simplify_algebra.cpp 43.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
Paul's avatar
Paul committed
24
#include <migraphx/simplify_algebra.hpp>
Paul's avatar
Paul committed
25
#include <migraphx/dead_code_elimination.hpp>
Paul's avatar
Paul committed
26
#include <migraphx/program.hpp>
27
#include <migraphx/op/concat.hpp>
28
#include <migraphx/op/slice.hpp>
29
#include <migraphx/op/convolution.hpp>
Paul's avatar
Paul committed
30
#include <migraphx/op/broadcast.hpp>
31
32
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/transpose.hpp>
Paul's avatar
Paul committed
33
34
#include <migraphx/matcher.hpp>
#include <migraphx/literal.hpp>
35
36
37
#include <migraphx/make_op.hpp>
#include <migraphx/serialize.hpp>

38
#include <migraphx/algorithm.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
39
#include <unordered_set>
Paul's avatar
Paul committed
40

Paul's avatar
Paul committed
41
namespace migraphx {
Paul's avatar
Paul committed
42
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
43

Paul's avatar
Paul committed
44
auto lit_broadcast() { return match::any_of(match::is_constant(), match::name("broadcast")); }
Paul's avatar
Paul committed
45
auto not_lit_broadcast() { return match::none_of(match::is_constant(), match::name("broadcast")); }
Paul's avatar
Paul committed
46
47
auto op_lit_broadcast(std::string op, std::string x, std::string y)
{
Paul's avatar
Paul committed
48
49
    return match::name(std::move(op))(match::either_arg(0, 1)(
        lit_broadcast().bind(std::move(x)), not_lit_broadcast().bind(std::move(y))));
Paul's avatar
Paul committed
50
51
}

Paul's avatar
Paul committed
52
53
auto conv_const_weights()
{
Paul's avatar
Paul committed
54
    return match::name("convolution")(match::used_once(),
Paul's avatar
Paul committed
55
                                      match::args(match::any(), match::is_constant().bind("w")));
Paul's avatar
Paul committed
56
57
}

Shucai Xiao's avatar
Shucai Xiao committed
58
59
auto reduction() { return match::name_contains("reduce"); }

60
// conv(x, w) * a => conv(x, a * w)
Paul's avatar
Paul committed
61
62
63
struct find_mul_conv
{
    auto matcher() const
Paul's avatar
Paul committed
64
    {
65
66
67
        return match::name("mul")(
            match::either_arg(0, 1)(conv_const_weights().bind("conv"),
                                    match::name("broadcast", "multibroadcast").bind("a")));
Paul's avatar
Paul committed
68
    }
Paul's avatar
Paul committed
69

70
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
71
    {
Paul's avatar
Paul committed
72
        auto ins      = r.result;
Paul's avatar
Paul committed
73
        auto conv_ins = r.instructions["conv"];
Paul's avatar
Paul committed
74
75
76
        auto a_ins    = r.instructions["a"];
        auto w_ins    = r.instructions["w"];

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
        const auto& a_input_lens = a_ins->inputs().front()->get_shape().lens();

        std::size_t num_not_one_dims = std::count_if(
            a_input_lens.cbegin(), a_input_lens.cend(), [](auto dim) { return dim != 1; });
        if(num_not_one_dims > 1)
            return;

        // check broadcasted along channels
        const auto& a_lens    = a_ins->get_shape().lens();
        const auto& a_strides = a_ins->get_shape().strides();

        auto is_broadcasted_axis = [](auto len, auto stride) { return len == 1 or stride == 0; };

        if(a_strides.at(1) != 1)
            return;

        if(not is_broadcasted_axis(a_lens.front(), a_strides.front()))
            return;

        if(not std::equal(a_lens.begin() + 2,
                          a_lens.end(),
                          a_strides.begin() + 2,
                          a_strides.end(),
                          is_broadcasted_axis))
Paul's avatar
Paul committed
101
102
            return;

103
        auto sq    = m.insert_instruction(ins, make_op("squeeze"), a_ins->inputs().front());
104
        auto new_a = m.insert_instruction(
105
            ins, make_op("broadcast", {{"axis", 0}, {"out_lens", w_ins->get_shape().lens()}}), sq);
106
107
        auto new_mul  = m.insert_instruction(ins, make_op("mul"), new_a, w_ins);
        auto new_conv = m.insert_instruction(
Paul's avatar
Paul committed
108
            ins, conv_ins->get_operator(), conv_ins->inputs().front(), new_mul);
109
        m.replace_instruction(ins, new_conv);
Paul's avatar
Paul committed
110
    }
Paul's avatar
Paul committed
111
112
};

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
struct find_mul_slice_conv
{
    static auto conv()
    {
        return match::name("convolution")(
            match::all_of[match::outputs()](match::name("slice")),
            match::args(match::any(), match::is_constant().bind("w")));
    }
    auto matcher() const
    {
        return match::name("mul")(match::either_arg(0, 1)(
            match::name("slice")(match::used_once(), match::arg(0)(conv().bind("conv")))
                .bind("slice"),
            match::name("broadcast")(match::is_constant()).bind("a")));
    }

129
    void apply(module& m, const match::matcher_result& r) const
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
    {
        auto ins       = r.result;
        auto slice_ins = r.instructions["slice"];
        auto conv_ins  = r.instructions["conv"];
        auto a_ins     = r.instructions["a"];
        auto w_ins     = r.instructions["w"];

        auto broadcast_op = any_cast<op::broadcast>(a_ins->get_operator());
        if(broadcast_op.axis != 1)
            return;

        auto slice_op = any_cast<op::slice>(slice_ins->get_operator());
        if(slice_op.axes.size() != 1)
            return;
        if(slice_op.axes.front() != 1)
            return;

        auto slice_idx = std::distance(conv_ins, slice_ins);
        if(std::any_of(conv_ins->outputs().begin(), conv_ins->outputs().end(), [&](auto i) {
               if(i == slice_ins)
                   return false;
               if(std::distance(conv_ins, i) < slice_idx)
                   return true;
               auto sop = any_cast<op::slice>(i->get_operator());
               if(sop.axes != slice_op.axes)
                   return true;
               if(std::max(sop.starts.front(), slice_op.starts.front()) <
                  std::min(sop.ends.front(), slice_op.ends.front()))
                   return true;
               return false;
           }))
            return;

        auto w_slice_op  = slice_op;
        w_slice_op.axes  = {0};
165
        auto slice_w_ins = m.insert_instruction(ins, w_slice_op, w_ins);
166

167
        auto new_a = m.insert_instruction(
168
            ins,
169
            make_op("broadcast", {{"axis", 0}, {"out_lens", slice_w_ins->get_shape().lens()}}),
170
            a_ins->inputs().front());
171
        auto new_mul = m.insert_instruction(ins, make_op("mul"), new_a, slice_w_ins);
172
173
174

        std::vector<instruction_ref> sliced_weights;
        if(slice_op.starts.front() != 0)
175
            sliced_weights.push_back(m.insert_instruction(
176
177
178
                ins,
                make_op("slice", {{"axes", {0}}, {"starts", {0}}, {"ends", slice_op.starts}}),
                w_ins));
179
180
181
        sliced_weights.push_back(new_mul);
        int64_t end_axis = w_ins->get_shape().lens().at(0);
        if(slice_op.ends.front() != end_axis)
182
            sliced_weights.push_back(m.insert_instruction(
183
184
185
                ins,
                make_op("slice", {{"axes", {0}}, {"starts", slice_op.ends}, {"ends", {end_axis}}}),
                w_ins));
186

187
        auto new_weights =
188
            m.insert_instruction(ins, make_op("concat", {{"axis", 0}}), sliced_weights);
189

190
        auto new_conv = m.insert_instruction(
191
192
193
            ins, conv_ins->get_operator(), conv_ins->inputs().front(), new_weights);
        assert(conv_ins->get_shape() == new_conv->get_shape());

194
        auto slice1 = m.insert_instruction(ins, slice_op, new_conv);
195
        assert(ins->get_shape().lens() == slice1->get_shape().lens());
196
        m.replace_instruction(ins, slice1);
197
        // TODO: Check each slice doesn't overlap and that it occurs after slice_ins
198
199
        auto outputs = conv_ins->outputs();
        for(auto output : outputs)
200
201
202
203
204
            if(output != slice_ins)
                instruction::replace_argument(output, conv_ins, new_conv);
    }
};

Paul's avatar
Paul committed
205
// a * (x + b) => a * x + a * b
Paul's avatar
Paul committed
206
207
208
209
210
struct find_mul_add
{
    auto matcher() const
    {
        return match::name("mul")(match::either_arg(0, 1)(
Paul's avatar
Paul committed
211
212
213
            match::name("add")(
                match::either_arg(0, 1)(
                    match::any().bind("x"),
Paul's avatar
Paul committed
214
                    match::any_of(conv_const_weights(), match::is_constant()).bind("b")),
Paul's avatar
Paul committed
215
                match::none_of(match::args(match::is_constant(), match::is_constant())),
Paul's avatar
Paul committed
216
                match::used_once()),
Paul's avatar
Paul committed
217
            match::is_constant().bind("a")));
Paul's avatar
Paul committed
218
219
    }

220
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
221
    {
Paul's avatar
Paul committed
222
        auto ins   = r.result;
Paul's avatar
Paul committed
223
        auto a_ins = r.instructions["a"];
Paul's avatar
Paul committed
224
        auto b_ins = r.instructions["b"];
Paul's avatar
Paul committed
225
        auto x_ins = r.instructions["x"];
Paul's avatar
Paul committed
226
        assert(x_ins != b_ins);
Paul's avatar
Paul committed
227

228
229
230
        auto ax_ins = m.insert_instruction(ins, make_op("mul"), a_ins, x_ins);
        auto ab_ins = m.insert_instruction(ins, make_op("mul"), a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), ax_ins, ab_ins);
Paul's avatar
Paul committed
231
232
233
    }
};

234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
struct find_dot_add
{
    auto matcher() const
    {
        return match::name("dot")(match::either_arg(0, 1)(
            match::name("add")(
                match::either_arg(0, 1)(match::any().bind("x"),
                                        match::any_of(match::is_constant()).bind("b")),
                match::none_of(match::args(match::is_constant(), match::is_constant())),
                match::used_once()),
            match::is_constant().bind("a")));
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins   = r.result;
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];
        auto x_ins = r.instructions["x"];
        assert(x_ins != b_ins);

        const bool flipped = a_ins == ins->inputs().back();

        auto insert_dot = [&](auto x, auto y) {
            if(flipped)
                return m.insert_instruction(ins, make_op("dot"), y, x);
            else
                return m.insert_instruction(ins, make_op("dot"), x, y);
        };

        auto ax_ins = insert_dot(a_ins, x_ins);
        auto ab_ins = insert_dot(a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), ax_ins, ab_ins);
    }
};

Paul's avatar
Paul committed
270
struct find_add_lit_broadcast
Paul's avatar
Paul committed
271
272
273
274
275
276
277
{
    auto matcher() const
    {
        return match::name("add")(
            match::either_arg(0, 1)(op_lit_broadcast("add", "a", "x"), lit_broadcast().bind("b")));
    }

278
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
279
280
281
282
283
284
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];

285
286
        auto sumab = m.insert_instruction(ins, make_op("add"), a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), x_ins, sumab);
Paul's avatar
Paul committed
287
288
289
290
    }
};

struct find_double_add_lit_broadcast
Paul's avatar
Paul committed
291
{
Paul's avatar
Paul committed
292
293
    auto matcher() const
    {
Paul's avatar
Paul committed
294
        return match::name("add")(
Paul's avatar
Paul committed
295
            match::args(op_lit_broadcast("add", "a", "x"), op_lit_broadcast("add", "b", "y")));
Paul's avatar
Paul committed
296
297
    }

298
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
299
    {
Paul's avatar
Paul committed
300
301
302
303
304
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto y_ins = r.instructions["y"];
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];
Paul's avatar
Paul committed
305
306
307

        instruction_ref sumab;

Paul's avatar
Paul committed
308
        if(a_ins->name() == "broadcast" and b_ins->name() == "broadcast")
Paul's avatar
Paul committed
309
310
311
        {
            if(a_ins->inputs().at(0)->get_shape() != b_ins->inputs().at(0)->get_shape())
                return;
312
            auto op     = a_ins->get_operator();
313
            auto presum = m.insert_instruction(
314
                ins, make_op("add"), a_ins->inputs().at(0), b_ins->inputs().at(0));
315
            sumab = m.insert_instruction(ins, op, presum);
Paul's avatar
Paul committed
316
317
318
        }
        else
        {
319
            sumab = m.insert_instruction(ins, make_op("add"), a_ins, b_ins);
Paul's avatar
Paul committed
320
321
        }

322
323
        auto sumxy = m.insert_instruction(ins, make_op("add"), x_ins, y_ins);
        m.replace_instruction(ins, make_op("add"), sumxy, sumab);
Paul's avatar
Paul committed
324
325
326
    }
};

Paul's avatar
Paul committed
327
328
struct find_inner_broadcast
{
329
    auto matcher() const { return pointwise(match::all_of[match::inputs()](match::broadcast())); }
Paul's avatar
Paul committed
330

331
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
332
    {
333
334
335
336
337
338
339
340
341
342
343
344
        auto ins        = r.result;
        auto broadcasts = ins->inputs();
        if(broadcasts.empty())
            return;
        std::vector<instruction_ref> inputs;
        std::transform(broadcasts.begin(),
                       broadcasts.end(),
                       std::back_inserter(inputs),
                       [](auto i) { return i->inputs().front(); });
        if(std::any_of(inputs.begin(), inputs.end(), [&](auto i) {
               return i->get_shape() != inputs.front()->get_shape();
           }))
Paul's avatar
Paul committed
345
346
            return;

347
348
        auto op = m.insert_instruction(ins, ins->get_operator(), inputs);
        m.replace_instruction(ins, broadcasts.front()->get_operator(), op);
Paul's avatar
Paul committed
349
350
351
    }
};

352
struct find_concat_op
353
354
355
{
    auto matcher() const
    {
356
        return match::name("concat")(match::any_of[match::inputs()](
357
            match::any_of(match::pointwise(), match::name("broadcast")), match::used_once()));
358
359
    }

360
361
    template <class Iterator>
    static std::vector<std::size_t> get_output_lens(Iterator start, Iterator last, std::size_t axis)
362
    {
363
364
365
        assert(start != last);
        std::size_t dim = 0;
        for(auto ins : range(start, last))
366
        {
367
            dim += ins->get_shape().lens().at(axis);
368
        }
369
370
371
        auto lens  = (*start)->get_shape().lens();
        lens[axis] = dim;
        return lens;
372
373
    }

374
375
376
377
378
    static bool is_valid_op(const operation& op)
    {
        return op.name() == "broadcast" or op.attributes().contains("pointwise");
    }

379
    void apply(module& m, const match::matcher_result& r) const
380
    {
381
382
        auto ins  = r.result;
        auto axis = any_cast<op::concat>(ins->get_operator()).axis;
383

384
385
386
387
388
389
        auto each = [&](auto start, auto last) -> std::vector<instruction_ref> {
            if(std::distance(start, last) < 2)
                return {start, last};
            auto x = *start;
            if(x->inputs().size() > 2 or x->inputs().empty() or x->outputs().size() > 1)
                return {start, last};
390
391
            auto op = x->get_operator();
            if(not is_valid_op(op))
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
                return {start, last};
            auto iaxis = axis;
            // Adjust broadcast lens
            if(op.name() == "broadcast")
            {
                auto b = any_cast<op::broadcast>(op);
                if(b.axis != iaxis)
                    return {start, last};
                b.broadcast_lens = get_output_lens(start, last, iaxis);
                op               = b;
                iaxis            = 0;
            }

            std::vector<instruction_ref> concats;
            for(std::size_t i = 0; i < x->inputs().size(); i++)
            {
                std::vector<instruction_ref> inputs;
                std::transform(start, last, std::back_inserter(inputs), [&](auto j) {
                    return j->inputs().at(i);
                });
412
                auto concat =
413
                    m.insert_instruction(ins, make_op("concat", {{"axis", iaxis}}), inputs);
414
415
                concats.push_back(concat);
            }
416
            auto y = m.insert_instruction(ins, op, concats);
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
            return {y};
        };

        std::vector<instruction_ref> args;
        auto update_args = [&](auto start, auto last) {
            auto x = each(start, last);
            args.insert(args.end(), x.begin(), x.end());
        };
        auto pred = [](auto i, auto j) {
            return i->get_operator() == j->get_operator() and
                   i->inputs().size() == i->inputs().size() and
                   i->outputs().size() == i->outputs().size();
        };
        group_unique(ins->inputs().begin(), ins->inputs().end(), update_args, pred);
        if(args.size() == 1)
432
            m.replace_instruction(ins, args.front());
433
        else
434
            m.replace_instruction(ins, make_op("concat", {{"axis", axis}}), args);
435
436
437
    }
};

438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
void move_instructions_back(module& m, instruction_ref pos, std::vector<instruction_ref> inss)
{
    auto start = range(m.begin(), pos);
    for(auto ins : iterator_for(start))
    {
        auto it = std::find(inss.begin(), inss.end(), ins);
        if(it != inss.end())
            inss.erase(it);
    }
    for(auto ins : inss)
    {
        if(not m.has_instruction(ins))
            continue;
        move_instructions_back(m, pos, ins->inputs());
        m.move_instruction(ins, pos);
    }
}

456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
std::vector<instruction_ref> get_splits(instruction_ref ins)
{
    std::vector<instruction_ref> result;
    std::copy_if(ins->outputs().begin(),
                 ins->outputs().end(),
                 std::back_inserter(result),
                 [&](auto i) { return i->name() == "slice"; });
    if(result.size() < 2)
        return {};
    auto get_slice = [](auto& i) -> auto& { return any_cast<op::slice>(i->get_operator()); };
    auto&& axes    = get_slice(result.front()).axes;
    if(std::any_of(result.begin(), result.end(), [&](auto i) { return get_slice(i).axes != axes; }))
        return {};
    auto get_start = [&](auto& i) -> auto& { return get_slice(i).starts; };
    auto get_end   = [&](auto& i) -> auto& { return get_slice(i).ends; };
    std::sort(
        result.begin(), result.end(), [&](auto x, auto y) { return get_start(x) < get_start(y); });
    if(std::any_of(get_start(result.front()).begin(), get_start(result.front()).end(), [&](auto i) {
           return i != 0;
       }))
        return {};
    auto it = std::adjacent_find(
        result.begin(), result.end(), [&](auto x, auto y) { return get_end(x) != get_start(y); });
    if(it != result.end())
        return {};
    for(std::size_t i = 0; i < axes.size(); i++)
    {
        auto axis = axes[i];
        if(ins->get_shape().lens()[axis] != get_slice(result.back()).ends[i])
            return {};
    }
    return result;
}

struct find_splits
{
    auto matcher() const
    {
494
495
496
        return match::any(
            match::any_of[match::outputs()](match::name("slice")(match::any_of[match::outputs()](
                match::pointwise(match::any_of(match::nargs(1), match::nargs(2))), reduction()))));
497
498
    }

Shucai Xiao's avatar
Shucai Xiao committed
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
    static bool is_dependent(const module& m, instruction_ref ins1, instruction_ref ins2)
    {

        std::unordered_set<instruction_ref> traversed;
        return fix<bool>([&](auto self, auto ins) -> bool {
            if(ins == ins2)
                return true;

            if(contains(traversed, ins))
                return false;

            traversed.insert(ins);
            const auto& inputs = ins->inputs();
            return std::any_of(inputs.begin(), inputs.end(), [&](auto in) {
                return m.has_instruction(in) and self(in);
            });
        })(ins1);
    }

518
    static std::vector<std::vector<instruction_ref>>
Shucai Xiao's avatar
Shucai Xiao committed
519
    get_split_groups(const module& m, const std::vector<instruction_ref>& splits)
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
    {
        std::vector<std::vector<instruction_ref>> groups;
        for(auto out : splits.front()->outputs())
        {
            if(out->name() == "slice")
                continue;
            std::vector<instruction_ref> group;
            for(auto split : splits)
            {
                auto it =
                    std::find_if(split->outputs().begin(), split->outputs().end(), [&](auto i) {
                        return i->get_operator() == out->get_operator();
                    });
                if(it == split->outputs().end())
                    break;
                assert((*it)->name() != "slice");
Shucai Xiao's avatar
Shucai Xiao committed
536

537
                // If there is a duplicate bail
Shucai Xiao's avatar
Shucai Xiao committed
538
539
540
541
542
                // there are should be no dependency between instructions in the group
                if(std::any_of(group.begin(), group.end(), [&](auto i) {
                       return is_dependent(m, *it, i) or is_dependent(m, i, *it);
                   }))
                {
543
                    return {};
Shucai Xiao's avatar
Shucai Xiao committed
544
545
                }

546
547
548
549
550
551
552
553
554
                group.push_back(*it);
            }
            if(group.size() != splits.size())
                continue;
            groups.push_back(group);
        }
        return groups;
    }

Shucai Xiao's avatar
Shucai Xiao committed
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
    bool is_fusable(instruction_ref start, instruction_ref split_front) const
    {
        auto op = start->get_operator();
        if(contains(op.name(), "reduce"))
        {
            auto slc         = any_cast<op::slice>(split_front->get_operator());
            auto slc_axes    = slc.axes;
            auto reduce_axes = start->get_operator().to_value()["axes"].to_vector<int64_t>();
            // axes of slice and reduce op cannot have overlap
            if(std::any_of(slc_axes.begin(), slc_axes.end(), [&](auto axis) {
                   return (std::find(reduce_axes.begin(), reduce_axes.end(), axis) !=
                           reduce_axes.end());
               }))
            {
                return false;
            }
        }
        else if(not op.attributes().contains("pointwise"))
        {
            return false;
        }

        return true;
    }

580
    void apply(module& m, const match::matcher_result& r) const
581
    {
Shucai Xiao's avatar
Shucai Xiao committed
582
        auto ins    = r.result;
583
584
585
        auto splits = get_splits(ins);
        if(splits.empty())
            return;
Shucai Xiao's avatar
Shucai Xiao committed
586

587
        for(const auto& group : get_split_groups(m, splits))
588
        {
Shucai Xiao's avatar
Shucai Xiao committed
589
590
591
592
593
            auto start       = group.front();
            auto split_front = splits.front();
            auto op          = start->get_operator();
            if(not is_fusable(start, split_front))
            {
594
                continue;
Shucai Xiao's avatar
Shucai Xiao committed
595
            }
596
597
598
599
600
601

            // Make sure there is no duplicates
            assert(std::none_of(
                std::next(group.begin()), group.end(), [&](auto i) { return i == start; }));

            auto split_idx    = 0;
602
            instruction_ref c = m.end();
603
604
            if(start->inputs().size() == 1)
            {
605
                c = m.insert_instruction(std::next(ins), op, ins);
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
            }
            else if(start->inputs().size() == 2)
            {
                assert(not std::none_of(start->inputs().begin(), start->inputs().end(), [](auto i) {
                    return i->name() == "slice";
                }) && "one argument must be a split");
                auto data_idx = 1;
                if(start->inputs().back()->name() == "slice")
                {
                    split_idx = 1;
                    data_idx  = 0;
                }

                std::vector<instruction_ref> data_args;
                std::transform(group.begin(),
                               group.end(),
                               std::back_inserter(data_args),
                               [&](auto i) { return i->inputs()[data_idx]; });

                // Data arguments must be a constant
                if(std::any_of(data_args.begin(), data_args.end(), [](auto i) {
                       return not i->can_eval();
                   }))
                    return;

631
                move_instructions_back(m, ins, data_args);
632
633
634
635
636
637
638

                auto slice_op = any_cast<op::slice>(splits.front()->get_operator());
                assert(not slice_op.axes.empty());
                if(slice_op.axes.size() > 1)
                    return;
                auto concat_axis = slice_op.axes.front();
                // TODO: Check if axises match
639
                auto concat = m.insert_instruction(
640
                    ins, make_op("concat", {{"axis", concat_axis}}), data_args);
641
642
643
644
645

                std::vector<instruction_ref> args;
                args.resize(2);
                args[split_idx] = ins;
                args[data_idx]  = concat;
646
                c               = m.insert_instruction(std::next(ins), op, args);
647
            }
648
            if(c != m.end())
649
650
651
652
653
654
            {
                for(auto i : group)
                {
                    auto split = i->inputs()[split_idx];
                    assert(split->name() == "slice");
                    // Insert contiguous for reshapes
655
656
                    auto outputs = i->outputs();
                    for(auto output : outputs)
657
                    {
658
                        if(output->name() != "reshape")
659
                            continue;
660
                        auto x = m.insert_instruction(output, make_op("contiguous"), i);
661
                        m.replace_instruction(output, output->get_operator(), x);
662
663
                    }

664
                    m.replace_instruction(i, split->get_operator(), c);
665
666
667
668
669
670
671
672
673
674
675
676
677
678
                }
            }
        }
    }
};

struct find_split_concat
{
    auto matcher() const
    {
        return match::any(match::any_of[match::outputs()](
            match::name("slice")(match::all_of[match::outputs()](match::name("concat")))));
    }

679
    void apply(module& m, const match::matcher_result& r) const
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
    {
        auto ins = r.result;

        auto splits = get_splits(ins);
        if(splits.empty())
            return;
        if(std::any_of(
               splits.begin(), splits.end(), [](auto i) { return i->outputs().size() != 1; }))
            return;
        // Check for concat operator
        auto concat = splits.front()->outputs().front();
        if(std::any_of(splits.begin(), splits.end(), [&](auto i) {
               return i->outputs().front() != concat;
           }))
            return;
        // Check axis match
        auto concat_op = any_cast<op::concat>(concat->get_operator());
        auto split_op  = any_cast<op::slice>(splits.front()->get_operator());
        if(split_op.axes.size() != 1)
            return;
        if(split_op.axes.front() != concat_op.axis)
            return;
        // Replace args
        auto args = concat->inputs();
        auto it =
            std::find_if(args.begin(), args.end(), [&](auto i) { return i == splits.front(); });
        if(std::distance(it, args.end()) < splits.size())
            return;
708
709
710
711
712
713
714
        // If the slices are not in order then stop
        if(not std::is_sorted(it, it + splits.size(), [](instruction_ref x, instruction_ref y) {
               auto xop = any_cast<op::slice>(x->get_operator());
               auto yop = any_cast<op::slice>(y->get_operator());
               return std::tie(xop.starts, xop.ends) < std::tie(yop.starts, yop.ends);
           }))
            return;
715
716
717
718
        *it = splits.front()->inputs().front();
        args.erase(std::next(it), it + splits.size());

        if(args.size() == 1)
719
            m.replace_instruction(concat, args.front());
720
        else
721
            m.replace_instruction(concat, concat->get_operator(), args);
722
723
724
    }
};

725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
bool axis_equal(const std::vector<std::size_t>& x,
                const std::vector<std::size_t>& y,
                std::size_t axis)
{
    return x.size() == y.size() and x.size() > axis and
           std::equal(x.begin(), x.begin() + axis, y.begin()) and
           std::equal(x.begin() + axis + 1, x.end(), y.begin() + axis + 1);
}

bool axis_shape_equal(const shape& x, const shape& y, std::size_t axis)
{
    // TODO: Check strides
    return axis_equal(x.lens(), y.lens(), axis);
}

struct find_add_convs
{
    auto matcher() const
    {
        return match::name("add")(
            match::args(conv_const_weights().bind("a"), conv_const_weights().bind("b")));
    }

    static bool symmetrical_strides(const op::convolution& op)
    {
        return op.stride[0] == op.stride[1];
    }

    static std::size_t compute_stride_factor(const op::convolution& x, const op::convolution& y)
    {
        if(not symmetrical_strides(x))
            return 0;
        if(not symmetrical_strides(y))
            return 0;
        if((x.stride[0] % y.stride[0]) != 0)
            return 0;
        return x.stride[0] / y.stride[0];
    }

764
    void apply(module& m, const match::matcher_result& r) const
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
    {
        auto ins       = r.result;
        auto a_conv    = r.instructions["a"];
        auto a_input   = a_conv->inputs().at(0);
        auto a_weights = a_conv->inputs().at(1);
        auto b_conv    = r.instructions["b"];
        auto b_input   = b_conv->inputs().at(0);
        auto b_weights = b_conv->inputs().at(1);

        if(not axis_shape_equal(a_weights->get_shape(), b_weights->get_shape(), 1))
            return;

        auto a_op   = any_cast<op::convolution>(a_conv->get_operator());
        auto b_op   = any_cast<op::convolution>(b_conv->get_operator());
        auto new_op = a_op;

        if(a_op != b_op)
        {
            if(std::tie(a_op.padding, a_op.dilation, a_op.group) ==
                   std::tie(b_op.padding, b_op.dilation, b_op.group) and
               a_weights->get_shape().lens()[2] == 1 and a_weights->get_shape().lens()[3] == 1)
            {
                if(a_op.stride < b_op.stride)
                {
                    auto n = compute_stride_factor(b_op, a_op);
                    if(n == 0)
                        return;
                    new_op  = a_op;
793
                    b_input = m.insert_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
794
                        ins, make_op("step", {{"axes", {2, 3}}, {"steps", {n, n}}}), b_input);
795
796
797
798
799
800
801
                }
                else if(b_op.stride < a_op.stride)
                {
                    auto n = compute_stride_factor(a_op, b_op);
                    if(n == 0)
                        return;
                    new_op  = b_op;
802
                    a_input = m.insert_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
803
                        ins, make_op("step", {{"axes", {2, 3}}, {"steps", {n, n}}}), a_input);
804
805
806
807
808
809
810
811
                }
                else
                    return;
            }
            else
                return;
        }

812
        auto concat_input =
813
            m.insert_instruction(ins, make_op("concat", {{"axis", 1}}), a_input, b_input);
814
        auto concat_weights =
815
816
            m.insert_instruction(ins, make_op("concat", {{"axis", 1}}), a_weights, b_weights);
        m.replace_instruction(ins, new_op, concat_input, concat_weights);
817
818
819
    }
};

820
821
822
823
824
825
826
827
828
829
MIGRAPHX_PRED_MATCHER(horiz_conv_dot, instruction_ref ins)
{
    auto pred = [&](auto name) {
        return [=](auto i) {
            return i->name() == name and i->inputs().front() == ins and
                   i->inputs().at(1)->can_eval();
        };
    };
    auto dots  = std::count_if(ins->outputs().begin(), ins->outputs().end(), pred("dot"));
    auto convs = std::count_if(ins->outputs().begin(), ins->outputs().end(), pred("convolution"));
830
    return (dots >= 2 or convs >= 2);
831
832
833
834
835
836
}

struct find_conv_dot_horiz_fusion
{
    auto matcher() const { return horiz_conv_dot(); }

837
    void apply(module& m, const match::matcher_result& r) const
838
839
840
841
842
843
844
845
846
847
848
849
    {
        auto ins = r.result;

        auto pred = [](auto i, auto j) {
            if(i->get_operator() != j->get_operator())
                return false;
            if(not contains({"dot", "convolution"}, i->name()))
                return true;
            auto x = i->inputs()[1]->get_shape().lens();
            auto y = j->inputs()[1]->get_shape().lens();
            if(x.size() != y.size())
                return false;
850
            // Check that non-axes match
851
852
853
854
855
856
857
858
859
860
861
862
863
864
            int axis = 1;
            if(i->name() == "dot")
            {
                axis = x.size() - 1;
            }
            return axis_equal(x, y, axis);
        };

        auto each = [&](auto start, auto last) {
            if(std::distance(start, last) < 2)
                return;
            auto&& name = (*start)->name();
            if(not contains({"dot", "convolution"}, name))
                return;
865
866
867
868
869
870
871
            auto op   = (*start)->get_operator();
            int group = 1;
            if(name == "convolution")
                group = any_cast<op::convolution>(op).group;
            // Skip group convolution
            if(group != 1)
                return;
872
873
874
875
876
877
878
879
880
881
882
883
            auto input = (*start)->inputs().front();
            std::vector<instruction_ref> args;
            std::transform(
                start, last, std::back_inserter(args), [&](auto x) { return x->inputs().at(1); });
            int axis        = 1;
            int concat_axis = 0;
            if(name == "dot")
            {
                axis        = int(args.front()->get_shape().lens().size() - 1);
                concat_axis = axis;
            }

884
            move_instructions_back(m, input, args);
885
            // TODO: Check if axes match
886
            auto concat =
887
888
                m.insert_instruction(input, make_op("concat", {{"axis", concat_axis}}), args);
            auto fused     = m.insert_instruction(std::next(input), op, input, concat);
889
890
891
            int64_t offset = 0;
            for(auto arg : range(start, last))
            {
892
893
894
895
896
897
898
899
900
                auto outputs = arg->outputs();
                for(auto output : outputs)
                {
                    if(output->name() != "reshape")
                        continue;
                    auto x = m.insert_instruction(output, make_op("contiguous"), arg);
                    m.replace_instruction(output, output->get_operator(), x);
                }

901
                int64_t len = arg->get_shape().lens()[axis];
902
                m.replace_instruction(
903
904
905
906
                    arg,
                    make_op("slice",
                            {{"axes", {axis}}, {"starts", {offset}}, {"ends", {offset + len}}}),
                    fused);
907
908
909
910
911
912
913
914
915
                offset += len;
            }
        };

        auto outputs = ins->outputs();
        group_by(outputs.begin(), outputs.end(), each, pred);
    }
};

916
917
918
919
920
921
922
struct find_div_const
{
    auto matcher() const
    {
        return match::name("div")(match::arg(1)(match::is_constant().bind("c")));
    }

923
    void apply(module& m, const match::matcher_result& r) const
924
925
926
927
    {
        auto ins   = r.result;
        auto c_ins = r.instructions["c"];

928
        auto recip = m.insert_instruction(std::next(c_ins), make_op("recip"), c_ins);
929
930
931

        auto args = ins->inputs();

932
        m.replace_instruction(ins, make_op("mul"), args.front(), recip);
933
934
935
    }
};

936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
struct find_unit_ops
{
    auto matcher() const
    {
        auto mul_1 = match::name("mul")(
            match::either_arg(0, 1)(match::has_value(1.0f), match::any().bind("x")));
        auto div_1 =
            match::name("div")(match::args(match::any().bind("x"), match::has_value(1.0f)));
        auto add_0 = match::name("add")(
            match::either_arg(0, 1)(match::has_value(0.0f, 1e-12), match::any().bind("x")));
        auto sub_0 =
            match::name("sub")(match::args(match::any().bind("x"), match::has_value(0.0f)));
        return match::any_of(mul_1, div_1, add_0, sub_0);
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins  = r.result;
        auto c_in = r.instructions["x"];

        m.replace_instruction(ins, c_in);
    }
};

struct find_neg_unit_ops
{
    auto matcher() const
    {
        auto mul_neg_1 = match::name("mul")(
            match::either_arg(0, 1)(match::has_value(-1.0f), match::any().bind("x")));
        auto div_neg_1 =
            match::name("div")(match::args(match::any().bind("x"), match::has_value(-1.0f)));
        auto sub_0 =
            match::name("sub")(match::args(match::has_value(0.0f), match::any().bind("x")));
        return match::any_of(mul_neg_1, div_neg_1, sub_0);
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins  = r.result;
        auto c_in = r.instructions["x"];

Chris Austen's avatar
Chris Austen committed
978
        auto neg = m.insert_instruction(ins, make_op("neg"), c_in);
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
        m.replace_instruction(ins, neg);
    }
};

struct find_zero_ops
{
    auto matcher() const
    {
        auto mul_zero = match::name("mul")(
            match::either_arg(0, 1)(match::has_value(0.0f).bind("x"), match::any()));
        auto div_zero =
            match::name("div")(match::args(match::has_value(0.0f).bind("x"), match::any()));
        return match::any_of(mul_zero, div_zero);
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins      = r.result;
        auto zero_ins = r.instructions["x"];

        m.replace_instruction(ins, zero_ins);
    }
};

1003
1004
1005
1006
1007
1008
1009
struct find_sub_const
{
    auto matcher() const
    {
        return match::name("sub")(match::arg(1)(match::is_constant().bind("c")));
    }

1010
    void apply(module& m, const match::matcher_result& r) const
1011
1012
1013
1014
    {
        auto ins   = r.result;
        auto c_ins = r.instructions["c"];

1015
        auto neg = m.insert_instruction(std::next(c_ins), make_op("neg"), c_ins);
1016
1017
1018

        auto args = ins->inputs();

1019
        m.replace_instruction(ins, make_op("add"), args.front(), neg);
1020
1021
1022
    }
};

kahmed10's avatar
kahmed10 committed
1023
1024
1025
1026
1027
1028
1029
1030
struct find_rsqrt
{
    auto matcher() const
    {
        return match::name("recip")(match::args(
            match::name("sqrt")(match::used_once(), match::args(match::any().bind("x")))));
    }

1031
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
1032
1033
1034
1035
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];

1036
        m.replace_instruction(ins, make_op("rsqrt"), x_ins);
kahmed10's avatar
kahmed10 committed
1037
1038
1039
    }
};

1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
static bool same_ops(const std::vector<instruction_ref>& vec_ins)
{
    return std::all_of(vec_ins.begin(), vec_ins.end(), [&](auto i) {
        return i->get_operator() == vec_ins.front()->get_operator();
    });
}

struct find_split_reshape
{
    auto matcher() const
    {
        return match::name("reshape")(match::arg(0)(match::name("contiguous")(
                                          match::arg(0)(match::name("slice").bind("slice")))))
            .bind("reshape");
    }

1056
    void apply(module& m, const match::matcher_result& r) const
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
    {
        auto slc = r.instructions["slice"];
        auto rsp = r.instructions["reshape"];

        auto input         = slc->inputs().front();
        auto split_outputs = get_splits(input);
        if(split_outputs.empty())
        {
            return;
        }

shivadbhavsar's avatar
shivadbhavsar committed
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
        // Only want to apply this optimization if each split output is followed by
        // a contiguous op and a reshape
        if(std::any_of(split_outputs.begin(), split_outputs.end(), [](auto i) {
               if(i->outputs().size() == 1)
               {
                   auto cont = i->outputs().front();
                   return cont->outputs().size() != 1;
               }
               return false;
           }))
        {
            return;
        }

1082
1083
1084
1085
1086
1087
1088
1089
        std::vector<instruction_ref> vec_rsp(split_outputs.size());
        std::transform(split_outputs.begin(), split_outputs.end(), vec_rsp.begin(), [](auto i) {
            auto cont = i->outputs().front();
            return cont->outputs().front();
        });

        // all outputs are reshape and of the same shape
        auto dims = any_cast<op::reshape>(rsp->get_operator()).dims;
1090
        if(not same_ops(vec_rsp))
1091
1092
1093
1094
1095
        {
            return;
        }

        // ensure reshape happens after the axis dimension
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
        auto axis         = any_cast<op::slice>(slc->get_operator()).axes[0];
        auto slc_lens     = slc->get_shape().lens();
        auto slc_dim_size = std::accumulate(
            slc_lens.begin() + axis, slc_lens.end(), 1, std::multiplies<std::size_t>());

        // search the reshape output (standard shape) to decide which axis are
        // in its output corresponding to the slc_dim_size
        auto rsp_lens    = rsp->get_shape().lens();
        auto rsp_strides = rsp->get_shape().strides();
        rsp_strides.insert(rsp_strides.begin(), rsp_strides[0] * rsp_lens[0]);
1106
1107
1108

        auto ait     = std::find(rsp_strides.begin(), rsp_strides.end(), slc_dim_size);
        int rsp_axis = -1;
1109
        if(ait == rsp_strides.end())
1110
1111
1112
        {
            return;
        }
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
        else if(ait == rsp_strides.end() - 1)
        {
            // edge case
            // slice_dim == 1, in that case it could match with last stride of 1.
            // it should accumulate lengths from last dim in that case. discount 1 to avoid going
            // out of bounds.
            assert(slc_dim_size == 1);
            rsp_axis = std::distance(rsp_strides.begin(), ait) - 1;
        }
        else
        {
            rsp_axis = std::distance(rsp_strides.begin(), ait);
        }
1126
        // calculate reshape output shape
1127
        std::vector<int64_t> vec_dims(vec_rsp.size());
1128

1129
1130
1131
1132
1133
        std::transform(vec_rsp.begin(), vec_rsp.end(), vec_dims.begin(), [&](auto is) {
            return is->get_shape().lens()[rsp_axis];
        });

        std::vector<int64_t> rsp_out_lens(rsp_lens.begin(), rsp_lens.end());
1134

1135
        rsp_out_lens[rsp_axis] = std::accumulate(vec_dims.begin(), vec_dims.end(), std::int64_t{0});
1136

1137
1138
1139
1140
1141
        // insert the reshape instruction and add contiguous if needed
        if(not input->get_shape().standard())
        {
            input = m.insert_instruction(std::next(input), make_op("contiguous"), input);
        }
1142
        auto rsp_ins = m.insert_instruction(
1143
            std::next(input), make_op("reshape", {{"dims", rsp_out_lens}}), input);
1144
1145

        // replace the original reshape with slice
1146
1147
        int64_t start = 0;
        for(std::size_t i = 0; i < vec_rsp.size(); ++i)
1148
        {
1149
            m.replace_instruction(
1150
1151
1152
1153
1154
                vec_rsp[i],
                make_op(
                    "slice",
                    {{"axes", {rsp_axis}}, {"starts", {start}}, {"ends", {start + vec_dims[i]}}}),
                rsp_ins);
1155
            start += vec_dims[i];
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
        }
    }
};

struct find_split_transpose
{
    auto matcher() const
    {
        return match::name("transpose")(match::arg(0)(match::name("slice").bind("slice")))
            .bind("trans");
    }

1168
    void apply(module& m, const match::matcher_result& r) const
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
    {
        auto slc   = r.instructions["slice"];
        auto trans = r.instructions["trans"];

        auto input         = slc->inputs().front();
        auto split_outputs = get_splits(input);
        if(split_outputs.empty())
        {
            return;
        }

        std::vector<instruction_ref> vec_trans(split_outputs.size());
        std::transform(split_outputs.begin(), split_outputs.end(), vec_trans.begin(), [](auto i) {
            assert(i->outputs().size() == 1);
            return i->outputs().front();
        });

        // all transpose are the same
        auto perm = any_cast<op::transpose>(trans->get_operator()).dims;
1188
        if(not same_ops(vec_trans))
1189
1190
1191
1192
1193
        {
            return;
        }

        // insert an transpose instruction
1194
        auto tr = m.insert_instruction(
1195
            std::next(input), make_op("transpose", {{"permutation", perm}}), input);
1196
1197
1198
1199
1200

        // compute the axis in the slice
        auto axis = any_cast<op::slice>(slc->get_operator()).axes.front();
        auto it   = std::find(perm.begin(), perm.end(), axis);
        assert(it != perm.end());
Paul Fultz II's avatar
Paul Fultz II committed
1201
        int64_t axis_new = std::distance(perm.begin(), it);
1202
1203
1204
1205
1206
1207
1208

        for(auto in : split_outputs)
        {
            auto oper    = any_cast<op::slice>(in->get_operator());
            auto starts  = oper.starts;
            auto ends    = oper.ends;
            auto tr_orig = in->outputs().front();
1209
            m.replace_instruction(
1210
1211
1212
                tr_orig,
                make_op("slice", {{"axes", {axis_new}}, {"starts", starts}, {"ends", ends}}),
                tr);
1213
1214
1215
1216
        }
    }
};

1217
void simplify_algebra::apply(module& m) const
Paul's avatar
Paul committed
1218
{
Paul's avatar
Paul committed
1219
    // Run simplifications multiple times
1220
    for(int i = 0; i < 8; i++)
Paul's avatar
Paul committed
1221
    {
1222
        match::find_matches(m,
Paul's avatar
Paul committed
1223
                            find_inner_broadcast{},
Paul's avatar
Paul committed
1224
1225
                            find_double_add_lit_broadcast{},
                            find_add_lit_broadcast{},
1226
                            find_add_convs{},
1227
                            find_conv_dot_horiz_fusion{},
Paul's avatar
Paul committed
1228
                            find_mul_conv{},
1229
                            find_mul_slice_conv{},
1230
                            find_mul_add{},
1231
1232
1233
                            find_unit_ops{},
                            find_neg_unit_ops{},
                            find_zero_ops{},
1234
                            find_dot_add{},
1235
1236
                            find_div_const{},
                            find_sub_const{},
kahmed10's avatar
kahmed10 committed
1237
                            find_rsqrt{},
1238
                            find_concat_op{},
1239
                            find_split_concat{},
1240
1241
1242
                            find_splits{},
                            find_split_reshape{},
                            find_split_transpose{});
1243
        dead_code_elimination{}.apply(m);
Paul's avatar
Paul committed
1244
    }
Paul's avatar
Paul committed
1245
}
Paul's avatar
Paul committed
1246

Paul's avatar
Paul committed
1247
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1248
} // namespace migraphx