simplify_algebra.cpp 40.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
Paul's avatar
Paul committed
24
#include <migraphx/simplify_algebra.hpp>
Paul's avatar
Paul committed
25
#include <migraphx/dead_code_elimination.hpp>
Paul's avatar
Paul committed
26
#include <migraphx/program.hpp>
27
#include <migraphx/op/concat.hpp>
28
#include <migraphx/op/slice.hpp>
29
#include <migraphx/op/convolution.hpp>
Paul's avatar
Paul committed
30
#include <migraphx/op/broadcast.hpp>
31
32
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/transpose.hpp>
Paul's avatar
Paul committed
33
34
#include <migraphx/matcher.hpp>
#include <migraphx/literal.hpp>
35
36
37
#include <migraphx/make_op.hpp>
#include <migraphx/serialize.hpp>

38
#include <migraphx/algorithm.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
39
#include <unordered_set>
Paul's avatar
Paul committed
40

Paul's avatar
Paul committed
41
namespace migraphx {
Paul's avatar
Paul committed
42
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
43

Paul's avatar
Paul committed
44
auto lit_broadcast() { return match::any_of(match::is_constant(), match::name("broadcast")); }
Paul's avatar
Paul committed
45
auto not_lit_broadcast() { return match::none_of(match::is_constant(), match::name("broadcast")); }
Paul's avatar
Paul committed
46
47
auto op_lit_broadcast(std::string op, std::string x, std::string y)
{
Paul's avatar
Paul committed
48
49
    return match::name(std::move(op))(match::either_arg(0, 1)(
        lit_broadcast().bind(std::move(x)), not_lit_broadcast().bind(std::move(y))));
Paul's avatar
Paul committed
50
51
}

Paul's avatar
Paul committed
52
53
auto conv_const_weights()
{
Paul's avatar
Paul committed
54
    return match::name("convolution")(match::used_once(),
Paul's avatar
Paul committed
55
                                      match::args(match::any(), match::is_constant().bind("w")));
Paul's avatar
Paul committed
56
57
}

Shucai Xiao's avatar
Shucai Xiao committed
58
59
auto reduction() { return match::name_contains("reduce"); }

Paul's avatar
Paul committed
60
61
62
struct find_mul_conv
{
    auto matcher() const
Paul's avatar
Paul committed
63
    {
Paul's avatar
Paul committed
64
65
        return match::name("mul")(match::either_arg(0, 1)(conv_const_weights().bind("conv"),
                                                          match::name("broadcast").bind("a")));
Paul's avatar
Paul committed
66
    }
Paul's avatar
Paul committed
67

68
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
69
    {
Paul's avatar
Paul committed
70
        auto ins      = r.result;
Paul's avatar
Paul committed
71
        auto conv_ins = r.instructions["conv"];
Paul's avatar
Paul committed
72
73
74
        auto a_ins    = r.instructions["a"];
        auto w_ins    = r.instructions["w"];

Paul's avatar
Paul committed
75
        auto broadcast_op = any_cast<op::broadcast>(a_ins->get_operator());
Paul's avatar
Paul committed
76
        if(broadcast_op.axis != 1)
Paul's avatar
Paul committed
77
78
            return;

79
        auto new_a = m.insert_instruction(
80
            ins,
81
            make_op("broadcast", {{"axis", 0}, {"out_lens", w_ins->get_shape().lens()}}),
82
            a_ins->inputs().front());
83
84
        auto new_mul  = m.insert_instruction(ins, make_op("mul"), new_a, w_ins);
        auto new_conv = m.insert_instruction(
Paul's avatar
Paul committed
85
            ins, conv_ins->get_operator(), conv_ins->inputs().front(), new_mul);
86
        m.replace_instruction(ins, new_conv);
Paul's avatar
Paul committed
87
    }
Paul's avatar
Paul committed
88
89
};

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
struct find_mul_slice_conv
{
    static auto conv()
    {
        return match::name("convolution")(
            match::all_of[match::outputs()](match::name("slice")),
            match::args(match::any(), match::is_constant().bind("w")));
    }
    auto matcher() const
    {
        return match::name("mul")(match::either_arg(0, 1)(
            match::name("slice")(match::used_once(), match::arg(0)(conv().bind("conv")))
                .bind("slice"),
            match::name("broadcast")(match::is_constant()).bind("a")));
    }

106
    void apply(module& m, const match::matcher_result& r) const
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
    {
        auto ins       = r.result;
        auto slice_ins = r.instructions["slice"];
        auto conv_ins  = r.instructions["conv"];
        auto a_ins     = r.instructions["a"];
        auto w_ins     = r.instructions["w"];

        auto broadcast_op = any_cast<op::broadcast>(a_ins->get_operator());
        if(broadcast_op.axis != 1)
            return;

        auto slice_op = any_cast<op::slice>(slice_ins->get_operator());
        if(slice_op.axes.size() != 1)
            return;
        if(slice_op.axes.front() != 1)
            return;

        auto slice_idx = std::distance(conv_ins, slice_ins);
        if(std::any_of(conv_ins->outputs().begin(), conv_ins->outputs().end(), [&](auto i) {
               if(i == slice_ins)
                   return false;
               if(std::distance(conv_ins, i) < slice_idx)
                   return true;
               auto sop = any_cast<op::slice>(i->get_operator());
               if(sop.axes != slice_op.axes)
                   return true;
               if(std::max(sop.starts.front(), slice_op.starts.front()) <
                  std::min(sop.ends.front(), slice_op.ends.front()))
                   return true;
               return false;
           }))
            return;

        auto w_slice_op  = slice_op;
        w_slice_op.axes  = {0};
142
        auto slice_w_ins = m.insert_instruction(ins, w_slice_op, w_ins);
143

144
        auto new_a = m.insert_instruction(
145
            ins,
146
            make_op("broadcast", {{"axis", 0}, {"out_lens", slice_w_ins->get_shape().lens()}}),
147
            a_ins->inputs().front());
148
        auto new_mul = m.insert_instruction(ins, make_op("mul"), new_a, slice_w_ins);
149
150
151

        std::vector<instruction_ref> sliced_weights;
        if(slice_op.starts.front() != 0)
152
            sliced_weights.push_back(m.insert_instruction(
153
154
155
                ins,
                make_op("slice", {{"axes", {0}}, {"starts", {0}}, {"ends", slice_op.starts}}),
                w_ins));
156
157
158
        sliced_weights.push_back(new_mul);
        int64_t end_axis = w_ins->get_shape().lens().at(0);
        if(slice_op.ends.front() != end_axis)
159
            sliced_weights.push_back(m.insert_instruction(
160
161
162
                ins,
                make_op("slice", {{"axes", {0}}, {"starts", slice_op.ends}, {"ends", {end_axis}}}),
                w_ins));
163

164
        auto new_weights =
165
            m.insert_instruction(ins, make_op("concat", {{"axis", 0}}), sliced_weights);
166

167
        auto new_conv = m.insert_instruction(
168
169
170
            ins, conv_ins->get_operator(), conv_ins->inputs().front(), new_weights);
        assert(conv_ins->get_shape() == new_conv->get_shape());

171
        auto slice1 = m.insert_instruction(ins, slice_op, new_conv);
172
        assert(ins->get_shape().lens() == slice1->get_shape().lens());
173
        m.replace_instruction(ins, slice1);
174
        // TODO: Check each slice doesn't overlap and that it occurs after slice_ins
175
176
        auto outputs = conv_ins->outputs();
        for(auto output : outputs)
177
178
179
180
181
            if(output != slice_ins)
                instruction::replace_argument(output, conv_ins, new_conv);
    }
};

Paul's avatar
Paul committed
182
// a * (x + b) => a * x + a * b
Paul's avatar
Paul committed
183
184
185
186
187
struct find_mul_add
{
    auto matcher() const
    {
        return match::name("mul")(match::either_arg(0, 1)(
Paul's avatar
Paul committed
188
189
190
            match::name("add")(
                match::either_arg(0, 1)(
                    match::any().bind("x"),
Paul's avatar
Paul committed
191
                    match::any_of(conv_const_weights(), match::is_constant()).bind("b")),
Paul's avatar
Paul committed
192
                match::none_of(match::args(match::is_constant(), match::is_constant())),
Paul's avatar
Paul committed
193
                match::used_once()),
Paul's avatar
Paul committed
194
            match::is_constant().bind("a")));
Paul's avatar
Paul committed
195
196
    }

197
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
198
    {
Paul's avatar
Paul committed
199
        auto ins   = r.result;
Paul's avatar
Paul committed
200
        auto a_ins = r.instructions["a"];
Paul's avatar
Paul committed
201
        auto b_ins = r.instructions["b"];
Paul's avatar
Paul committed
202
        auto x_ins = r.instructions["x"];
Paul's avatar
Paul committed
203
        assert(x_ins != b_ins);
Paul's avatar
Paul committed
204

205
206
207
        auto ax_ins = m.insert_instruction(ins, make_op("mul"), a_ins, x_ins);
        auto ab_ins = m.insert_instruction(ins, make_op("mul"), a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), ax_ins, ab_ins);
Paul's avatar
Paul committed
208
209
210
    }
};

211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
struct find_dot_add
{
    auto matcher() const
    {
        return match::name("dot")(match::either_arg(0, 1)(
            match::name("add")(
                match::either_arg(0, 1)(match::any().bind("x"),
                                        match::any_of(match::is_constant()).bind("b")),
                match::none_of(match::args(match::is_constant(), match::is_constant())),
                match::used_once()),
            match::is_constant().bind("a")));
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins   = r.result;
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];
        auto x_ins = r.instructions["x"];
        assert(x_ins != b_ins);

        const bool flipped = a_ins == ins->inputs().back();

        auto insert_dot = [&](auto x, auto y) {
            if(flipped)
                return m.insert_instruction(ins, make_op("dot"), y, x);
            else
                return m.insert_instruction(ins, make_op("dot"), x, y);
        };

        auto ax_ins = insert_dot(a_ins, x_ins);
        auto ab_ins = insert_dot(a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), ax_ins, ab_ins);
    }
};

Paul's avatar
Paul committed
247
struct find_add_lit_broadcast
Paul's avatar
Paul committed
248
249
250
251
252
253
254
{
    auto matcher() const
    {
        return match::name("add")(
            match::either_arg(0, 1)(op_lit_broadcast("add", "a", "x"), lit_broadcast().bind("b")));
    }

255
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
256
257
258
259
260
261
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];

262
263
        auto sumab = m.insert_instruction(ins, make_op("add"), a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), x_ins, sumab);
Paul's avatar
Paul committed
264
265
266
267
    }
};

struct find_double_add_lit_broadcast
Paul's avatar
Paul committed
268
{
Paul's avatar
Paul committed
269
270
    auto matcher() const
    {
Paul's avatar
Paul committed
271
        return match::name("add")(
Paul's avatar
Paul committed
272
            match::args(op_lit_broadcast("add", "a", "x"), op_lit_broadcast("add", "b", "y")));
Paul's avatar
Paul committed
273
274
    }

275
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
276
    {
Paul's avatar
Paul committed
277
278
279
280
281
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto y_ins = r.instructions["y"];
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];
Paul's avatar
Paul committed
282
283
284

        instruction_ref sumab;

Paul's avatar
Paul committed
285
        if(a_ins->name() == "broadcast" and b_ins->name() == "broadcast")
Paul's avatar
Paul committed
286
287
288
        {
            if(a_ins->inputs().at(0)->get_shape() != b_ins->inputs().at(0)->get_shape())
                return;
289
            auto op     = a_ins->get_operator();
290
            auto presum = m.insert_instruction(
291
                ins, make_op("add"), a_ins->inputs().at(0), b_ins->inputs().at(0));
292
            sumab = m.insert_instruction(ins, op, presum);
Paul's avatar
Paul committed
293
294
295
        }
        else
        {
296
            sumab = m.insert_instruction(ins, make_op("add"), a_ins, b_ins);
Paul's avatar
Paul committed
297
298
        }

299
300
        auto sumxy = m.insert_instruction(ins, make_op("add"), x_ins, y_ins);
        m.replace_instruction(ins, make_op("add"), sumxy, sumab);
Paul's avatar
Paul committed
301
302
303
    }
};

Paul's avatar
Paul committed
304
305
struct find_inner_broadcast
{
306
    auto matcher() const { return pointwise(match::all_of[match::inputs()](match::broadcast())); }
Paul's avatar
Paul committed
307

308
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
309
    {
310
311
312
313
314
315
316
317
318
319
320
321
        auto ins        = r.result;
        auto broadcasts = ins->inputs();
        if(broadcasts.empty())
            return;
        std::vector<instruction_ref> inputs;
        std::transform(broadcasts.begin(),
                       broadcasts.end(),
                       std::back_inserter(inputs),
                       [](auto i) { return i->inputs().front(); });
        if(std::any_of(inputs.begin(), inputs.end(), [&](auto i) {
               return i->get_shape() != inputs.front()->get_shape();
           }))
Paul's avatar
Paul committed
322
323
            return;

324
325
        auto op = m.insert_instruction(ins, ins->get_operator(), inputs);
        m.replace_instruction(ins, broadcasts.front()->get_operator(), op);
Paul's avatar
Paul committed
326
327
328
    }
};

329
struct find_concat_op
330
331
332
{
    auto matcher() const
    {
333
        return match::name("concat")(match::any_of[match::inputs()](
334
            match::any_of(match::pointwise(), match::name("broadcast")), match::used_once()));
335
336
    }

337
338
    template <class Iterator>
    static std::vector<std::size_t> get_output_lens(Iterator start, Iterator last, std::size_t axis)
339
    {
340
341
342
        assert(start != last);
        std::size_t dim = 0;
        for(auto ins : range(start, last))
343
        {
344
            dim += ins->get_shape().lens().at(axis);
345
        }
346
347
348
        auto lens  = (*start)->get_shape().lens();
        lens[axis] = dim;
        return lens;
349
350
    }

351
352
353
354
355
    static bool is_valid_op(const operation& op)
    {
        return op.name() == "broadcast" or op.attributes().contains("pointwise");
    }

356
    void apply(module& m, const match::matcher_result& r) const
357
    {
358
359
        auto ins  = r.result;
        auto axis = any_cast<op::concat>(ins->get_operator()).axis;
360

361
362
363
364
365
366
        auto each = [&](auto start, auto last) -> std::vector<instruction_ref> {
            if(std::distance(start, last) < 2)
                return {start, last};
            auto x = *start;
            if(x->inputs().size() > 2 or x->inputs().empty() or x->outputs().size() > 1)
                return {start, last};
367
368
            auto op = x->get_operator();
            if(not is_valid_op(op))
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
                return {start, last};
            auto iaxis = axis;
            // Adjust broadcast lens
            if(op.name() == "broadcast")
            {
                auto b = any_cast<op::broadcast>(op);
                if(b.axis != iaxis)
                    return {start, last};
                b.broadcast_lens = get_output_lens(start, last, iaxis);
                op               = b;
                iaxis            = 0;
            }

            std::vector<instruction_ref> concats;
            for(std::size_t i = 0; i < x->inputs().size(); i++)
            {
                std::vector<instruction_ref> inputs;
                std::transform(start, last, std::back_inserter(inputs), [&](auto j) {
                    return j->inputs().at(i);
                });
389
                auto concat =
390
                    m.insert_instruction(ins, make_op("concat", {{"axis", iaxis}}), inputs);
391
392
                concats.push_back(concat);
            }
393
            auto y = m.insert_instruction(ins, op, concats);
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
            return {y};
        };

        std::vector<instruction_ref> args;
        auto update_args = [&](auto start, auto last) {
            auto x = each(start, last);
            args.insert(args.end(), x.begin(), x.end());
        };
        auto pred = [](auto i, auto j) {
            return i->get_operator() == j->get_operator() and
                   i->inputs().size() == i->inputs().size() and
                   i->outputs().size() == i->outputs().size();
        };
        group_unique(ins->inputs().begin(), ins->inputs().end(), update_args, pred);
        if(args.size() == 1)
409
            m.replace_instruction(ins, args.front());
410
        else
411
            m.replace_instruction(ins, make_op("concat", {{"axis", axis}}), args);
412
413
414
    }
};

Paul's avatar
Paul committed
415
416
417
void move_instructions_back(module& m, instruction_ref pos, std::vector<instruction_ref> inss)
{
    auto start = range(m.begin(), pos);
Paul's avatar
Format  
Paul committed
418
    for(auto ins : iterator_for(start))
Paul's avatar
Paul committed
419
420
    {
        auto it = std::find(inss.begin(), inss.end(), ins);
Paul's avatar
Format  
Paul committed
421
        if(it != inss.end())
Paul's avatar
Paul committed
422
423
424
425
426
427
428
429
430
431
432
            inss.erase(it);
    }
    for(auto ins : inss)
    {
        if(not m.has_instruction(ins))
            continue;
        move_instructions_back(m, pos, ins->inputs());
        m.move_instruction(ins, pos);
    }
}

433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
std::vector<instruction_ref> get_splits(instruction_ref ins)
{
    std::vector<instruction_ref> result;
    std::copy_if(ins->outputs().begin(),
                 ins->outputs().end(),
                 std::back_inserter(result),
                 [&](auto i) { return i->name() == "slice"; });
    if(result.size() < 2)
        return {};
    auto get_slice = [](auto& i) -> auto& { return any_cast<op::slice>(i->get_operator()); };
    auto&& axes    = get_slice(result.front()).axes;
    if(std::any_of(result.begin(), result.end(), [&](auto i) { return get_slice(i).axes != axes; }))
        return {};
    auto get_start = [&](auto& i) -> auto& { return get_slice(i).starts; };
    auto get_end   = [&](auto& i) -> auto& { return get_slice(i).ends; };
    std::sort(
        result.begin(), result.end(), [&](auto x, auto y) { return get_start(x) < get_start(y); });
    if(std::any_of(get_start(result.front()).begin(), get_start(result.front()).end(), [&](auto i) {
           return i != 0;
       }))
        return {};
    auto it = std::adjacent_find(
        result.begin(), result.end(), [&](auto x, auto y) { return get_end(x) != get_start(y); });
    if(it != result.end())
        return {};
    for(std::size_t i = 0; i < axes.size(); i++)
    {
        auto axis = axes[i];
        if(ins->get_shape().lens()[axis] != get_slice(result.back()).ends[i])
            return {};
    }
    return result;
}

struct find_splits
{
    auto matcher() const
    {
471
472
473
        return match::any(
            match::any_of[match::outputs()](match::name("slice")(match::any_of[match::outputs()](
                match::pointwise(match::any_of(match::nargs(1), match::nargs(2))), reduction()))));
474
475
    }

Shucai Xiao's avatar
Shucai Xiao committed
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
    static bool is_dependent(const module& m, instruction_ref ins1, instruction_ref ins2)
    {

        std::unordered_set<instruction_ref> traversed;
        return fix<bool>([&](auto self, auto ins) -> bool {
            if(ins == ins2)
                return true;

            if(contains(traversed, ins))
                return false;

            traversed.insert(ins);
            const auto& inputs = ins->inputs();
            return std::any_of(inputs.begin(), inputs.end(), [&](auto in) {
                return m.has_instruction(in) and self(in);
            });
        })(ins1);
    }

495
    static std::vector<std::vector<instruction_ref>>
Shucai Xiao's avatar
Shucai Xiao committed
496
    get_split_groups(const module& m, const std::vector<instruction_ref>& splits)
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
    {
        std::vector<std::vector<instruction_ref>> groups;
        for(auto out : splits.front()->outputs())
        {
            if(out->name() == "slice")
                continue;
            std::vector<instruction_ref> group;
            for(auto split : splits)
            {
                auto it =
                    std::find_if(split->outputs().begin(), split->outputs().end(), [&](auto i) {
                        return i->get_operator() == out->get_operator();
                    });
                if(it == split->outputs().end())
                    break;
                assert((*it)->name() != "slice");
Shucai Xiao's avatar
Shucai Xiao committed
513

514
                // If there is a duplicate bail
Shucai Xiao's avatar
Shucai Xiao committed
515
516
517
518
519
                // there are should be no dependency between instructions in the group
                if(std::any_of(group.begin(), group.end(), [&](auto i) {
                       return is_dependent(m, *it, i) or is_dependent(m, i, *it);
                   }))
                {
520
                    return {};
Shucai Xiao's avatar
Shucai Xiao committed
521
522
                }

523
524
525
526
527
528
529
530
531
                group.push_back(*it);
            }
            if(group.size() != splits.size())
                continue;
            groups.push_back(group);
        }
        return groups;
    }

Shucai Xiao's avatar
Shucai Xiao committed
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
    bool is_fusable(instruction_ref start, instruction_ref split_front) const
    {
        auto op = start->get_operator();
        if(contains(op.name(), "reduce"))
        {
            auto slc         = any_cast<op::slice>(split_front->get_operator());
            auto slc_axes    = slc.axes;
            auto reduce_axes = start->get_operator().to_value()["axes"].to_vector<int64_t>();
            // axes of slice and reduce op cannot have overlap
            if(std::any_of(slc_axes.begin(), slc_axes.end(), [&](auto axis) {
                   return (std::find(reduce_axes.begin(), reduce_axes.end(), axis) !=
                           reduce_axes.end());
               }))
            {
                return false;
            }
        }
        else if(not op.attributes().contains("pointwise"))
        {
            return false;
        }

        return true;
    }

557
    void apply(module& m, const match::matcher_result& r) const
558
    {
Shucai Xiao's avatar
Shucai Xiao committed
559
        auto ins    = r.result;
560
561
562
        auto splits = get_splits(ins);
        if(splits.empty())
            return;
Shucai Xiao's avatar
Shucai Xiao committed
563

564
        for(const auto& group : get_split_groups(m, splits))
565
        {
Shucai Xiao's avatar
Shucai Xiao committed
566
567
568
569
570
            auto start       = group.front();
            auto split_front = splits.front();
            auto op          = start->get_operator();
            if(not is_fusable(start, split_front))
            {
571
                continue;
Shucai Xiao's avatar
Shucai Xiao committed
572
            }
573
574
575
576
577
578

            // Make sure there is no duplicates
            assert(std::none_of(
                std::next(group.begin()), group.end(), [&](auto i) { return i == start; }));

            auto split_idx    = 0;
579
            instruction_ref c = m.end();
580
581
            if(start->inputs().size() == 1)
            {
582
                c = m.insert_instruction(std::next(ins), op, ins);
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
            }
            else if(start->inputs().size() == 2)
            {
                assert(not std::none_of(start->inputs().begin(), start->inputs().end(), [](auto i) {
                    return i->name() == "slice";
                }) && "one argument must be a split");
                auto data_idx = 1;
                if(start->inputs().back()->name() == "slice")
                {
                    split_idx = 1;
                    data_idx  = 0;
                }

                std::vector<instruction_ref> data_args;
                std::transform(group.begin(),
                               group.end(),
                               std::back_inserter(data_args),
                               [&](auto i) { return i->inputs()[data_idx]; });

                // Data arguments must be a constant
                if(std::any_of(data_args.begin(), data_args.end(), [](auto i) {
                       return not i->can_eval();
                   }))
                    return;

Paul's avatar
Paul committed
608
                move_instructions_back(m, ins, data_args);
609
610
611
612
613
614
615

                auto slice_op = any_cast<op::slice>(splits.front()->get_operator());
                assert(not slice_op.axes.empty());
                if(slice_op.axes.size() > 1)
                    return;
                auto concat_axis = slice_op.axes.front();
                // TODO: Check if axises match
616
                auto concat = m.insert_instruction(
617
                    ins, make_op("concat", {{"axis", concat_axis}}), data_args);
618
619
620
621
622

                std::vector<instruction_ref> args;
                args.resize(2);
                args[split_idx] = ins;
                args[data_idx]  = concat;
623
                c               = m.insert_instruction(std::next(ins), op, args);
624
            }
625
            if(c != m.end())
626
627
628
629
630
631
            {
                for(auto i : group)
                {
                    auto split = i->inputs()[split_idx];
                    assert(split->name() == "slice");
                    // Insert contiguous for reshapes
632
633
                    auto outputs = i->outputs();
                    for(auto output : outputs)
634
                    {
635
                        if(output->name() != "reshape")
636
                            continue;
637
                        auto x = m.insert_instruction(output, make_op("contiguous"), i);
638
                        m.replace_instruction(output, output->get_operator(), x);
639
640
                    }

641
                    m.replace_instruction(i, split->get_operator(), c);
642
643
644
645
646
647
648
649
650
651
652
653
654
655
                }
            }
        }
    }
};

struct find_split_concat
{
    auto matcher() const
    {
        return match::any(match::any_of[match::outputs()](
            match::name("slice")(match::all_of[match::outputs()](match::name("concat")))));
    }

656
    void apply(module& m, const match::matcher_result& r) const
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
    {
        auto ins = r.result;

        auto splits = get_splits(ins);
        if(splits.empty())
            return;
        if(std::any_of(
               splits.begin(), splits.end(), [](auto i) { return i->outputs().size() != 1; }))
            return;
        // Check for concat operator
        auto concat = splits.front()->outputs().front();
        if(std::any_of(splits.begin(), splits.end(), [&](auto i) {
               return i->outputs().front() != concat;
           }))
            return;
        // Check axis match
        auto concat_op = any_cast<op::concat>(concat->get_operator());
        auto split_op  = any_cast<op::slice>(splits.front()->get_operator());
        if(split_op.axes.size() != 1)
            return;
        if(split_op.axes.front() != concat_op.axis)
            return;
        // Replace args
        auto args = concat->inputs();
        auto it =
            std::find_if(args.begin(), args.end(), [&](auto i) { return i == splits.front(); });
        if(std::distance(it, args.end()) < splits.size())
            return;
685
686
687
688
689
690
691
        // If the slices are not in order then stop
        if(not std::is_sorted(it, it + splits.size(), [](instruction_ref x, instruction_ref y) {
               auto xop = any_cast<op::slice>(x->get_operator());
               auto yop = any_cast<op::slice>(y->get_operator());
               return std::tie(xop.starts, xop.ends) < std::tie(yop.starts, yop.ends);
           }))
            return;
692
693
694
695
        *it = splits.front()->inputs().front();
        args.erase(std::next(it), it + splits.size());

        if(args.size() == 1)
696
            m.replace_instruction(concat, args.front());
697
        else
698
            m.replace_instruction(concat, concat->get_operator(), args);
699
700
701
    }
};

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
bool axis_equal(const std::vector<std::size_t>& x,
                const std::vector<std::size_t>& y,
                std::size_t axis)
{
    return x.size() == y.size() and x.size() > axis and
           std::equal(x.begin(), x.begin() + axis, y.begin()) and
           std::equal(x.begin() + axis + 1, x.end(), y.begin() + axis + 1);
}

bool axis_shape_equal(const shape& x, const shape& y, std::size_t axis)
{
    // TODO: Check strides
    return axis_equal(x.lens(), y.lens(), axis);
}

struct find_add_convs
{
    auto matcher() const
    {
        return match::name("add")(
            match::args(conv_const_weights().bind("a"), conv_const_weights().bind("b")));
    }

    static bool symmetrical_strides(const op::convolution& op)
    {
        return op.stride[0] == op.stride[1];
    }

    static std::size_t compute_stride_factor(const op::convolution& x, const op::convolution& y)
    {
        if(not symmetrical_strides(x))
            return 0;
        if(not symmetrical_strides(y))
            return 0;
        if((x.stride[0] % y.stride[0]) != 0)
            return 0;
        return x.stride[0] / y.stride[0];
    }

741
    void apply(module& m, const match::matcher_result& r) const
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
    {
        auto ins       = r.result;
        auto a_conv    = r.instructions["a"];
        auto a_input   = a_conv->inputs().at(0);
        auto a_weights = a_conv->inputs().at(1);
        auto b_conv    = r.instructions["b"];
        auto b_input   = b_conv->inputs().at(0);
        auto b_weights = b_conv->inputs().at(1);

        if(not axis_shape_equal(a_weights->get_shape(), b_weights->get_shape(), 1))
            return;

        auto a_op   = any_cast<op::convolution>(a_conv->get_operator());
        auto b_op   = any_cast<op::convolution>(b_conv->get_operator());
        auto new_op = a_op;

        if(a_op != b_op)
        {
            if(std::tie(a_op.padding, a_op.dilation, a_op.group) ==
                   std::tie(b_op.padding, b_op.dilation, b_op.group) and
               a_weights->get_shape().lens()[2] == 1 and a_weights->get_shape().lens()[3] == 1)
            {
                if(a_op.stride < b_op.stride)
                {
                    auto n = compute_stride_factor(b_op, a_op);
                    if(n == 0)
                        return;
                    new_op  = a_op;
770
                    b_input = m.insert_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
771
                        ins, make_op("step", {{"axes", {2, 3}}, {"steps", {n, n}}}), b_input);
772
773
774
775
776
777
778
                }
                else if(b_op.stride < a_op.stride)
                {
                    auto n = compute_stride_factor(a_op, b_op);
                    if(n == 0)
                        return;
                    new_op  = b_op;
779
                    a_input = m.insert_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
780
                        ins, make_op("step", {{"axes", {2, 3}}, {"steps", {n, n}}}), a_input);
781
782
783
784
785
786
787
788
                }
                else
                    return;
            }
            else
                return;
        }

789
        auto concat_input =
790
            m.insert_instruction(ins, make_op("concat", {{"axis", 1}}), a_input, b_input);
791
        auto concat_weights =
792
793
            m.insert_instruction(ins, make_op("concat", {{"axis", 1}}), a_weights, b_weights);
        m.replace_instruction(ins, new_op, concat_input, concat_weights);
794
795
796
    }
};

797
798
799
800
801
802
803
804
805
806
MIGRAPHX_PRED_MATCHER(horiz_conv_dot, instruction_ref ins)
{
    auto pred = [&](auto name) {
        return [=](auto i) {
            return i->name() == name and i->inputs().front() == ins and
                   i->inputs().at(1)->can_eval();
        };
    };
    auto dots  = std::count_if(ins->outputs().begin(), ins->outputs().end(), pred("dot"));
    auto convs = std::count_if(ins->outputs().begin(), ins->outputs().end(), pred("convolution"));
807
    return not(dots < 2 and convs < 2);
808
809
810
811
812
813
}

struct find_conv_dot_horiz_fusion
{
    auto matcher() const { return horiz_conv_dot(); }

814
    void apply(module& m, const match::matcher_result& r) const
815
816
817
818
819
820
821
822
823
824
825
826
    {
        auto ins = r.result;

        auto pred = [](auto i, auto j) {
            if(i->get_operator() != j->get_operator())
                return false;
            if(not contains({"dot", "convolution"}, i->name()))
                return true;
            auto x = i->inputs()[1]->get_shape().lens();
            auto y = j->inputs()[1]->get_shape().lens();
            if(x.size() != y.size())
                return false;
827
            // Check that non-axes match
828
829
830
831
832
833
834
835
836
837
838
839
840
841
            int axis = 1;
            if(i->name() == "dot")
            {
                axis = x.size() - 1;
            }
            return axis_equal(x, y, axis);
        };

        auto each = [&](auto start, auto last) {
            if(std::distance(start, last) < 2)
                return;
            auto&& name = (*start)->name();
            if(not contains({"dot", "convolution"}, name))
                return;
842
843
844
845
846
847
848
            auto op   = (*start)->get_operator();
            int group = 1;
            if(name == "convolution")
                group = any_cast<op::convolution>(op).group;
            // Skip group convolution
            if(group != 1)
                return;
849
850
851
852
853
854
855
856
857
858
859
860
            auto input = (*start)->inputs().front();
            std::vector<instruction_ref> args;
            std::transform(
                start, last, std::back_inserter(args), [&](auto x) { return x->inputs().at(1); });
            int axis        = 1;
            int concat_axis = 0;
            if(name == "dot")
            {
                axis        = int(args.front()->get_shape().lens().size() - 1);
                concat_axis = axis;
            }

Paul's avatar
Paul committed
861
            move_instructions_back(m, input, args);
862
            // TODO: Check if axes match
863
            auto concat =
864
865
                m.insert_instruction(input, make_op("concat", {{"axis", concat_axis}}), args);
            auto fused     = m.insert_instruction(std::next(input), op, input, concat);
866
867
868
            int64_t offset = 0;
            for(auto arg : range(start, last))
            {
869
870
871
872
873
874
875
876
877
                auto outputs = arg->outputs();
                for(auto output : outputs)
                {
                    if(output->name() != "reshape")
                        continue;
                    auto x = m.insert_instruction(output, make_op("contiguous"), arg);
                    m.replace_instruction(output, output->get_operator(), x);
                }

878
                int64_t len = arg->get_shape().lens()[axis];
879
                m.replace_instruction(
880
881
882
883
                    arg,
                    make_op("slice",
                            {{"axes", {axis}}, {"starts", {offset}}, {"ends", {offset + len}}}),
                    fused);
884
885
886
887
888
889
890
891
892
                offset += len;
            }
        };

        auto outputs = ins->outputs();
        group_by(outputs.begin(), outputs.end(), each, pred);
    }
};

893
894
895
896
897
898
899
struct find_div_const
{
    auto matcher() const
    {
        return match::name("div")(match::arg(1)(match::is_constant().bind("c")));
    }

900
    void apply(module& m, const match::matcher_result& r) const
901
902
903
904
    {
        auto ins   = r.result;
        auto c_ins = r.instructions["c"];

905
        auto recip = m.insert_instruction(std::next(c_ins), make_op("recip"), c_ins);
906
907
908

        auto args = ins->inputs();

909
        m.replace_instruction(ins, make_op("mul"), args.front(), recip);
910
911
912
913
914
915
916
917
918
919
    }
};

struct find_sub_const
{
    auto matcher() const
    {
        return match::name("sub")(match::arg(1)(match::is_constant().bind("c")));
    }

920
    void apply(module& m, const match::matcher_result& r) const
921
922
923
924
    {
        auto ins   = r.result;
        auto c_ins = r.instructions["c"];

925
        auto neg = m.insert_instruction(std::next(c_ins), make_op("neg"), c_ins);
926
927
928

        auto args = ins->inputs();

929
        m.replace_instruction(ins, make_op("add"), args.front(), neg);
930
931
932
    }
};

kahmed10's avatar
kahmed10 committed
933
934
935
936
937
938
939
940
struct find_rsqrt
{
    auto matcher() const
    {
        return match::name("recip")(match::args(
            match::name("sqrt")(match::used_once(), match::args(match::any().bind("x")))));
    }

941
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
942
943
944
945
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];

946
        m.replace_instruction(ins, make_op("rsqrt"), x_ins);
kahmed10's avatar
kahmed10 committed
947
948
949
    }
};

950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
static bool same_ops(const std::vector<instruction_ref>& vec_ins)
{
    return std::all_of(vec_ins.begin(), vec_ins.end(), [&](auto i) {
        return i->get_operator() == vec_ins.front()->get_operator();
    });
}

struct find_split_reshape
{
    auto matcher() const
    {
        return match::name("reshape")(match::arg(0)(match::name("contiguous")(
                                          match::arg(0)(match::name("slice").bind("slice")))))
            .bind("reshape");
    }

966
    void apply(module& m, const match::matcher_result& r) const
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
    {
        auto slc = r.instructions["slice"];
        auto rsp = r.instructions["reshape"];

        auto input         = slc->inputs().front();
        auto split_outputs = get_splits(input);
        if(split_outputs.empty())
        {
            return;
        }

        std::vector<instruction_ref> vec_rsp(split_outputs.size());
        std::transform(split_outputs.begin(), split_outputs.end(), vec_rsp.begin(), [](auto i) {
            assert(i->outputs().size() == 1);
            auto cont = i->outputs().front();
            assert(cont->outputs().size() == 1);
            return cont->outputs().front();
        });

        // all outputs are reshape and of the same shape
        auto dims = any_cast<op::reshape>(rsp->get_operator()).dims;
988
        if(not same_ops(vec_rsp))
989
990
991
992
993
        {
            return;
        }

        // ensure reshape happens after the axis dimension
994
995
996
997
998
999
1000
1001
1002
1003
        auto axis         = any_cast<op::slice>(slc->get_operator()).axes[0];
        auto slc_lens     = slc->get_shape().lens();
        auto slc_dim_size = std::accumulate(
            slc_lens.begin() + axis, slc_lens.end(), 1, std::multiplies<std::size_t>());

        // search the reshape output (standard shape) to decide which axis are
        // in its output corresponding to the slc_dim_size
        auto rsp_lens    = rsp->get_shape().lens();
        auto rsp_strides = rsp->get_shape().strides();
        rsp_strides.insert(rsp_strides.begin(), rsp_strides[0] * rsp_lens[0]);
1004
1005
1006

        auto ait     = std::find(rsp_strides.begin(), rsp_strides.end(), slc_dim_size);
        int rsp_axis = -1;
1007
        if(ait == rsp_strides.end())
1008
1009
1010
        {
            return;
        }
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
        else if(ait == rsp_strides.end() - 1)
        {
            // edge case
            // slice_dim == 1, in that case it could match with last stride of 1.
            // it should accumulate lengths from last dim in that case. discount 1 to avoid going
            // out of bounds.
            assert(slc_dim_size == 1);
            rsp_axis = std::distance(rsp_strides.begin(), ait) - 1;
        }
        else
        {
            rsp_axis = std::distance(rsp_strides.begin(), ait);
        }
1024
        // calculate reshape output shape
1025
        std::vector<int64_t> vec_dims(vec_rsp.size());
1026

1027
1028
1029
1030
1031
        std::transform(vec_rsp.begin(), vec_rsp.end(), vec_dims.begin(), [&](auto is) {
            return is->get_shape().lens()[rsp_axis];
        });

        std::vector<int64_t> rsp_out_lens(rsp_lens.begin(), rsp_lens.end());
1032

1033
        rsp_out_lens[rsp_axis] = std::accumulate(vec_dims.begin(), vec_dims.end(), std::int64_t{0});
1034

1035
1036
1037
1038
1039
        // insert the reshape instruction and add contiguous if needed
        if(not input->get_shape().standard())
        {
            input = m.insert_instruction(std::next(input), make_op("contiguous"), input);
        }
1040
        auto rsp_ins = m.insert_instruction(
1041
            std::next(input), make_op("reshape", {{"dims", rsp_out_lens}}), input);
1042
1043

        // replace the original reshape with slice
1044
1045
        int64_t start = 0;
        for(std::size_t i = 0; i < vec_rsp.size(); ++i)
1046
        {
1047
            m.replace_instruction(
1048
1049
1050
1051
1052
                vec_rsp[i],
                make_op(
                    "slice",
                    {{"axes", {rsp_axis}}, {"starts", {start}}, {"ends", {start + vec_dims[i]}}}),
                rsp_ins);
1053
            start += vec_dims[i];
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
        }
    }
};

struct find_split_transpose
{
    auto matcher() const
    {
        return match::name("transpose")(match::arg(0)(match::name("slice").bind("slice")))
            .bind("trans");
    }

1066
    void apply(module& m, const match::matcher_result& r) const
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
    {
        auto slc   = r.instructions["slice"];
        auto trans = r.instructions["trans"];

        auto input         = slc->inputs().front();
        auto split_outputs = get_splits(input);
        if(split_outputs.empty())
        {
            return;
        }

        std::vector<instruction_ref> vec_trans(split_outputs.size());
        std::transform(split_outputs.begin(), split_outputs.end(), vec_trans.begin(), [](auto i) {
            assert(i->outputs().size() == 1);
            return i->outputs().front();
        });

        // all transpose are the same
        auto perm = any_cast<op::transpose>(trans->get_operator()).dims;
1086
        if(not same_ops(vec_trans))
1087
1088
1089
1090
1091
        {
            return;
        }

        // insert an transpose instruction
1092
        auto tr = m.insert_instruction(
1093
            std::next(input), make_op("transpose", {{"permutation", perm}}), input);
1094
1095
1096
1097
1098

        // compute the axis in the slice
        auto axis = any_cast<op::slice>(slc->get_operator()).axes.front();
        auto it   = std::find(perm.begin(), perm.end(), axis);
        assert(it != perm.end());
Paul Fultz II's avatar
Paul Fultz II committed
1099
        int64_t axis_new = std::distance(perm.begin(), it);
1100
1101
1102
1103
1104
1105
1106

        for(auto in : split_outputs)
        {
            auto oper    = any_cast<op::slice>(in->get_operator());
            auto starts  = oper.starts;
            auto ends    = oper.ends;
            auto tr_orig = in->outputs().front();
1107
            m.replace_instruction(
1108
1109
1110
                tr_orig,
                make_op("slice", {{"axes", {axis_new}}, {"starts", starts}, {"ends", ends}}),
                tr);
1111
1112
1113
1114
        }
    }
};

1115
void simplify_algebra::apply(module& m) const
Paul's avatar
Paul committed
1116
{
Paul's avatar
Paul committed
1117
    // Run simplifications multiple times
1118
    for(int i = 0; i < 8; i++)
Paul's avatar
Paul committed
1119
    {
1120
        match::find_matches(m,
Paul's avatar
Paul committed
1121
                            find_inner_broadcast{},
Paul's avatar
Paul committed
1122
1123
                            find_double_add_lit_broadcast{},
                            find_add_lit_broadcast{},
1124
                            find_add_convs{},
1125
                            find_conv_dot_horiz_fusion{},
Paul's avatar
Paul committed
1126
                            find_mul_conv{},
1127
                            find_mul_slice_conv{},
1128
                            find_mul_add{},
1129
                            find_dot_add{},
1130
1131
                            find_div_const{},
                            find_sub_const{},
kahmed10's avatar
kahmed10 committed
1132
                            find_rsqrt{},
1133
                            find_concat_op{},
1134
                            find_split_concat{},
1135
1136
1137
                            find_splits{},
                            find_split_reshape{},
                            find_split_transpose{});
1138
        dead_code_elimination{}.apply(m);
Paul's avatar
Paul committed
1139
    }
Paul's avatar
Paul committed
1140
}
Paul's avatar
Paul committed
1141

Paul's avatar
Paul committed
1142
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1143
} // namespace migraphx