onnx.cpp 19.1 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
9
#include <vector>
Paul's avatar
Paul committed
10

Paul's avatar
Paul committed
11
12
13
14
#include <migraph/fallthrough.hpp>
#include <migraph/program.hpp>
#include <migraph/operators.hpp>
#include <migraph/ranges.hpp>
15
#include <migraph/instruction.hpp>
Paul's avatar
Paul committed
16

Paul's avatar
Paul committed
17
namespace migraph {
Paul's avatar
Paul committed
18
19
20
21
22
23
24
25
26
27
28
29

struct unknown
{
    std::string op;
    std::string name() const { return "unknown:" + op; }
    shape compute_shape(std::vector<shape> input) const
    {
        if(input.empty())
            return {};
        else
            return input.front();
    }
Paul's avatar
Paul committed
30
31
32
33
    argument compute(context&, shape, std::vector<argument>) const
    {
        MIGRAPH_THROW("not computable");
    }
Paul's avatar
Paul committed
34
35
36
37
38
39
40
41
42
43
44
    friend std::ostream& operator<<(std::ostream& os, const unknown& x)
    {
        os << x.name();
        return os;
    }
};

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
45
    using op_func = std::function<instruction_ref(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
46
47
48
49
50
51
52
53
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
    program prog = program();

    std::unordered_map<std::string, op_func> ops;

    onnx_parser()
    {
Paul's avatar
Paul committed
54
55
56
57
58
59
60
        add_generic_op("Add", add{});
        add_generic_op("Div", div{});
        add_generic_op("MatMul", gemm{});
        add_generic_op("Mul", mul{});
        add_generic_op("Relu", activation{"relu"});
        add_generic_op("Sub", sub{});

Paul's avatar
Paul committed
61
62
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
63
64
        add_mem_op("MaxPool", &onnx_parser::parse_max_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_average_pooling);
Paul's avatar
Paul committed
65
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Scott Thornton's avatar
Scott Thornton committed
66
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
67
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
68
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
    }

    template <class F>
    void add_op(std::string name, F f)
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }

Paul's avatar
Paul committed
85
    template <class T>
Paul's avatar
Paul committed
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
    void add_generic_op(std::string name, T x)
    {
        ops.emplace(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
            if(args.size() == 2 and contains(attributes, "broadcast"))
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
                    uint64_t axis = (contains(attributes, "axis"))
                                        ? parse_value(attributes.at("axis")).at<uint64_t>()
                                        : 0;
                    auto l = prog.add_instruction(broadcast{axis}, args);
                    return prog.add_instruction(x, args[0], l);
                }
            }
            return prog.add_instruction(x, args);
        });
    }

Paul's avatar
Paul committed
105
106
107
108
109
110
111
    instruction_ref
    parse_conv(std::string, attribute_map attributes, std::vector<instruction_ref> args)
    {
        convolution op;
        if(contains(attributes, "pads"))
        {
            copy(attributes["pads"].ints(), op.padding.begin());
Paul's avatar
Paul committed
112
        }
Paul's avatar
Paul committed
113
114
115
116
117
118
119
120
121
122
123
124
125
126
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
            auto l2       = prog.add_instruction(broadcast{axis}, l1, args[2]);
            return prog.add_instruction(add{}, l1, l2);
Paul's avatar
Paul committed
127
        }
Paul's avatar
Paul committed
128
129
        return prog.add_instruction(op, args);
    }
Paul's avatar
Paul committed
130

Paul's avatar
Paul committed
131
    instruction_ref
132
    parse_max_pooling(std::string, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
133
134
135
136
137
    {
        pooling op{"max"};
        if(contains(attributes, "pads"))
        {
            copy(attributes["pads"].ints(), op.padding.begin());
Paul's avatar
Paul committed
138
        }
Paul's avatar
Paul committed
139
140
141
142
143
144
145
146
147
148
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
        return prog.add_instruction(op, args);
    }
Paul's avatar
Paul committed
149

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
    instruction_ref
    parse_average_pooling(std::string, attribute_map attributes, std::vector<instruction_ref> args)
    {
        pooling op{"average"};
        if(contains(attributes, "pads"))
        {
            copy(attributes["pads"].ints(), op.padding.begin());
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
        return prog.add_instruction(op, args);
    }

Paul's avatar
Paul committed
169
170
171
172
173
174
175
176
177
178
179
180
181
    instruction_ref
    parse_reshape(std::string, attribute_map attributes, std::vector<instruction_ref> args)
    {
        reshape op;
        if(args.size() == 1)
        {
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        }
        if(args.size() == 2)
        {
            literal s = args[1]->lit;
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
182
        }
Paul's avatar
Paul committed
183
184
185
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
186
187
188
189
    instruction_ref
    parse_flatten(std::string, attribute_map attributes, std::vector<instruction_ref> args)
    {
        uint64_t axis = 0;
190
191
192
193
        // if(contains(attributes, "axis"))
        // {
        //     axis = parse_value(attributes.at("axis")).at<int>();
        // }
Scott Thornton's avatar
Scott Thornton committed
194
195
196
        return prog.add_instruction(flatten{axis}, args[0]);
    }

Paul's avatar
Paul committed
197
198
199
200
201
202
    instruction_ref
    parse_constant(std::string, attribute_map attributes, std::vector<instruction_ref>)
    {
        literal v = parse_value(attributes.at("value"));
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
203

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
    instruction_ref
    parse_gemm(std::string, attribute_map attributes, std::vector<instruction_ref> args)
    {
        float alpha = 1.0f;
        float beta  = 0.0f;
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
            alpha = parse_value(attributes.at("beta")).at<float>();
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
        std::vector<int64_t> perm = {1, 0};
        auto l1 = (transa) ? prog.add_instruction(transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(transpose{perm}, args[1]) : args[1];
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l3       = prog.add_instruction(gemm{alpha, beta}, l1, l2);
            auto l4       = prog.add_instruction(broadcast{axis}, l3, args[2]);
            return prog.add_instruction(add{}, l3, l4);
        }
        return prog.add_instruction(gemm{alpha, beta}, l1, l2);
    }

240
241
242
    instruction_ref
    parse_batchnorm(std::string, attribute_map attributes, std::vector<instruction_ref> args)
    {
243
244
245
246
        float epsilon                                 = 1e-5f;
        float momentum                                = 0.9f;
        batch_norm_inference::bn_infer_mode_t bn_mode = batch_norm_inference::spatial;
        bool is_test                                  = false;
247
248
249
250
251
252
253
254
255
256
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
            epsilon = parse_value(attributes.at("momentum")).at<float>();
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
257
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
258
259
260
        }
        if(contains(attributes, "spatial"))
        {
261
262
263
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
                          ? batch_norm_inference::spatial
                          : batch_norm_inference::per_activation;
264
        }
265
        batch_norm_inference op{epsilon, momentum, bn_mode, is_test};
266
267
268
        return prog.add_instruction(op, args);
    }

Paul's avatar
Paul committed
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
            throw std::runtime_error("Failed reading");
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
288
289
290
291
292
293
        std::unordered_map<std::string, size_t> initializer_data;
        auto cnt = 0;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = cnt++;
        }
Paul's avatar
Paul committed
294
295
296
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
297
298
299
300
301
302
303
304
305
306
307
308
309
            // Does the input have an initializer?
            if(initializer_data.find(name) != initializer_data.end())
            {
                auto idx           = initializer_data[name];
                auto t             = graph.initializer()[idx];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
310
311
312
        }
        for(auto&& p : nodes)
        {
313
            this->parse_node(get_name(p.second));
Paul's avatar
Paul committed
314
315
316
317
318
        }
    }

    void parse_node(std::string name)
    {
Paul's avatar
Paul committed
319
        if(name.empty())
Paul's avatar
Paul committed
320
            MIGRAPH_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
321
322
323
324
325
326
327
328
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
329
                    auto&& iname = get_name(nodes.at(input));
Paul's avatar
Paul committed
330
                    assert(name != iname);
Paul's avatar
Paul committed
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
                    this->parse_node(iname);
                    args.push_back(instructions.at(iname));
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
            if(ops.count(node.op_type()) == 0)
            {
                instructions[name] = prog.add_instruction(unknown{node.op_type()}, args);
            }
            else
            {
                instructions[name] = ops[node.op_type()](get_attributes(node), args);
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

360
361
362
363
364
365
366
367
368
369
370
371
372
373
    static std::string get_name(const onnx::NodeProto& node)
    {
        if(node.name().empty())
        {
            std::string generated = "migraph_unnamed_node";
            for(auto&& output : node.output())
            {
                generated += "_" + output;
            }
            return generated;
        }
        return node.name();
    }

Paul's avatar
Paul committed
374
375
376
377
378
    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
        for(auto&& node : graph.node())
        {
379
            result[get_name(node)] = node;
Paul's avatar
Paul committed
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
405
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
406
407
408
409
410
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
411
        MIGRAPH_THROW("Invalid attribute type");
Paul's avatar
Paul committed
412
413
414
415
416
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
417
418
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
419
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
            case onnx::TensorProto::FLOAT: return literal{{shape::float_type, dims}, s.data()};
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
            case onnx::TensorProto::INT8: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::UINT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT32: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT64: return literal{{shape::int64_type, dims}, s.data()};
            case onnx::TensorProto::STRING: throw std::runtime_error("");
            case onnx::TensorProto::BOOL: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::FLOAT16: throw std::runtime_error("");
            case onnx::TensorProto::DOUBLE: return literal{{shape::double_type, dims}, s.data()};
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
            MIGRAPH_THROW("Invalid tensor type");
440
        }
Paul's avatar
Paul committed
441
442
443
444
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Paul's avatar
Paul committed
445
            return literal{{shape::float_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
446
447
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Paul's avatar
Paul committed
448
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
449
        case onnx::TensorProto::UINT16:
Paul's avatar
Paul committed
450
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
451
        case onnx::TensorProto::INT16:
Paul's avatar
Paul committed
452
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
453
        case onnx::TensorProto::INT32:
Paul's avatar
Paul committed
454
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
455
        case onnx::TensorProto::INT64:
Paul's avatar
Paul committed
456
            return literal{{shape::int64_type, dims}, t.int64_data().begin(), t.int64_data().end()};
Paul's avatar
Paul committed
457
458
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Paul's avatar
Paul committed
459
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
460
461
462
463
464
465
466
467
468
        case onnx::TensorProto::FLOAT16: throw std::runtime_error("");
        case onnx::TensorProto::DOUBLE:
            return literal{
                {shape::double_type, dims}, t.double_data().begin(), t.double_data().end()};
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
469
        MIGRAPH_THROW("Invalid tensor type");
Paul's avatar
Paul committed
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
    }

    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
        case onnx::TensorProto::FLOAT16:
            break; // throw std::runtime_error("Unsupported type FLOAT16");
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
        // TODO: USe std::transform
        for(auto&& d : t.tensor_type().shape().dim())
        {
            dims.push_back(d.dim_value());
        }
        return {shape_type, dims};
    }
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
532
} // namespace migraph