed
325
326
327
328
329
}

void move_standard_front(std::vector<instruction_ref>& args)
{
    // Ensure the first arguments is the standard one
Paul's avatar
Paul committed
330
    auto last = std::prev(args.end());
Paul's avatar
Paul committed
331
332
    auto it =
        std::find_if(args.begin(), last, [](auto arg) { return arg->get_shape().standard(); });
Paul's avatar
Paul committed
333
    if(it != last)
Paul's avatar
Paul committed
334
335
336
        std::swap(*it, args.front());
}

337
338
auto gpu_name(const std::string& s) { return match::name("gpu::" + s); }

Paul Fultz II's avatar
Paul Fultz II committed
339
namespace {
kahmed10's avatar
kahmed10 committed
340
341
struct find_layernorm
{
342
    auto matcher() const { return match::layernorm(&gpu_name); }
kahmed10's avatar
kahmed10 committed
343

344
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
345
346
347
348
349
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto args  = ins->inputs();

350
351
352
353
354
355
356
357
358
        // We dont fuse for non-standard layouts
        if(not x_ins->get_shape().standard())
            return;

        auto relements = x_ins->get_shape().lens().back();

        if(relements > 1024 or (relements % 4 != 0 and relements > 256))
            return;

359
        m.replace_instruction(ins, hip_layernorm{}, x_ins, args.back());
kahmed10's avatar
kahmed10 committed
360
361
362
    }
};

Paul Fultz II's avatar
Paul Fultz II committed
363
364
365
366
367
368
369
370
struct find_triadd_layernorm
{
    auto matcher() const
    {
        return match::name("gpu::layernorm")(match::arg(0)(match::name("gpu::triadd")(
            match::used_once(), match::all_of[match::inputs()](match::standard_shape()))));
    }

371
    void apply(module& m, const match::matcher_result& r) const
Paul Fultz II's avatar
Paul Fultz II committed
372
373
374
    {
        auto ins    = r.result;
        auto triadd = ins->inputs().front();
375
        m.replace_instruction(ins, hip_triadd_layernorm{}, triadd->inputs());
Paul Fultz II's avatar
Paul Fultz II committed
376
377
378
    }
};

kahmed10's avatar
kahmed10 committed
379
380
struct find_gelu
{
381
    auto matcher() const { return match::gelu_erf(&gpu_name); }
kahmed10's avatar
kahmed10 committed
382

383
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
384
385
386
387
388
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto args  = ins->inputs();

389
        m.replace_instruction(ins, hip_gelu{}, x_ins, args.back());
kahmed10's avatar
kahmed10 committed
390
391
392
393
394
395
396
397
398
399
    }
};

struct find_add_gelu
{
    auto matcher() const
    {
        return match::name("gpu::gelu")(match::arg(0)(match::name("gpu::add").bind("add")));
    }

400
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
401
402
403
404
405
406
407
408
    {
        auto add_ins = r.instructions["add"];
        auto ins     = r.result;
        auto args    = add_ins->inputs();
        move_standard_front(args);
        move_broadcasted_back(args);

        args.back() = ins->inputs().back();
409
        m.replace_instruction(ins, hip_add_gelu{}, args);
kahmed10's avatar
kahmed10 committed
410
411
412
413
414
    }
};

struct find_gelu_new
{
kahmed10's avatar
kahmed10 committed
415
    bool fast_math = true;
kahmed10's avatar
kahmed10 committed
416

417
    auto matcher() const { return match::gelu_tanh(&gpu_name); }
kahmed10's avatar
kahmed10 committed
418

419
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
420
421
422
423
424
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto args  = ins->inputs();

Paul Fultz II's avatar
Paul Fultz II committed
425
        if(fast_math)
426
            m.replace_instruction(ins, hip_gelu{}, x_ins, args.back());
Paul Fultz II's avatar
Paul Fultz II committed
427
        else
428
            m.replace_instruction(ins, hip_gelu_new{}, x_ins, args.back());
kahmed10's avatar
kahmed10 committed
429
430
431
432
433
434
435
436
437
438
    }
};

struct find_add_gelu_new
{
    auto matcher() const
    {
        return match::name("gpu::gelu_new")(match::arg(0)(match::name("gpu::add").bind("add")));
    }

439
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
440
441
442
443
444
445
446
447
    {
        auto add_ins = r.instructions["add"];
        auto ins     = r.result;
        auto args    = add_ins->inputs();
        move_standard_front(args);
        move_broadcasted_back(args);

        args.back() = ins->inputs().back();
448
        m.replace_instruction(ins, hip_add_gelu_new{}, args);
kahmed10's avatar
kahmed10 committed
449
450
451
    }
};

kahmed10's avatar
kahmed10 committed
452
453
454
455
456
457
struct find_add_clip
{
    auto matcher() const
    {
        return match::name(std::unordered_set<std::string>{"gpu::clip", "gpu::clipped_relu"})(
            match::arg(0)(match::any_of(match::name("gpu::add"),
kahmed10's avatar
kahmed10 committed
458
                                        match::name("gpu::triadd"),
kahmed10's avatar
kahmed10 committed
459
460
461
462
                                        match::any_of[match::inputs()](match::standard_shape()))
                              .bind("add")));
    }

463
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
464
    {
kahmed10's avatar
kahmed10 committed
465
466
467
468
469
470
471
472
473
474
        auto add_ins  = r.instructions["add"];
        auto ins      = r.result;
        auto ins_args = ins->inputs();
        auto add_args = add_ins->inputs();
        move_standard_front(add_args);
        move_broadcasted_back(add_args);

        // Use the allocation from the clip operator
        add_args.pop_back();
        add_args.insert(add_args.end(), std::next(ins_args.begin()), ins_args.end());
kahmed10's avatar
kahmed10 committed
475
        if(add_ins->name() == "gpu::add")
476
            m.replace_instruction(ins, hip_add_clip{}, add_args);
kahmed10's avatar
kahmed10 committed
477
        else if(add_ins->name() == "gpu::triadd")
478
            m.replace_instruction(ins, hip_triadd_clip{}, add_args);
kahmed10's avatar
kahmed10 committed
479
480
481
    }
};

482
struct find_add_unary
Paul's avatar
Paul committed
483
{
484
485
486
    std::string op_name;
    operation binary_add_op;
    operation ternary_add_op;
Paul's avatar
Paul committed
487
488
    auto matcher() const
    {
489
        return match::name(op_name)(match::arg(0)(
Paul's avatar
Paul committed
490
            match::used_once(),
Paul's avatar
Paul committed
491
            match::any_of(match::name("gpu::add"),
kahmed10's avatar
kahmed10 committed
492
                          match::name("gpu::triadd"),
Paul's avatar
Paul committed
493
494
495
                          match::any_of(match::name("@literal"),
                                        match::any_of[match::inputs()](match::standard_shape())))
                .bind("add")));
Paul's avatar
Paul committed
496
    }
Paul's avatar
Paul committed
497

498
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
499
    {
Paul's avatar
Paul committed
500
        auto add_ins = r.instructions["add"];
Paul's avatar
Paul committed
501
502
        auto ins     = r.result;
        auto args    = add_ins->inputs();
Paul's avatar
Paul committed
503
504
505
        move_standard_front(args);
        move_broadcasted_back(args);

Paul's avatar
Paul committed
506
        // Use the allocation from the relu operator
Paul's avatar
Paul committed
507
        args.back() = ins->inputs().back();
Paul's avatar
Paul committed
508
        if(add_ins->name() == "gpu::add")
509
            m.replace_instruction(ins, binary_add_op, args);
kahmed10's avatar
kahmed10 committed
510
        else if(add_ins->name() == "gpu::triadd")
511
            m.replace_instruction(ins, ternary_add_op, args);
Paul's avatar
Paul committed
512
513
514
    }
};

Paul's avatar
Paul committed
515
struct find_triadd
Paul's avatar
Paul committed
516
517
518
{
    auto matcher() const
    {
Paul's avatar
Paul committed
519
        return match::name("gpu::add")(match::either_arg(0, 1)(
Paul's avatar
Paul committed
520
            match::name("gpu::add")(match::used_once()).bind("add"),
Paul's avatar
Paul committed
521
522
523
            match::any(match::any_of(match::name("@literal"),
                                     match::any_of[match::inputs()](match::standard_shape())))
                .bind("input")));
Paul's avatar
Paul committed
524
525
    }

526
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
527
    {
Paul's avatar
Paul committed
528
529
530
531
        auto add_ins   = r.instructions["add"];
        auto input_ins = r.instructions["input"];
        auto ins       = r.result;
        auto args      = add_ins->inputs();
532

Paul's avatar
Paul committed
533
        auto is_broadcasted = [](auto arg) { return arg->get_shape().broadcasted(); };
534
        if(std::count_if(args.begin(), args.end(), is_broadcasted) > 2)
Paul's avatar
Paul committed
535
536
            return;
        args.insert(args.begin(), input_ins);
Paul's avatar
Paul committed
537
538
539
        move_standard_front(args);
        move_broadcasted_back(args);

Paul's avatar
Paul committed
540
        args.back() = ins->inputs().back();
541
        m.replace_instruction(ins, hip_triadd{}, args);
Paul's avatar
Paul committed
542
    }
Paul's avatar
Paul committed
543
544
};

Paul's avatar
Paul committed
545
546
547
548
struct find_mul_add
{
    auto matcher() const
    {
Paul's avatar
Paul committed
549
550
        return match::name("gpu::add")(match::either_arg(0, 1)(
            match::name("gpu::mul")(match::used_once()).bind("mul"), match::any().bind("b")));
Paul's avatar
Paul committed
551
552
    }

553
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
554
    {
Paul's avatar
Paul committed
555
556
557
558
        auto mul_ins = r.instructions["mul"];
        auto b_ins   = r.instructions["b"];
        auto ins     = r.result;
        auto args    = mul_ins->inputs();
Paul's avatar
Paul committed
559
560
561
562
563
564
565
        assert(mul_ins != b_ins);

        move_standard_front(args);
        move_broadcasted_back(args);
        args.insert(std::prev(args.end()), b_ins);

        args.back() = ins->inputs().back();
566
        m.replace_instruction(ins, hip_mul_add{}, args);
Paul's avatar
Paul committed
567
568
569
    }
};

Paul's avatar
Paul committed
570
571
572
573
struct find_mul_add_relu
{
    auto matcher() const
    {
Paul's avatar
Paul committed
574
        return match::name("gpu::relu")(
kahmed10's avatar
kahmed10 committed
575
            match::arg(0)(match::name("gpu::mul_add")(match::used_once()).bind("mul_add")));
Paul's avatar
Paul committed
576
577
    }

578
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
579
580
    {
        auto mul_add_ins = r.instructions["mul_add"];
Paul's avatar
Paul committed
581
582
        auto ins         = r.result;
        auto args        = mul_add_ins->inputs();
Paul's avatar
Paul committed
583
584
585

        // Use the allocation from the relu operator
        args.back() = ins->inputs().back();
586
        m.replace_instruction(ins, hip_mul_add_relu{}, args);
Paul's avatar
Paul committed
587
588
589
    }
};

590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
struct miopen_fusion
{
    struct fuse_op_data
    {
        operation op;
        float alpha = 1;
        float beta  = 0;
    };
    struct fuse_op : fuse_op_data, reflect_equality<fuse_op>, reflect_stream<fuse_op>
    {
        template <class Self, class F>
        static auto reflect(Self& self, F f)
        {
            return pack(f(self.op, "op"), f(self.alpha, "alpha"), f(self.beta, "beta"));
        }
    };
    std::vector<fuse_op> ops = {};
    fusion f                 = {};
    std::function<void(context&, const fusion&, const std::vector<argument>&)> execute;
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return pack(f(self.ops, "ops"));
    }

615
616
617
618
619
    std::ptrdiff_t output_alias(const std::vector<shape>& shapes) const
    {
        return shapes.size() - 1;
    }

620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
    value compile(context& ctx, const shape&, std::vector<shape> inputs)
    {
        // Compensate for allocation
        inputs.pop_back();
        std::size_t i = 0;
        f             = fusion(inputs[i]);
        i++;
        std::vector<std::function<void(const fused_operator_args&, const std::vector<argument>&)>>
            invokers;
        for(auto&& fop : ops)
        {
            if(i > inputs.size())
            {
                f = {};
                return {};
            }
            if(fop.op.name() == "convolution")
            {
                auto* mop = f.create_conv(any_cast<op::convolution>(fop.op), inputs[i]);
                invokers.push_back(
                    [=](const fused_operator_args& fargs, const std::vector<argument>& args) {
                        miopenSetOpArgsConvForward(
                            fargs.get(), mop, &fop.alpha, &fop.beta, args[i].implicit());
                    });
                i++;
            }
            else if(fop.op.name() == "add")
            {
                auto* mop = f.create_bias(inputs[i]);
                invokers.push_back(
                    [=](const fused_operator_args& fargs, const std::vector<argument>& args) {
                        miopenSetOpArgsBiasForward(
                            fargs.get(), mop, &fop.alpha, &fop.beta, args[i].implicit());
                    });
                i++;
            }
            else if(fop.op.name() == "relu")
            {
                auto* mop = f.create_relu();
                invokers.push_back([=](const fused_operator_args& fargs,
                                       const std::vector<argument>&) {
                    miopenSetOpArgsActivForward(fargs.get(), mop, &fop.alpha, &fop.beta, 0, 0, 0);
                });
            }
            else
            {
                f = {};
                return {};
            }
        }
        if(not f.compile(ctx))
        {
            f = {};
            return {};
        }
        execute = [invokers](context& c, const fusion& ff, const std::vector<argument>& args) {
            auto fargs = make_fused_args();
            for(auto&& invoker : invokers)
                invoker(fargs, args);
            ff.execute(c, fargs, args.front(), args.back());
        };
        return {{"workspace", f.get_workspace(ctx).bytes()}};
    }
    void finalize(context& ctx, const shape& output_shape, const std::vector<shape>& inputs)
    {
        if(not f.empty())
            return;
        auto v = compile(ctx, output_shape, inputs);
        if(not v.is_object())
            MIGRAPHX_THROW("Failed to compile fusion plan");
    }
    std::string name() const { return "gpu::miopen_fusion"; }
    shape compute_shape(const std::vector<shape>& inputs) const
    {
        if(ops.empty())
            return {};
        // TODO: Check number of arguments
        return ops.front().op.compute_shape({inputs[0], inputs[1]});
    }
    argument compute(context& ctx, const shape&, const std::vector<argument>& args) const
    {
        execute(ctx, f, args);
        return args.back();
    }
};
705
MIGRAPHX_REGISTER_OP(miopen_fusion)
706

Paul's avatar
Paul committed
707
708
709
struct miopen_conv_bias
{
    op::convolution op;
710
    fusion fp         = {};
711
712
    fusion::op_t conv = {};
    fusion::op_t bias = {};
Paul's avatar
Paul committed
713

Paul's avatar
Paul committed
714
715
716
717
718
719
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return op::convolution::reflect(self.op, f);
    }

Paul's avatar
Paul committed
720
721
722
723
724
    std::string name() const { return "gpu::conv_bias"; }
    shape compute_shape(const std::vector<shape>& inputs) const
    {
        check_shapes{inputs, *this}.has(5);
        // TODO: Check slices
kahmed10's avatar
kahmed10 committed
725
        return op.normalize_compute_shape({inputs.at(0), inputs.at(1)});
Paul's avatar
Paul committed
726
    }
Paul's avatar
Paul committed
727
    argument compute(context& ctx, const shape&, const std::vector<argument>& args) const
Paul's avatar
Paul committed
728
    {
Paul's avatar
Paul committed
729
        auto fargs  = make_fused_args();
Paul's avatar
Paul committed
730
        float alpha = 1;
Paul's avatar
Paul committed
731
        float beta  = 0;
Paul's avatar
Paul committed
732
733
        miopenSetOpArgsConvForward(fargs.get(), conv, &alpha, &beta, args[1].implicit());
        miopenSetOpArgsBiasForward(fargs.get(), bias, &alpha, &beta, args[3].implicit());
734
        return fp.execute(ctx, fargs, args[0], args[4]);
Paul's avatar
Paul committed
735
736
    }

737
738
    void finalize(context& ctx, const shape&, const std::vector<shape>& inputs)
    {
739
740
741
742
        fp   = fusion(inputs[0]);
        conv = fp.create_conv(op, inputs[1]);
        bias = fp.create_bias(inputs[3]);
        if(not fp.compile(ctx))
743
            MIGRAPHX_THROW("Failed to compile fusion plan");
744
745
    }

746
    shape get_workspace(context& ctx) { return fp.get_workspace(ctx); }
Paul's avatar
Paul committed
747
748
749
750
    std::ptrdiff_t output_alias(const std::vector<shape>& shapes) const
    {
        return shapes.size() - 1;
    }
Paul's avatar
Paul committed
751
};
752
MIGRAPHX_REGISTER_OP(miopen_conv_bias)
Paul's avatar
Paul committed
753

Paul's avatar
Add cbr  
Paul committed
754
755
756
struct miopen_conv_bias_relu
{
    op::convolution op;
757
    fusion fp         = {};
758
759
760
    fusion::op_t conv = {};
    fusion::op_t bias = {};
    fusion::op_t relu = {};
Paul's avatar
Add cbr  
Paul committed
761

Paul's avatar
Paul committed
762
763
764
765
766
767
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return op::convolution::reflect(self.op, f);
    }

Paul's avatar
Add cbr  
Paul committed
768
769
770
771
772
    std::string name() const { return "gpu::conv_bias_relu"; }
    shape compute_shape(const std::vector<shape>& inputs) const
    {
        check_shapes{inputs, *this}.has(5);
        // TODO: Check slices
kahmed10's avatar
kahmed10 committed
773
        return op.normalize_compute_shape({inputs.at(0), inputs.at(1)});
Paul's avatar
Add cbr  
Paul committed
774
    }
Paul's avatar
Paul committed
775
    argument compute(context& ctx, const shape&, const std::vector<argument>& args) const
Paul's avatar
Add cbr  
Paul committed
776
777
    {
        auto fargs  = make_fused_args();
Paul's avatar
Paul committed
778
        float alpha = 1;
Paul's avatar
Paul committed
779
        float beta  = 0;
Paul's avatar
Add cbr  
Paul committed
780
781
        miopenSetOpArgsConvForward(fargs.get(), conv, &alpha, &beta, args[1].implicit());
        miopenSetOpArgsBiasForward(fargs.get(), bias, &alpha, &beta, args[3].implicit());
Paul's avatar
Paul committed
782
        miopenSetOpArgsActivForward(fargs.get(), relu, &alpha, &beta, 0, 0, 0);
783
        return fp.execute(ctx, fargs, args[0], args[4]);
Paul's avatar
Add cbr  
Paul committed
784
    }
785
786
    void finalize(context& ctx, const shape&, const std::vector<shape>& inputs)
    {
787
788
789
790
791
        fp   = fusion(inputs[0]);
        conv = fp.create_conv(op, inputs[1]);
        bias = fp.create_bias(inputs[3]);
        relu = fp.create_relu();
        fp.compile(ctx);
792
793
    }

794
    shape get_workspace(context& ctx) { return fp.get_workspace(ctx); }
Paul's avatar
Paul committed
795
796
797
798
    std::ptrdiff_t output_alias(const std::vector<shape>& shapes) const
    {
        return shapes.size() - 1;
    }
Paul's avatar
Add cbr  
Paul committed
799
};
800
MIGRAPHX_REGISTER_OP(miopen_conv_bias_relu)
Paul's avatar
Add cbr  
Paul committed
801

Paul's avatar
Paul committed
802
template <class... Ms>
Paul's avatar
Add cbr  
Paul committed
803
804
auto conv_bias(Ms... ms)
{
Paul's avatar
Paul committed
805
    return match::name("gpu::add")(
Paul's avatar
Paul committed
806
807
        match::either_arg(0, 1)(bias_shape(match::used_once()).bind("bias"),
                                fusable_conv(match::used_once()).bind("conv")),
Paul's avatar
Paul committed
808
        ms...);
Paul's avatar
Paul committed
809
810
}

Paul's avatar
Paul committed
811
template <class Op>
812
void apply_conv_bias(context& ctx, module& m, const match::matcher_result& r)
Paul's avatar
Paul committed
813
814
815
816
817
818
819
820
821
822
{
    auto conv_ins    = r.instructions["conv"];
    auto bias_ins    = r.instructions["bias"];
    auto ins         = r.result;
    auto input_ins   = conv_ins->inputs().at(0);
    auto weights_ins = conv_ins->inputs().at(1);
    auto conv_op     = any_cast<miopen_convolution>(conv_ins->get_operator()).op;
    auto alloc_ins   = ins->inputs().back();
    auto old_ws_ins  = conv_ins->inputs().at(2);

823
    Op cb{conv_op};
Paul's avatar
Paul committed
824
    // TODO: Insert ws allocation
Paul's avatar
Paul committed
825
    auto ws = cb.get_workspace(ctx);
Paul's avatar
Paul committed
826
    (void)ws;
827
    m.replace_instruction(ins, cb, input_ins, weights_ins, old_ws_ins, bias_ins, alloc_ins);
Paul's avatar
Add cbr  
Paul committed
828
829
}

830
831
832
833
834
835
836
837
838
839
inline auto precompile_name(std::string s) // NOLINT
{
    return match::make_basic_pred_matcher([=](instruction_ref ins) {
        if(ins->name() != "gpu::precompile_op")
            return false;
        auto op = from_value<operation>(ins->get_operator().to_value().at("op"));
        return (op.name() == s);
    });
}

Paul's avatar
Paul committed
840
struct find_conv_bias
Paul's avatar
Paul committed
841
{
Paul's avatar
Paul committed
842
    context* ctx = nullptr;
Paul's avatar
Paul committed
843
844
    auto matcher() const
    {
kahmed10's avatar
kahmed10 committed
845
846
        return conv_bias(match::none_of(
            match::output(match::name(std::unordered_set<std::string>{"gpu::relu"}))));
Paul's avatar
Paul committed
847
848
    }

849
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
850
    {
851
        apply_conv_bias<miopen_conv_bias>(*ctx, m, r);
Paul's avatar
Paul committed
852
853
854
    }
};

Paul's avatar
Paul committed
855
struct find_conv_bias_relu
Paul's avatar
Add cbr  
Paul committed
856
857
{
    context* ctx = nullptr;
Paul's avatar
Paul committed
858
    auto matcher() const { return match::name("gpu::relu")(match::arg(0)(conv_bias())); }
Paul's avatar
Add cbr  
Paul committed
859

860
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Add cbr  
Paul committed
861
    {
862
        apply_conv_bias<miopen_conv_bias_relu>(*ctx, m, r);
Paul's avatar
Add cbr  
Paul committed
863
864
    }
};
865

866
867
868
869
870
871
872
873
874
875
876
struct find_conv_pointwise
{
    context* ctx = nullptr;
    auto matcher() const
    {
        return precompile_name("pointwise")(
            match::nargs(3),
            match::either_arg(0, 1)(bias_shape(match::used_once()).bind("bias"),
                                    fusable_conv(match::used_once()).bind("conv")));
    }

877
    void apply(module& m, const match::matcher_result& r) const
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
    {
        auto conv_ins    = r.instructions["conv"];
        auto bias_ins    = r.instructions["bias"];
        auto ins         = r.result;
        auto input_ins   = conv_ins->inputs().at(0);
        auto weights_ins = conv_ins->inputs().at(1);
        auto conv_op     = any_cast<miopen_convolution>(conv_ins->get_operator()).op;
        auto alloc_ins   = ins->inputs().back();

        module_ref pm = ins->module_inputs().front();

        miopen_fusion op{};
        op.ops.push_back({{conv_op}});
        for(auto&& i : *pm)
        {
            if(i.name()[0] == '@')
                continue;
            op.ops.push_back({{i.get_operator()}});
        }
        std::vector<instruction_ref> inputs = {input_ins, weights_ins, bias_ins, alloc_ins};
        auto v                              = op.compile(*ctx, ins->get_shape(), to_shapes(inputs));
        if(not v.is_object())
            return;
        m.replace_instruction(ins, op, inputs);
    }
};

905
906
907
908
909
910
911
912
913
914
struct find_gemm_add
{
    auto matcher() const
    {
        return match::name("gpu::add")(
            match::all_of[match::inputs()](match::standard_shape()),
            match::either_arg(0, 1)(match::used_once().bind("c"),
                                    match::name("gpu::gemm")(match::nargs(3)).bind("gemm")));
    }

915
    void apply(module& m, const match::matcher_result& r) const
916
917
918
919
920
921
922
923
    {
        auto ins      = r.result;
        auto gemm_ins = r.instructions["gemm"];
        auto c_ins    = r.instructions["c"];

        auto gemm = any_cast<rocblas_gemm<op::dot>>(gemm_ins->get_operator());

        // Already fused gemm
924
        if(not float_equal(gemm.beta, 0))
925
926
927
928
929
930
931
932
            return;

        auto inputs = gemm_ins->inputs();
        inputs.pop_back();

        auto copy_ins = c_ins;

        // Insert copy
933
        if(ins == m.end() or c_ins->outputs().size() > 1 or c_ins->inputs().empty())
934
        {
935
            copy_ins = m.insert_instruction(ins, hip_copy{}, c_ins, ins->inputs().back());
936
937
938
939
        }
        inputs.push_back(copy_ins);
        inputs.push_back(copy_ins);

940
        gemm.beta = 1;
941
        m.replace_instruction(ins, gemm, inputs);
942
943
944
    }
};

945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
auto pointwise_name(const std::string& s)
{
    return precompile_name("pointwise")(match::make_basic_pred_matcher([=](auto ins) {
        module_ref pm = ins->module_inputs().front();
        auto n = std::count_if(pm->begin(), pm->end(), [&](auto& i) { return i.name() == s; });
        if(n != 1)
            return false;
        return std::all_of(pm->begin(), pm->end(), [&](auto& i) {
            return starts_with(i.name(), "@") or i.name() == s;
        });
    }));
}

struct find_gemm_pointwise
{
    auto matcher() const
    {
        return pointwise_name("add")(
            match::nargs(3),
            match::all_of[match::inputs()](match::standard_shape()),
            match::either_arg(0, 1)(match::used_once().bind("c"),
                                    match::name("gpu::gemm")(match::nargs(3)).bind("gemm")));
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins      = r.result;
        auto gemm_ins = r.instructions["gemm"];
        auto c_ins    = r.instructions["c"];

        auto gemm = any_cast<rocblas_gemm<op::dot>>(gemm_ins->get_operator());

        // Already fused gemm
        if(not float_equal(gemm.beta, 0))
            return;

        auto inputs = gemm_ins->inputs();
        inputs.pop_back();

        inputs.push_back(c_ins);
985
        inputs.push_back(ins->inputs().back());
986
987
988
989
990
991

        gemm.beta = 1;
        m.replace_instruction(ins, gemm, inputs);
    }
};

992
993
994
995
996
997
998
struct find_commutative_broadcast
{
    auto matcher() const
    {
        return match::name("gpu::add", "gpu::mul")(match::arg(1)(match::broadcast_shape()));
    }

999
    void apply(module& m, const match::matcher_result& r) const
1000
1001
1002
1003
1004
    {
        auto ins  = r.result;
        auto args = ins->inputs();
        move_broadcasted_back(args);

1005
        m.replace_instruction(ins, ins->get_operator(), args);
1006
1007
    }
};
Paul Fultz II's avatar
Paul Fultz II committed
1008
} // namespace
1009

1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
struct find_contiguous
{
    auto matcher() const { return match::name("gpu::contiguous"); }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins = r.result;

        m.replace_instruction(
            ins,
            make_op("gpu::precompile_op", {{"op", to_value(make_op("contiguous"))}}),
            ins->inputs());
    }
};

struct find_contiguous_pointwise
{
    auto matcher() const
    {
        return match::name("gpu::contiguous")(match::arg(0)(precompile_name("pointwise")));
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins    = r.result;
        auto pw     = ins->inputs().front();
        auto alloc  = ins->inputs().back();
        auto args   = pw->inputs();
        args.back() = alloc;

        m.replace_instruction(ins, pw->get_operator(), args, pw->module_inputs());
    }
};

1044
void fuse_ops::apply(module& m) const
Paul's avatar
Paul committed
1045
{
1046
    match::find_matches(m, find_contiguous_pointwise{}, find_gelu{}, find_gelu_new{fast_math});
1047
1048
1049
    run_passes(m, {dead_code_elimination{}});
    match::find_matches(m, find_triadd{});
    match::find_matches(m,
kahmed10's avatar
kahmed10 committed
1050
                        find_layernorm{},
1051
                        find_conv_pointwise{ctx},
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
                        find_conv_bias_relu{ctx},
                        find_conv_bias{ctx},
                        find_add_gelu{},
                        find_add_gelu_new{},
                        find_mul_add{},
                        find_mul_add_relu{},
                        find_add_unary{"gpu::relu", hip_add_relu{}, hip_triadd_relu{}},
                        find_add_unary{"gpu::sigmoid", hip_add_sigmoid{}, hip_triadd_sigmoid{}},
                        find_add_unary{"gpu::tanh", hip_add_tanh{}, hip_triadd_tanh{}},
                        find_add_clip{});
1062
    run_passes(m, {dead_code_elimination{}});
1063
1064
1065
1066
1067
    match::find_matches(m,
                        find_triadd_layernorm{},
                        find_gemm_add{},
                        find_gemm_pointwise{},
                        find_commutative_broadcast{});
1068
    match::find_matches(m, find_contiguous{});
Paul's avatar
Paul committed
1069
}
Paul's avatar
Paul committed
1070
1071

} // namespace gpu
Paul's avatar
Paul committed
1072
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1073
} // namespace migraphx