simplify_algebra.cpp 38.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
Paul's avatar
Paul committed
24
#include <migraphx/simplify_algebra.hpp>
Paul's avatar
Paul committed
25
#include <migraphx/dead_code_elimination.hpp>
Paul's avatar
Paul committed
26
#include <migraphx/program.hpp>
27
#include <migraphx/op/concat.hpp>
28
#include <migraphx/op/slice.hpp>
29
#include <migraphx/op/convolution.hpp>
Paul's avatar
Paul committed
30
#include <migraphx/op/broadcast.hpp>
31
32
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/transpose.hpp>
Paul's avatar
Paul committed
33
34
#include <migraphx/matcher.hpp>
#include <migraphx/literal.hpp>
35
36
37
#include <migraphx/make_op.hpp>
#include <migraphx/serialize.hpp>

38
#include <migraphx/algorithm.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
39
#include <unordered_set>
Paul's avatar
Paul committed
40

Paul's avatar
Paul committed
41
namespace migraphx {
Paul's avatar
Paul committed
42
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
43

Paul's avatar
Paul committed
44
auto lit_broadcast() { return match::any_of(match::is_constant(), match::name("broadcast")); }
Paul's avatar
Paul committed
45
auto not_lit_broadcast() { return match::none_of(match::is_constant(), match::name("broadcast")); }
Paul's avatar
Paul committed
46
47
auto op_lit_broadcast(std::string op, std::string x, std::string y)
{
Paul's avatar
Paul committed
48
49
    return match::name(std::move(op))(match::either_arg(0, 1)(
        lit_broadcast().bind(std::move(x)), not_lit_broadcast().bind(std::move(y))));
Paul's avatar
Paul committed
50
51
}

Paul's avatar
Paul committed
52
53
auto conv_const_weights()
{
Paul's avatar
Paul committed
54
    return match::name("convolution")(match::used_once(),
Paul's avatar
Paul committed
55
                                      match::args(match::any(), match::is_constant().bind("w")));
Paul's avatar
Paul committed
56
57
}

Shucai Xiao's avatar
Shucai Xiao committed
58
59
auto reduction() { return match::name_contains("reduce"); }

Paul's avatar
Paul committed
60
61
62
struct find_mul_conv
{
    auto matcher() const
Paul's avatar
Paul committed
63
    {
Paul's avatar
Paul committed
64
65
        return match::name("mul")(match::either_arg(0, 1)(conv_const_weights().bind("conv"),
                                                          match::name("broadcast").bind("a")));
Paul's avatar
Paul committed
66
    }
Paul's avatar
Paul committed
67

68
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
69
    {
Paul's avatar
Paul committed
70
        auto ins      = r.result;
Paul's avatar
Paul committed
71
        auto conv_ins = r.instructions["conv"];
Paul's avatar
Paul committed
72
73
74
        auto a_ins    = r.instructions["a"];
        auto w_ins    = r.instructions["w"];

Paul's avatar
Paul committed
75
        auto broadcast_op = any_cast<op::broadcast>(a_ins->get_operator());
Paul's avatar
Paul committed
76
        if(broadcast_op.axis != 1)
Paul's avatar
Paul committed
77
78
            return;

79
        auto new_a = m.insert_instruction(
80
            ins,
81
            make_op("broadcast", {{"axis", 0}, {"out_lens", w_ins->get_shape().lens()}}),
82
            a_ins->inputs().front());
83
84
        auto new_mul  = m.insert_instruction(ins, make_op("mul"), new_a, w_ins);
        auto new_conv = m.insert_instruction(
Paul's avatar
Paul committed
85
            ins, conv_ins->get_operator(), conv_ins->inputs().front(), new_mul);
86
        m.replace_instruction(ins, new_conv);
Paul's avatar
Paul committed
87
    }
Paul's avatar
Paul committed
88
89
};

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
struct find_mul_slice_conv
{
    static auto conv()
    {
        return match::name("convolution")(
            match::all_of[match::outputs()](match::name("slice")),
            match::args(match::any(), match::is_constant().bind("w")));
    }
    auto matcher() const
    {
        return match::name("mul")(match::either_arg(0, 1)(
            match::name("slice")(match::used_once(), match::arg(0)(conv().bind("conv")))
                .bind("slice"),
            match::name("broadcast")(match::is_constant()).bind("a")));
    }

106
    void apply(module& m, const match::matcher_result& r) const
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
    {
        auto ins       = r.result;
        auto slice_ins = r.instructions["slice"];
        auto conv_ins  = r.instructions["conv"];
        auto a_ins     = r.instructions["a"];
        auto w_ins     = r.instructions["w"];

        auto broadcast_op = any_cast<op::broadcast>(a_ins->get_operator());
        if(broadcast_op.axis != 1)
            return;

        auto slice_op = any_cast<op::slice>(slice_ins->get_operator());
        if(slice_op.axes.size() != 1)
            return;
        if(slice_op.axes.front() != 1)
            return;

        auto slice_idx = std::distance(conv_ins, slice_ins);
        if(std::any_of(conv_ins->outputs().begin(), conv_ins->outputs().end(), [&](auto i) {
               if(i == slice_ins)
                   return false;
               if(std::distance(conv_ins, i) < slice_idx)
                   return true;
               auto sop = any_cast<op::slice>(i->get_operator());
               if(sop.axes != slice_op.axes)
                   return true;
               if(std::max(sop.starts.front(), slice_op.starts.front()) <
                  std::min(sop.ends.front(), slice_op.ends.front()))
                   return true;
               return false;
           }))
            return;

        auto w_slice_op  = slice_op;
        w_slice_op.axes  = {0};
142
        auto slice_w_ins = m.insert_instruction(ins, w_slice_op, w_ins);
143

144
        auto new_a = m.insert_instruction(
145
            ins,
146
            make_op("broadcast", {{"axis", 0}, {"out_lens", slice_w_ins->get_shape().lens()}}),
147
            a_ins->inputs().front());
148
        auto new_mul = m.insert_instruction(ins, make_op("mul"), new_a, slice_w_ins);
149
150
151

        std::vector<instruction_ref> sliced_weights;
        if(slice_op.starts.front() != 0)
152
            sliced_weights.push_back(m.insert_instruction(
153
154
155
                ins,
                make_op("slice", {{"axes", {0}}, {"starts", {0}}, {"ends", slice_op.starts}}),
                w_ins));
156
157
158
        sliced_weights.push_back(new_mul);
        int64_t end_axis = w_ins->get_shape().lens().at(0);
        if(slice_op.ends.front() != end_axis)
159
            sliced_weights.push_back(m.insert_instruction(
160
161
162
                ins,
                make_op("slice", {{"axes", {0}}, {"starts", slice_op.ends}, {"ends", {end_axis}}}),
                w_ins));
163

164
        auto new_weights =
165
            m.insert_instruction(ins, make_op("concat", {{"axis", 0}}), sliced_weights);
166

167
        auto new_conv = m.insert_instruction(
168
169
170
            ins, conv_ins->get_operator(), conv_ins->inputs().front(), new_weights);
        assert(conv_ins->get_shape() == new_conv->get_shape());

171
        auto slice1 = m.insert_instruction(ins, slice_op, new_conv);
172
        assert(ins->get_shape().lens() == slice1->get_shape().lens());
173
        m.replace_instruction(ins, slice1);
174
        // TODO: Check each slice doesn't overlap and that it occurs after slice_ins
175
176
        auto outputs = conv_ins->outputs();
        for(auto output : outputs)
177
178
179
180
181
            if(output != slice_ins)
                instruction::replace_argument(output, conv_ins, new_conv);
    }
};

Paul's avatar
Paul committed
182
// a * (x + b) => a * x + a * b
Paul's avatar
Paul committed
183
184
185
186
187
struct find_mul_add
{
    auto matcher() const
    {
        return match::name("mul")(match::either_arg(0, 1)(
Paul's avatar
Paul committed
188
189
190
            match::name("add")(
                match::either_arg(0, 1)(
                    match::any().bind("x"),
Paul's avatar
Paul committed
191
                    match::any_of(conv_const_weights(), match::is_constant()).bind("b")),
Paul's avatar
Paul committed
192
                match::none_of(match::args(match::is_constant(), match::is_constant())),
Paul's avatar
Paul committed
193
                match::used_once()),
Paul's avatar
Paul committed
194
            match::is_constant().bind("a")));
Paul's avatar
Paul committed
195
196
    }

197
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
198
    {
Paul's avatar
Paul committed
199
        auto ins   = r.result;
Paul's avatar
Paul committed
200
        auto a_ins = r.instructions["a"];
Paul's avatar
Paul committed
201
        auto b_ins = r.instructions["b"];
Paul's avatar
Paul committed
202
        auto x_ins = r.instructions["x"];
Paul's avatar
Paul committed
203
        assert(x_ins != b_ins);
Paul's avatar
Paul committed
204

205
206
207
        auto ax_ins = m.insert_instruction(ins, make_op("mul"), a_ins, x_ins);
        auto ab_ins = m.insert_instruction(ins, make_op("mul"), a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), ax_ins, ab_ins);
Paul's avatar
Paul committed
208
209
210
    }
};

Paul's avatar
Paul committed
211
212
213
214
215
216
struct find_dot_add
{
    auto matcher() const
    {
        return match::name("dot")(match::either_arg(0, 1)(
            match::name("add")(
Paul's avatar
Format  
Paul committed
217
218
                match::either_arg(0, 1)(match::any().bind("x"),
                                        match::any_of(match::is_constant()).bind("b")),
Paul's avatar
Paul committed
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
                match::none_of(match::args(match::is_constant(), match::is_constant())),
                match::used_once()),
            match::is_constant().bind("a")));
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins   = r.result;
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];
        auto x_ins = r.instructions["x"];
        assert(x_ins != b_ins);

        const bool flipped = a_ins == ins->inputs().back();

        auto insert_dot = [&](auto x, auto y) {
Paul's avatar
Format  
Paul committed
235
            if(flipped)
Paul's avatar
Paul committed
236
                return m.insert_instruction(ins, make_op("dot"), y, x);
Paul's avatar
Format  
Paul committed
237
            else
Paul's avatar
Paul committed
238
239
240
241
242
243
244
245
246
                return m.insert_instruction(ins, make_op("dot"), x, y);
        };

        auto ax_ins = insert_dot(a_ins, x_ins);
        auto ab_ins = insert_dot(a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), ax_ins, ab_ins);
    }
};

Paul's avatar
Paul committed
247
struct find_add_lit_broadcast
Paul's avatar
Paul committed
248
249
250
251
252
253
254
{
    auto matcher() const
    {
        return match::name("add")(
            match::either_arg(0, 1)(op_lit_broadcast("add", "a", "x"), lit_broadcast().bind("b")));
    }

255
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
256
257
258
259
260
261
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];

262
263
        auto sumab = m.insert_instruction(ins, make_op("add"), a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), x_ins, sumab);
Paul's avatar
Paul committed
264
265
266
267
    }
};

struct find_double_add_lit_broadcast
Paul's avatar
Paul committed
268
{
Paul's avatar
Paul committed
269
270
    auto matcher() const
    {
Paul's avatar
Paul committed
271
        return match::name("add")(
Paul's avatar
Paul committed
272
            match::args(op_lit_broadcast("add", "a", "x"), op_lit_broadcast("add", "b", "y")));
Paul's avatar
Paul committed
273
274
    }

275
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
276
    {
Paul's avatar
Paul committed
277
278
279
280
281
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto y_ins = r.instructions["y"];
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];
Paul's avatar
Paul committed
282
283
284

        instruction_ref sumab;

Paul's avatar
Paul committed
285
        if(a_ins->name() == "broadcast" and b_ins->name() == "broadcast")
Paul's avatar
Paul committed
286
287
288
        {
            if(a_ins->inputs().at(0)->get_shape() != b_ins->inputs().at(0)->get_shape())
                return;
289
            auto op     = a_ins->get_operator();
290
            auto presum = m.insert_instruction(
291
                ins, make_op("add"), a_ins->inputs().at(0), b_ins->inputs().at(0));
292
            sumab = m.insert_instruction(ins, op, presum);
Paul's avatar
Paul committed
293
294
295
        }
        else
        {
296
            sumab = m.insert_instruction(ins, make_op("add"), a_ins, b_ins);
Paul's avatar
Paul committed
297
298
        }

299
300
        auto sumxy = m.insert_instruction(ins, make_op("add"), x_ins, y_ins);
        m.replace_instruction(ins, make_op("add"), sumxy, sumab);
Paul's avatar
Paul committed
301
302
303
    }
};

Paul's avatar
Paul committed
304
305
struct find_inner_broadcast
{
Paul's avatar
Format  
Paul committed
306
    auto matcher() const { return pointwise(match::all_of[match::inputs()](match::broadcast())); }
Paul's avatar
Paul committed
307

308
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
309
    {
Paul's avatar
Format  
Paul committed
310
        auto ins        = r.result;
311
        auto broadcasts = ins->inputs();
Paul's avatar
Format  
Paul committed
312
        if(broadcasts.empty())
Paul's avatar
Paul committed
313
            return;
Paul's avatar
Format  
Paul committed
314
315
316
        if(std::any_of(broadcasts.begin(), broadcasts.end(), [&](auto i) {
               return i->get_operator() != broadcasts.front()->get_operator();
           }))
317
318
            return;
        std::vector<instruction_ref> inputs;
Paul's avatar
Format  
Paul committed
319
320
321
322
323
324
        std::transform(broadcasts.begin(),
                       broadcasts.end(),
                       std::back_inserter(inputs),
                       [](auto i) { return i->inputs().front(); });
        if(std::any_of(inputs.begin(), inputs.end(), [&](auto i) {
               return i->get_shape() != inputs.front()->get_shape();
Paul's avatar
Format  
Paul committed
325
           }))
Paul's avatar
Paul committed
326
327
            return;

Paul's avatar
Format  
Paul committed
328
        auto op = m.insert_instruction(ins, ins->get_operator(), inputs);
329
        m.replace_instruction(ins, broadcasts.front()->get_operator(), op);
Paul's avatar
Paul committed
330
331
332
    }
};

333
struct find_concat_op
334
335
336
{
    auto matcher() const
    {
337
        return match::name("concat")(match::any_of[match::inputs()](
338
            match::any_of(match::pointwise(), match::name("broadcast")), match::used_once()));
339
340
    }

341
342
    template <class Iterator>
    static std::vector<std::size_t> get_output_lens(Iterator start, Iterator last, std::size_t axis)
343
    {
344
345
346
        assert(start != last);
        std::size_t dim = 0;
        for(auto ins : range(start, last))
347
        {
348
            dim += ins->get_shape().lens().at(axis);
349
        }
350
351
352
        auto lens  = (*start)->get_shape().lens();
        lens[axis] = dim;
        return lens;
353
354
    }

355
356
357
358
359
    static bool is_valid_op(const operation& op)
    {
        return op.name() == "broadcast" or op.attributes().contains("pointwise");
    }

360
    void apply(module& m, const match::matcher_result& r) const
361
    {
362
363
        auto ins  = r.result;
        auto axis = any_cast<op::concat>(ins->get_operator()).axis;
364

365
366
367
368
369
370
        auto each = [&](auto start, auto last) -> std::vector<instruction_ref> {
            if(std::distance(start, last) < 2)
                return {start, last};
            auto x = *start;
            if(x->inputs().size() > 2 or x->inputs().empty() or x->outputs().size() > 1)
                return {start, last};
371
372
            auto op = x->get_operator();
            if(not is_valid_op(op))
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
                return {start, last};
            auto iaxis = axis;
            // Adjust broadcast lens
            if(op.name() == "broadcast")
            {
                auto b = any_cast<op::broadcast>(op);
                if(b.axis != iaxis)
                    return {start, last};
                b.broadcast_lens = get_output_lens(start, last, iaxis);
                op               = b;
                iaxis            = 0;
            }

            std::vector<instruction_ref> concats;
            for(std::size_t i = 0; i < x->inputs().size(); i++)
            {
                std::vector<instruction_ref> inputs;
                std::transform(start, last, std::back_inserter(inputs), [&](auto j) {
                    return j->inputs().at(i);
                });
393
                auto concat =
394
                    m.insert_instruction(ins, make_op("concat", {{"axis", iaxis}}), inputs);
395
396
                concats.push_back(concat);
            }
397
            auto y = m.insert_instruction(ins, op, concats);
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
            return {y};
        };

        std::vector<instruction_ref> args;
        auto update_args = [&](auto start, auto last) {
            auto x = each(start, last);
            args.insert(args.end(), x.begin(), x.end());
        };
        auto pred = [](auto i, auto j) {
            return i->get_operator() == j->get_operator() and
                   i->inputs().size() == i->inputs().size() and
                   i->outputs().size() == i->outputs().size();
        };
        group_unique(ins->inputs().begin(), ins->inputs().end(), update_args, pred);
        if(args.size() == 1)
413
            m.replace_instruction(ins, args.front());
414
        else
415
            m.replace_instruction(ins, make_op("concat", {{"axis", axis}}), args);
416
417
418
    }
};

419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
std::vector<instruction_ref> get_splits(instruction_ref ins)
{
    std::vector<instruction_ref> result;
    std::copy_if(ins->outputs().begin(),
                 ins->outputs().end(),
                 std::back_inserter(result),
                 [&](auto i) { return i->name() == "slice"; });
    if(result.size() < 2)
        return {};
    auto get_slice = [](auto& i) -> auto& { return any_cast<op::slice>(i->get_operator()); };
    auto&& axes    = get_slice(result.front()).axes;
    if(std::any_of(result.begin(), result.end(), [&](auto i) { return get_slice(i).axes != axes; }))
        return {};
    auto get_start = [&](auto& i) -> auto& { return get_slice(i).starts; };
    auto get_end   = [&](auto& i) -> auto& { return get_slice(i).ends; };
    std::sort(
        result.begin(), result.end(), [&](auto x, auto y) { return get_start(x) < get_start(y); });
    if(std::any_of(get_start(result.front()).begin(), get_start(result.front()).end(), [&](auto i) {
           return i != 0;
       }))
        return {};
    auto it = std::adjacent_find(
        result.begin(), result.end(), [&](auto x, auto y) { return get_end(x) != get_start(y); });
    if(it != result.end())
        return {};
    for(std::size_t i = 0; i < axes.size(); i++)
    {
        auto axis = axes[i];
        if(ins->get_shape().lens()[axis] != get_slice(result.back()).ends[i])
            return {};
    }
    return result;
}

struct find_splits
{
    auto matcher() const
    {
Paul's avatar
Format  
Paul committed
457
458
459
        return match::any(
            match::any_of[match::outputs()](match::name("slice")(match::any_of[match::outputs()](
                match::pointwise(match::any_of(match::nargs(1), match::nargs(2))), reduction()))));
460
461
    }

Shucai Xiao's avatar
Shucai Xiao committed
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
    static bool is_dependent(const module& m, instruction_ref ins1, instruction_ref ins2)
    {

        std::unordered_set<instruction_ref> traversed;
        return fix<bool>([&](auto self, auto ins) -> bool {
            if(ins == ins2)
                return true;

            if(contains(traversed, ins))
                return false;

            traversed.insert(ins);
            const auto& inputs = ins->inputs();
            return std::any_of(inputs.begin(), inputs.end(), [&](auto in) {
                return m.has_instruction(in) and self(in);
            });
        })(ins1);
    }

481
    static std::vector<std::vector<instruction_ref>>
Shucai Xiao's avatar
Shucai Xiao committed
482
    get_split_groups(const module& m, const std::vector<instruction_ref>& splits)
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
    {
        std::vector<std::vector<instruction_ref>> groups;
        for(auto out : splits.front()->outputs())
        {
            if(out->name() == "slice")
                continue;
            std::vector<instruction_ref> group;
            for(auto split : splits)
            {
                auto it =
                    std::find_if(split->outputs().begin(), split->outputs().end(), [&](auto i) {
                        return i->get_operator() == out->get_operator();
                    });
                if(it == split->outputs().end())
                    break;
                assert((*it)->name() != "slice");
Shucai Xiao's avatar
Shucai Xiao committed
499

500
                // If there is a duplicate bail
Shucai Xiao's avatar
Shucai Xiao committed
501
502
503
504
505
                // there are should be no dependency between instructions in the group
                if(std::any_of(group.begin(), group.end(), [&](auto i) {
                       return is_dependent(m, *it, i) or is_dependent(m, i, *it);
                   }))
                {
506
                    return {};
Shucai Xiao's avatar
Shucai Xiao committed
507
508
                }

509
510
511
512
513
514
515
516
517
                group.push_back(*it);
            }
            if(group.size() != splits.size())
                continue;
            groups.push_back(group);
        }
        return groups;
    }

Shucai Xiao's avatar
Shucai Xiao committed
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
    bool is_fusable(instruction_ref start, instruction_ref split_front) const
    {
        auto op = start->get_operator();
        if(contains(op.name(), "reduce"))
        {
            auto slc         = any_cast<op::slice>(split_front->get_operator());
            auto slc_axes    = slc.axes;
            auto reduce_axes = start->get_operator().to_value()["axes"].to_vector<int64_t>();
            // axes of slice and reduce op cannot have overlap
            if(std::any_of(slc_axes.begin(), slc_axes.end(), [&](auto axis) {
                   return (std::find(reduce_axes.begin(), reduce_axes.end(), axis) !=
                           reduce_axes.end());
               }))
            {
                return false;
            }
        }
        else if(not op.attributes().contains("pointwise"))
        {
            return false;
        }

        return true;
    }

543
    void apply(module& m, const match::matcher_result& r) const
544
    {
Shucai Xiao's avatar
Shucai Xiao committed
545
        auto ins    = r.result;
546
547
548
        auto splits = get_splits(ins);
        if(splits.empty())
            return;
Shucai Xiao's avatar
Shucai Xiao committed
549

550
        for(const auto& group : get_split_groups(m, splits))
551
        {
Shucai Xiao's avatar
Shucai Xiao committed
552
553
554
555
556
            auto start       = group.front();
            auto split_front = splits.front();
            auto op          = start->get_operator();
            if(not is_fusable(start, split_front))
            {
557
                continue;
Shucai Xiao's avatar
Shucai Xiao committed
558
            }
559
560
561
562
563
564

            // Make sure there is no duplicates
            assert(std::none_of(
                std::next(group.begin()), group.end(), [&](auto i) { return i == start; }));

            auto split_idx    = 0;
565
            instruction_ref c = m.end();
566
567
            if(start->inputs().size() == 1)
            {
568
                c = m.insert_instruction(std::next(ins), op, ins);
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
            }
            else if(start->inputs().size() == 2)
            {
                assert(not std::none_of(start->inputs().begin(), start->inputs().end(), [](auto i) {
                    return i->name() == "slice";
                }) && "one argument must be a split");
                auto data_idx = 1;
                if(start->inputs().back()->name() == "slice")
                {
                    split_idx = 1;
                    data_idx  = 0;
                }

                std::vector<instruction_ref> data_args;
                std::transform(group.begin(),
                               group.end(),
                               std::back_inserter(data_args),
                               [&](auto i) { return i->inputs()[data_idx]; });

                // Data arguments must be a constant
                if(std::any_of(data_args.begin(), data_args.end(), [](auto i) {
                       return not i->can_eval();
                   }))
                    return;

                for(auto data : data_args)
595
                    m.move_instructions(data, ins);
596
597
598
599
600
601
602

                auto slice_op = any_cast<op::slice>(splits.front()->get_operator());
                assert(not slice_op.axes.empty());
                if(slice_op.axes.size() > 1)
                    return;
                auto concat_axis = slice_op.axes.front();
                // TODO: Check if axises match
603
                auto concat = m.insert_instruction(
604
                    ins, make_op("concat", {{"axis", concat_axis}}), data_args);
605
606
607
608
609

                std::vector<instruction_ref> args;
                args.resize(2);
                args[split_idx] = ins;
                args[data_idx]  = concat;
610
                c               = m.insert_instruction(std::next(ins), op, args);
611
            }
612
            if(c != m.end())
613
614
615
616
617
618
            {
                for(auto i : group)
                {
                    auto split = i->inputs()[split_idx];
                    assert(split->name() == "slice");
                    // Insert contiguous for reshapes
619
620
                    auto outputs = i->outputs();
                    for(auto output : outputs)
621
622
623
                    {
                        if(not contains({"reshape", "squeeze", "unsqueeze"}, output->name()))
                            continue;
624
                        auto x =
625
626
                            m.insert_instruction(output, make_op("contiguous"), output->inputs());
                        m.replace_instruction(output, output->get_operator(), x);
627
628
                    }

629
                    m.replace_instruction(i, split->get_operator(), c);
630
631
632
633
634
635
636
637
638
639
640
641
642
643
                }
            }
        }
    }
};

struct find_split_concat
{
    auto matcher() const
    {
        return match::any(match::any_of[match::outputs()](
            match::name("slice")(match::all_of[match::outputs()](match::name("concat")))));
    }

644
    void apply(module& m, const match::matcher_result& r) const
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
    {
        auto ins = r.result;

        auto splits = get_splits(ins);
        if(splits.empty())
            return;
        if(std::any_of(
               splits.begin(), splits.end(), [](auto i) { return i->outputs().size() != 1; }))
            return;
        // Check for concat operator
        auto concat = splits.front()->outputs().front();
        if(std::any_of(splits.begin(), splits.end(), [&](auto i) {
               return i->outputs().front() != concat;
           }))
            return;
        // Check axis match
        auto concat_op = any_cast<op::concat>(concat->get_operator());
        auto split_op  = any_cast<op::slice>(splits.front()->get_operator());
        if(split_op.axes.size() != 1)
            return;
        if(split_op.axes.front() != concat_op.axis)
            return;
        // Replace args
        auto args = concat->inputs();
        auto it =
            std::find_if(args.begin(), args.end(), [&](auto i) { return i == splits.front(); });
        if(std::distance(it, args.end()) < splits.size())
            return;
673
674
675
676
677
678
679
        // If the slices are not in order then stop
        if(not std::is_sorted(it, it + splits.size(), [](instruction_ref x, instruction_ref y) {
               auto xop = any_cast<op::slice>(x->get_operator());
               auto yop = any_cast<op::slice>(y->get_operator());
               return std::tie(xop.starts, xop.ends) < std::tie(yop.starts, yop.ends);
           }))
            return;
680
681
682
683
        *it = splits.front()->inputs().front();
        args.erase(std::next(it), it + splits.size());

        if(args.size() == 1)
684
            m.replace_instruction(concat, args.front());
685
        else
686
            m.replace_instruction(concat, concat->get_operator(), args);
687
688
689
    }
};

690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
bool axis_equal(const std::vector<std::size_t>& x,
                const std::vector<std::size_t>& y,
                std::size_t axis)
{
    return x.size() == y.size() and x.size() > axis and
           std::equal(x.begin(), x.begin() + axis, y.begin()) and
           std::equal(x.begin() + axis + 1, x.end(), y.begin() + axis + 1);
}

bool axis_shape_equal(const shape& x, const shape& y, std::size_t axis)
{
    // TODO: Check strides
    return axis_equal(x.lens(), y.lens(), axis);
}

struct find_add_convs
{
    auto matcher() const
    {
        return match::name("add")(
            match::args(conv_const_weights().bind("a"), conv_const_weights().bind("b")));
    }

    static bool symmetrical_strides(const op::convolution& op)
    {
        return op.stride[0] == op.stride[1];
    }

    static std::size_t compute_stride_factor(const op::convolution& x, const op::convolution& y)
    {
        if(not symmetrical_strides(x))
            return 0;
        if(not symmetrical_strides(y))
            return 0;
        if((x.stride[0] % y.stride[0]) != 0)
            return 0;
        return x.stride[0] / y.stride[0];
    }

729
    void apply(module& m, const match::matcher_result& r) const
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
    {
        auto ins       = r.result;
        auto a_conv    = r.instructions["a"];
        auto a_input   = a_conv->inputs().at(0);
        auto a_weights = a_conv->inputs().at(1);
        auto b_conv    = r.instructions["b"];
        auto b_input   = b_conv->inputs().at(0);
        auto b_weights = b_conv->inputs().at(1);

        if(not axis_shape_equal(a_weights->get_shape(), b_weights->get_shape(), 1))
            return;

        auto a_op   = any_cast<op::convolution>(a_conv->get_operator());
        auto b_op   = any_cast<op::convolution>(b_conv->get_operator());
        auto new_op = a_op;

        if(a_op != b_op)
        {
            if(std::tie(a_op.padding, a_op.dilation, a_op.group) ==
                   std::tie(b_op.padding, b_op.dilation, b_op.group) and
               a_weights->get_shape().lens()[2] == 1 and a_weights->get_shape().lens()[3] == 1)
            {
                if(a_op.stride < b_op.stride)
                {
                    auto n = compute_stride_factor(b_op, a_op);
                    if(n == 0)
                        return;
                    new_op  = a_op;
758
                    b_input = m.insert_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
759
                        ins, make_op("step", {{"axes", {2, 3}}, {"steps", {n, n}}}), b_input);
760
761
762
763
764
765
766
                }
                else if(b_op.stride < a_op.stride)
                {
                    auto n = compute_stride_factor(a_op, b_op);
                    if(n == 0)
                        return;
                    new_op  = b_op;
767
                    a_input = m.insert_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
768
                        ins, make_op("step", {{"axes", {2, 3}}, {"steps", {n, n}}}), a_input);
769
770
771
772
773
774
775
776
                }
                else
                    return;
            }
            else
                return;
        }

777
        auto concat_input =
778
            m.insert_instruction(ins, make_op("concat", {{"axis", 1}}), a_input, b_input);
779
        auto concat_weights =
780
781
            m.insert_instruction(ins, make_op("concat", {{"axis", 1}}), a_weights, b_weights);
        m.replace_instruction(ins, new_op, concat_input, concat_weights);
782
783
784
    }
};

785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
MIGRAPHX_PRED_MATCHER(horiz_conv_dot, instruction_ref ins)
{
    auto pred = [&](auto name) {
        return [=](auto i) {
            return i->name() == name and i->inputs().front() == ins and
                   i->inputs().at(1)->can_eval();
        };
    };
    auto dots  = std::count_if(ins->outputs().begin(), ins->outputs().end(), pred("dot"));
    auto convs = std::count_if(ins->outputs().begin(), ins->outputs().end(), pred("convolution"));
    return !(dots < 2 and convs < 2);
}

struct find_conv_dot_horiz_fusion
{
    auto matcher() const { return horiz_conv_dot(); }

802
    void apply(module& m, const match::matcher_result& r) const
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
    {
        auto ins = r.result;

        auto pred = [](auto i, auto j) {
            if(i->get_operator() != j->get_operator())
                return false;
            if(not contains({"dot", "convolution"}, i->name()))
                return true;
            auto x = i->inputs()[1]->get_shape().lens();
            auto y = j->inputs()[1]->get_shape().lens();
            if(x.size() != y.size())
                return false;
            // Check that non-axises match
            int axis = 1;
            if(i->name() == "dot")
            {
                axis = x.size() - 1;
            }
            return axis_equal(x, y, axis);
        };

        auto each = [&](auto start, auto last) {
            if(std::distance(start, last) < 2)
                return;
            auto&& name = (*start)->name();
            if(not contains({"dot", "convolution"}, name))
                return;
830
831
832
833
834
835
836
            auto op   = (*start)->get_operator();
            int group = 1;
            if(name == "convolution")
                group = any_cast<op::convolution>(op).group;
            // Skip group convolution
            if(group != 1)
                return;
837
838
839
840
841
842
843
844
845
846
847
848
849
            auto input = (*start)->inputs().front();
            std::vector<instruction_ref> args;
            std::transform(
                start, last, std::back_inserter(args), [&](auto x) { return x->inputs().at(1); });
            int axis        = 1;
            int concat_axis = 0;
            if(name == "dot")
            {
                axis        = int(args.front()->get_shape().lens().size() - 1);
                concat_axis = axis;
            }

            for(auto arg : args)
850
                m.move_instructions(arg, input);
851
            // TODO: Check if axises match
852
            auto concat =
853
854
                m.insert_instruction(input, make_op("concat", {{"axis", concat_axis}}), args);
            auto fused     = m.insert_instruction(std::next(input), op, input, concat);
855
856
857
858
            int64_t offset = 0;
            for(auto arg : range(start, last))
            {
                int64_t len = arg->get_shape().lens()[axis];
859
                m.replace_instruction(
860
861
862
863
                    arg,
                    make_op("slice",
                            {{"axes", {axis}}, {"starts", {offset}}, {"ends", {offset + len}}}),
                    fused);
864
865
866
867
868
869
870
871
872
                offset += len;
            }
        };

        auto outputs = ins->outputs();
        group_by(outputs.begin(), outputs.end(), each, pred);
    }
};

873
874
875
876
877
878
879
struct find_div_const
{
    auto matcher() const
    {
        return match::name("div")(match::arg(1)(match::is_constant().bind("c")));
    }

880
    void apply(module& m, const match::matcher_result& r) const
881
882
883
884
    {
        auto ins   = r.result;
        auto c_ins = r.instructions["c"];

885
        auto recip = m.insert_instruction(std::next(c_ins), make_op("recip"), c_ins);
886
887
888

        auto args = ins->inputs();

889
        m.replace_instruction(ins, make_op("mul"), args.front(), recip);
890
891
892
893
894
895
896
897
898
899
    }
};

struct find_sub_const
{
    auto matcher() const
    {
        return match::name("sub")(match::arg(1)(match::is_constant().bind("c")));
    }

900
    void apply(module& m, const match::matcher_result& r) const
901
902
903
904
    {
        auto ins   = r.result;
        auto c_ins = r.instructions["c"];

905
        auto neg = m.insert_instruction(std::next(c_ins), make_op("neg"), c_ins);
906
907
908

        auto args = ins->inputs();

909
        m.replace_instruction(ins, make_op("add"), args.front(), neg);
910
911
912
    }
};

kahmed10's avatar
kahmed10 committed
913
914
915
916
917
918
919
920
struct find_rsqrt
{
    auto matcher() const
    {
        return match::name("recip")(match::args(
            match::name("sqrt")(match::used_once(), match::args(match::any().bind("x")))));
    }

921
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
922
923
924
925
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];

926
        m.replace_instruction(ins, make_op("rsqrt"), x_ins);
kahmed10's avatar
kahmed10 committed
927
928
929
    }
};

930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
static bool same_ops(const std::vector<instruction_ref>& vec_ins)
{
    return std::all_of(vec_ins.begin(), vec_ins.end(), [&](auto i) {
        return i->get_operator() == vec_ins.front()->get_operator();
    });
}

struct find_split_reshape
{
    auto matcher() const
    {
        return match::name("reshape")(match::arg(0)(match::name("contiguous")(
                                          match::arg(0)(match::name("slice").bind("slice")))))
            .bind("reshape");
    }

946
    void apply(module& m, const match::matcher_result& r) const
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
    {
        auto slc = r.instructions["slice"];
        auto rsp = r.instructions["reshape"];

        auto input         = slc->inputs().front();
        auto split_outputs = get_splits(input);
        if(split_outputs.empty())
        {
            return;
        }

        std::vector<instruction_ref> vec_rsp(split_outputs.size());
        std::transform(split_outputs.begin(), split_outputs.end(), vec_rsp.begin(), [](auto i) {
            assert(i->outputs().size() == 1);
            auto cont = i->outputs().front();
            assert(cont->outputs().size() == 1);
            return cont->outputs().front();
        });

        // all outputs are reshape and of the same shape
        auto dims = any_cast<op::reshape>(rsp->get_operator()).dims;
        if(!same_ops(vec_rsp))
        {
            return;
        }

        // ensure reshape happens after the axis dimension
974
975
976
977
978
979
980
981
982
983
984
985
        auto axis         = any_cast<op::slice>(slc->get_operator()).axes[0];
        auto slc_lens     = slc->get_shape().lens();
        auto slc_dim_size = std::accumulate(
            slc_lens.begin() + axis, slc_lens.end(), 1, std::multiplies<std::size_t>());

        // search the reshape output (standard shape) to decide which axis are
        // in its output corresponding to the slc_dim_size
        auto rsp_lens    = rsp->get_shape().lens();
        auto rsp_strides = rsp->get_shape().strides();
        rsp_strides.insert(rsp_strides.begin(), rsp_strides[0] * rsp_lens[0]);
        auto ait = std::find(rsp_strides.begin(), rsp_strides.end(), slc_dim_size);
        if(ait == rsp_strides.end())
986
987
988
        {
            return;
        }
989
        int rsp_axis = std::distance(rsp_strides.begin(), ait);
990
991

        // calculate reshape output shape
992
993
994
995
996
997
998
        std::vector<int64_t> vec_dims(vec_rsp.size());
        std::transform(vec_rsp.begin(), vec_rsp.end(), vec_dims.begin(), [&](auto is) {
            return is->get_shape().lens()[rsp_axis];
        });

        std::vector<int64_t> rsp_out_lens(rsp_lens.begin(), rsp_lens.end());
        rsp_out_lens[rsp_axis] = std::accumulate(vec_dims.begin(), vec_dims.end(), std::int64_t{0});
999
1000

        // insert the reshape instruction
1001
        auto rsp_ins = m.insert_instruction(
1002
            std::next(input), make_op("reshape", {{"dims", rsp_out_lens}}), input);
1003
1004

        // replace the original reshape with slice
1005
1006
        int64_t start = 0;
        for(std::size_t i = 0; i < vec_rsp.size(); ++i)
1007
        {
1008
            m.replace_instruction(
1009
1010
1011
1012
1013
                vec_rsp[i],
                make_op(
                    "slice",
                    {{"axes", {rsp_axis}}, {"starts", {start}}, {"ends", {start + vec_dims[i]}}}),
                rsp_ins);
1014
            start += vec_dims[i];
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
        }
    }
};

struct find_split_transpose
{
    auto matcher() const
    {
        return match::name("transpose")(match::arg(0)(match::name("slice").bind("slice")))
            .bind("trans");
    }

1027
    void apply(module& m, const match::matcher_result& r) const
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
    {
        auto slc   = r.instructions["slice"];
        auto trans = r.instructions["trans"];

        auto input         = slc->inputs().front();
        auto split_outputs = get_splits(input);
        if(split_outputs.empty())
        {
            return;
        }

        std::vector<instruction_ref> vec_trans(split_outputs.size());
        std::transform(split_outputs.begin(), split_outputs.end(), vec_trans.begin(), [](auto i) {
            assert(i->outputs().size() == 1);
            return i->outputs().front();
        });

        // all transpose are the same
        auto perm = any_cast<op::transpose>(trans->get_operator()).dims;
        if(!same_ops(vec_trans))
        {
            return;
        }

        // insert an transpose instruction
1053
        auto tr = m.insert_instruction(
1054
            std::next(input), make_op("transpose", {{"permutation", perm}}), input);
1055
1056
1057
1058
1059

        // compute the axis in the slice
        auto axis = any_cast<op::slice>(slc->get_operator()).axes.front();
        auto it   = std::find(perm.begin(), perm.end(), axis);
        assert(it != perm.end());
Paul Fultz II's avatar
Paul Fultz II committed
1060
        int64_t axis_new = std::distance(perm.begin(), it);
1061
1062
1063
1064
1065
1066
1067

        for(auto in : split_outputs)
        {
            auto oper    = any_cast<op::slice>(in->get_operator());
            auto starts  = oper.starts;
            auto ends    = oper.ends;
            auto tr_orig = in->outputs().front();
1068
            m.replace_instruction(
1069
1070
1071
                tr_orig,
                make_op("slice", {{"axes", {axis_new}}, {"starts", starts}, {"ends", ends}}),
                tr);
1072
1073
1074
1075
        }
    }
};

1076
void simplify_algebra::apply(module& m) const
Paul's avatar
Paul committed
1077
{
Paul's avatar
Paul committed
1078
    // Run simplifications multiple times
1079
    for(int i = 0; i < 8; i++)
Paul's avatar
Paul committed
1080
    {
1081
        match::find_matches(m,
Paul's avatar
Paul committed
1082
                            find_inner_broadcast{},
Paul's avatar
Paul committed
1083
1084
                            find_double_add_lit_broadcast{},
                            find_add_lit_broadcast{},
1085
                            find_add_convs{},
1086
                            find_conv_dot_horiz_fusion{},
Paul's avatar
Paul committed
1087
                            find_mul_conv{},
1088
                            find_mul_slice_conv{},
1089
                            find_mul_add{},
Paul's avatar
Paul committed
1090
                            find_dot_add{},
1091
1092
                            find_div_const{},
                            find_sub_const{},
kahmed10's avatar
kahmed10 committed
1093
                            find_rsqrt{},
1094
                            find_concat_op{},
1095
                            find_split_concat{},
1096
1097
1098
                            find_splits{},
                            find_split_reshape{},
                            find_split_transpose{});
1099
        dead_code_elimination{}.apply(m);
Paul's avatar
Paul committed
1100
    }
Paul's avatar
Paul committed
1101
}
Paul's avatar
Paul committed
1102

Paul's avatar
Paul committed
1103
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1104
} // namespace migraphx