"tests/pipelines/pia/test_pia.py" did not exist on "9112028ed8510ef87606dfd5ef77d6d3b41ddd0b"
lowering.cpp 29.1 KB
Newer Older
Paul's avatar
Paul committed
1

Paul's avatar
Paul committed
2
3
4
5
6
7
#include <migraphx/cpu/lowering.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/dfor.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/iterator_for.hpp>
Paul's avatar
Paul committed
8
#include <migraphx/par_dfor.hpp>
Paul's avatar
Paul committed
9
#include <migraphx/cpu/gemm.hpp>
Paul's avatar
Paul committed
10
#include <unordered_map>
Paul's avatar
Paul committed
11
#include <utility>
Paul's avatar
Paul committed
12

Paul's avatar
Paul committed
13
namespace migraphx {
Paul's avatar
Paul committed
14
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
15
16
17
18
19
20
21
22
namespace cpu {

template <typename T>
T zero(const T&)
{
    return T(0);
}

Khalique's avatar
Khalique committed
23
24
25
26
template <class T>
typename std::conditional_t<std::is_integral<T>{}, std::make_signed<T>, std::enable_if<true, T>>::
    type
    make_signed(T x)
Khalique's avatar
Khalique committed
27
28
29
30
{
    return x;
}

31
32
33
34
//
// cpu implemenataion of batch norm for inference
//
// inputs are:
35
36
37
38
// args[0] -> input data buffer
// args[1] -> mini batch mean
// args[2] -> mini batch variance
// args[3] -> gamma
Aditya Atluri's avatar
Aditya Atluri committed
39
// args[4] -> bias
40
41
42
//
// The equation to compute batch norm for inference is:
//
Aditya Atluri's avatar
Aditya Atluri committed
43
// output[i] = bias + gamma * (input[i] + mean) / sqrt(variance + epsilon)
44
45
46
47
48
//
// the input data format should be nchw
//
struct cpu_batch_norm_inference
{
49
    op::batch_norm_inference op;
50

51
52
    std::string name() const { return "cpu::batch_norm_inference"; }

Paul's avatar
Paul committed
53
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
54

Paul's avatar
Paul committed
55
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
56
    {
57
58
        argument output{output_shape};

Aditya Atluri's avatar
Aditya Atluri committed
59
60
        double epsilon           = op.epsilon;
        auto input               = args[0];
Paul's avatar
Paul committed
61
62
63
64
        auto arg_gamma           = args[1];
        auto arg_bias            = args[2];
        auto mini_batch_mean     = args[3];
        auto mini_batch_variance = args[4];
65

66
        auto num_batch    = output_shape.lens()[0];
Aditya Atluri's avatar
Aditya Atluri committed
67
68
        auto num_channels = output_shape.lens()[1];
        auto image_height = output_shape.lens()[2];
69
        auto image_width  = output_shape.lens()[3];
Aditya Atluri's avatar
Aditya Atluri committed
70

71
        if(op.bn_mode == op::batch_norm_inference::spatial)
Scott Thornton's avatar
Scott Thornton committed
72
73
74
75
        {
            visit_all(output, input, mini_batch_mean, mini_batch_variance, arg_gamma, arg_bias)(
                [&](auto result, auto buffer, auto mean, auto variance, auto gamma, auto bias) {

Paul's avatar
Paul committed
76
                    par_dfor(num_batch, num_channels, image_height, image_width)(
Scott Thornton's avatar
Scott Thornton committed
77
                        [&](std::size_t n, std::size_t c, std::size_t h, std::size_t w) {
78
79
80
81
                            assert((variance[c] + epsilon) > 0);
                            result(n, c, h, w) = gamma[c] * (buffer(n, c, h, w) - mean[c]) /
                                                     std::sqrt(variance[c] + epsilon) +
                                                 bias[c];
Scott Thornton's avatar
Scott Thornton committed
82
83
                        });
                });
84
85
        }

86
        if(op.bn_mode == op::batch_norm_inference::per_activation)
Scott Thornton's avatar
Scott Thornton committed
87
        {
88
89
90
            visit_all(output, input, mini_batch_mean, mini_batch_mean, arg_gamma, arg_bias)(
                [&](auto result, auto buffer, auto mean, auto variance, auto gamma, auto bias) {

Paul's avatar
Paul committed
91
                    par_dfor(num_batch, num_channels, image_height, image_width)(
92
                        [&](std::size_t n, std::size_t c, std::size_t h, std::size_t w) {
Paul's avatar
Paul committed
93
                            assert((variance(c, h, w) + epsilon) > 0);
Scott Thornton's avatar
Scott Thornton committed
94
95
96
97
98
99
                            result(n, c, h, w) = gamma(c, h, w) *
                                                     (buffer(n, c, h, w) - mean(c, h, w)) /
                                                     std::sqrt(variance(c, h, w) + epsilon) +
                                                 bias(c, h, w);
                        });
                });
100
        }
101
102
103
104
105

        return output;
    }
};

Khalique's avatar
Khalique committed
106
struct cpu_lrn
Khalique's avatar
Khalique committed
107
{
Khalique's avatar
Khalique committed
108
    op::lrn op;
Khalique's avatar
Khalique committed
109

Khalique's avatar
Khalique committed
110
    std::string name() const { return "cpu::lrn"; }
Khalique's avatar
Khalique committed
111
112
113
114
115
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
Khalique's avatar
Khalique committed
116
117
118
119
            int n_batch         = output_shape.lens()[0];
            int channels        = output_shape.lens()[1];
            int height          = output_shape.lens()[2];
            int width           = output_shape.lens()[3];
Khalique's avatar
Khalique committed
120
            float alphaoverarea = op.alpha / op.size;
Khalique's avatar
Khalique committed
121
            int radius          = (op.size - 1) / 2;
Khalique's avatar
Khalique committed
122

123
            par_dfor(n_batch, height, width)([&](int b, int h, int w) {
Khalique's avatar
Khalique committed
124
                float scale = 0;
Khalique's avatar
Khalique committed
125
126
                dfor(channels)([&](int c) {
                    auto start = (c - radius) < 0 ? 0 : (c - radius);
Khalique's avatar
Khalique committed
127
                    auto end   = (c + radius) > channels ? channels : (c + radius);
Khalique's avatar
Khalique committed
128
129
                    for(auto k = start; k < end; ++k)
                    {
Khalique's avatar
Khalique committed
130
                        scale += std::pow(input(b, k, h, w), 2);
Khalique's avatar
Khalique committed
131
132
133
                    }
                    scale *= alphaoverarea;
                    scale += op.bias;
Khalique's avatar
Khalique committed
134
                    scale              = std::pow(scale, -op.beta);
Khalique's avatar
Khalique committed
135
136
137
138
139
140
141
142
                    output(b, c, h, w) = input(b, c, h, w) * scale;
                });
            });
        });
        return result;
    }
};

Khalique's avatar
Khalique committed
143
144
145
146
147
148
149
150
struct clip_op
{
    op::clip op;
    std::string name() const { return "cpu::clip"; }
    auto fcn() const
    {
        auto& max = op.max_val;
        auto& min = op.min_val;
Khalique's avatar
Khalique committed
151
        return [max, min](auto x) {
Khalique's avatar
Khalique committed
152
            using type = decltype(x);
Khalique's avatar
Khalique committed
153
154
            return std::min(std::max(type(min), x), type(max));
        };
Khalique's avatar
Khalique committed
155
156
157
    }
};

Paul's avatar
Paul committed
158
159
struct cpu_convolution
{
160
    op::convolution op;
Paul's avatar
Paul committed
161
162

    std::string name() const { return "cpu::convolution"; }
Paul's avatar
Paul committed
163
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Paul's avatar
Paul committed
164
165
166
167
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        visit_all(result, args[0], args[1])([&](auto output, auto input, auto weights) {
Khalique's avatar
Khalique committed
168
            auto in   = input.get_shape().lens();
Khalique's avatar
Khalique committed
169
170
            auto in_h = in[2];
            auto in_w = in[3];
Paul's avatar
Paul committed
171

Khalique's avatar
Khalique committed
172
            auto wei   = weights.get_shape().lens();
Khalique's avatar
Khalique committed
173
174
175
176
            auto wei_n = wei[0];
            auto wei_c = wei[1];
            auto wei_h = wei[2];
            auto wei_w = wei[3];
Paul's avatar
Paul committed
177

Paul's avatar
Paul committed
178
            par_dfor(output_shape.lens()[0],
Paul's avatar
Paul committed
179
180
181
                     output_shape.lens()[1],
                     output_shape.lens()[2],
                     output_shape.lens()[3])(
Paul's avatar
Paul committed
182
                [&](std::size_t o, std::size_t w, std::size_t i, std::size_t j) {
Khalique's avatar
Khalique committed
183
184
                    const int start_x  = i * op.stride[0] - op.padding[0];
                    const int start_y  = j * op.stride[1] - op.padding[1];
Khalique's avatar
Khalique committed
185
                    const int group_id = w / (wei_n / op.group);
Paul's avatar
Paul committed
186
187
188

                    double acc = 0;
                    dfor(wei_c, wei_h, wei_w)([&](std::size_t k, std::size_t x, std::size_t y) {
Khalique's avatar
Khalique committed
189
190
                        const int in_x  = start_x + x;
                        const int in_y  = start_y + y;
Khalique's avatar
Khalique committed
191
                        const int in_ch = group_id * wei_c + k;
Paul's avatar
Paul committed
192
193
                        if(in_x >= 0 && in_x < in_h && in_y >= 0 && in_y < in_w)
                        {
Khalique's avatar
Khalique committed
194
                            acc += input(o, in_ch, in_x, in_y) * weights(w, k, x, y);
Paul's avatar
Paul committed
195
196
197
198
199
200
201
202
203
                        }
                    });
                    output(o, w, i, j) = acc;
                });
        });
        return result;
    }
};

Scott Thornton's avatar
Scott Thornton committed
204
205
struct cpu_im2col
{
206
    op::im2col op;
Scott Thornton's avatar
Scott Thornton committed
207

Scott Thornton's avatar
Scott Thornton committed
208
209
    static std::string name() { return "cpu::im2col"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Scott Thornton's avatar
Scott Thornton committed
210

wsttiger's avatar
wsttiger committed
211
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Scott Thornton's avatar
Scott Thornton committed
212
    {
Scott Thornton's avatar
Scott Thornton committed
213
        argument result{output_shape};
Scott Thornton's avatar
Scott Thornton committed
214
        auto input_shape   = args[0].get_shape();
Scott Thornton's avatar
Scott Thornton committed
215
216
        auto weights_shape = args[1].get_shape();
        visit_all(result, args[0])([&](auto col, auto input) {
Scott Thornton's avatar
Scott Thornton committed
217
218
            const std::size_t& height   = input_shape.lens()[2];
            const std::size_t& width    = input_shape.lens()[3];
Scott Thornton's avatar
Scott Thornton committed
219
220
221
            const std::size_t& channels = weights_shape.lens()[1];
            const std::size_t& kernel_h = weights_shape.lens()[2];
            const std::size_t& kernel_w = weights_shape.lens()[3];
Scott Thornton's avatar
Scott Thornton committed
222
223
            const std::size_t& pad_h    = op.padding[0];
            const std::size_t& pad_w    = op.padding[1];
Scott Thornton's avatar
Scott Thornton committed
224
225
226
            const std::size_t& stride_h = op.stride[0];
            const std::size_t& stride_w = op.stride[1];

Paul's avatar
Paul committed
227
228
            int kdiv2_h;
            int kdiv2_w;
Scott Thornton's avatar
Scott Thornton committed
229
230
            kdiv2_h = kernel_h / 2;
            kdiv2_w = kernel_w / 2;
Scott Thornton's avatar
Scott Thornton committed
231
            // calculate output sizes
Scott Thornton's avatar
Scott Thornton committed
232
233
            const std::size_t col_height = (height - kernel_h + 2 * pad_h) / stride_h + 1;
            const std::size_t col_width  = (width - kernel_w + 2 * pad_w) / stride_w + 1;
wsttiger's avatar
wsttiger committed
234
            // account for padding for the starting position of the input pixels
Scott Thornton's avatar
Scott Thornton committed
235
            std::size_t iinput = kdiv2_h - pad_h;
wsttiger's avatar
wsttiger committed
236
            // loop over output pixels (ioutput, joutput)
Scott Thornton's avatar
Scott Thornton committed
237
238
239
240
241
242
243
244
            for(std::size_t ioutput = 0; ioutput < col_height; ioutput++, iinput += stride_h)
            {
                std::size_t jinput = kdiv2_w - pad_w;
                for(std::size_t joutput = 0; joutput < col_width; joutput++, jinput += stride_w)
                {
                    // compute linear index for output
                    std::size_t ldx = ioutput * col_width + joutput;
                    std::size_t p   = 0;
wsttiger's avatar
wsttiger committed
245
246
247
248
249
250
251
252
253
254
                    dfor(channels,
                         kernel_h,
                         kernel_w)([&](std::size_t c, std::size_t koffset, std::size_t loffset) {
                        int idx     = iinput + koffset - kdiv2_h;
                        int jdx     = jinput + loffset - kdiv2_w;
                        col(ldx, p) = ((idx >= 0) && (idx < height) && (jdx >= 0) && (jdx < width))
                                          ? input(0, c, idx, jdx)
                                          : 0;
                        p++;
                    });
Scott Thornton's avatar
Scott Thornton committed
255
256
                }
            }
Scott Thornton's avatar
Scott Thornton committed
257
        });
Scott Thornton's avatar
Scott Thornton committed
258
259
260
261
        return result;
    }
};

Paul's avatar
Paul committed
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
struct max_pool
{
    static std::string name() { return "max"; }
    static double start() { return std::numeric_limits<double>::lowest(); }

    static double apply(double x, double y)
    {
        double m = std::max(x, y);
        return (m);
    }

    static double final(double x, double) { return (x); }
};

struct avg_pool
{
    static std::string name() { return "average"; }
    static double start() { return 0.0; }

    static double apply(double x, double y) { return x + y; }

    static double final(double x, double y) { return x / y; }
};

template <class Op>
struct cpu_pooling
{
289
    op::pooling op;
Paul's avatar
Paul committed
290
291

    std::string name() const { return "cpu::pooling_" + Op::name(); }
Paul's avatar
Paul committed
292
293
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
294
295
296
297
298
299
300
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
            using type = typename decltype(output)::value_type;
            auto in_h  = input.get_shape().lens()[2];
            auto in_w  = input.get_shape().lens()[3];

Paul's avatar
Paul committed
301
            par_dfor(output_shape.lens()[0],
Paul's avatar
Paul committed
302
303
304
                     output_shape.lens()[1],
                     output_shape.lens()[2],
                     output_shape.lens()[3])(
Paul's avatar
Paul committed
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
                [&](std::size_t o, std::size_t w, std::size_t i, std::size_t j) {
                    const int start_x0 = i * op.stride[0] - op.padding[0];
                    const int start_y0 = j * op.stride[1] - op.padding[1];

                    const int hend = std::min(start_x0 + op.lengths[0], in_h);
                    const int wend = std::min(start_y0 + op.lengths[1], in_w);

                    const int start_x = std::max(start_x0, 0);
                    const int start_y = std::max(start_y0, 0);

                    const int w_h       = (hend - start_x);
                    const int w_w       = (wend - start_y);
                    const int pool_size = std::max(w_h * w_w, 1);

                    double acc = Op::start();
                    dfor(w_h, w_w)([&](int x, int y) {
                        const int in_x = start_x + x;
                        const int in_y = start_y + y;
                        if(in_x >= 0 && in_x < in_h && in_y >= 0 && in_y < in_w)
                        {
                            acc = Op::apply(acc, input(o, w, in_x, in_y));
                        }
                    });
                    output(o, w, i, j) = type(Op::final(acc, pool_size));
                });
        });
        return result;
    }
};

struct cpu_contiguous
{
337
    op::contiguous op;
Paul's avatar
Paul committed
338
    std::string name() const { return "cpu::contiguous"; }
Paul's avatar
Paul committed
339
340
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
341
    {
Paul's avatar
Paul committed
342
        return op.compute(output_shape, std::move(args));
Paul's avatar
Paul committed
343
344
345
    }
};

Khalique's avatar
Khalique committed
346
struct cpu_pad
347
{
Khalique's avatar
Khalique committed
348
349
    op::pad op;
    std::string name() const { return "cpu::contiguous"; }
350
351
352
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
Khalique's avatar
Khalique committed
353
        assert(output_shape.standard());
354
        argument result{output_shape};
Khalique's avatar
Khalique committed
355
        result.visit([&](auto output) { std::fill(output.begin(), output.end(), op.value); });
Khalique's avatar
Khalique committed
356
357

        visit_all(result, args[0])([&](auto output, auto input) {
358
            shape_for_each(input.get_shape(), [&](const auto& idx) {
Khalique's avatar
Khalique committed
359
                std::vector<std::size_t> new_idx(idx.size());
Khalique's avatar
Khalique committed
360
361
362
363
                std::transform(
                    idx.begin(), idx.end(), op.pads.begin(), new_idx.begin(), [](auto i, auto j) {
                        return i + j;
                    });
Khalique's avatar
Khalique committed
364
                output(new_idx.begin(), new_idx.end()) = input(idx.begin(), idx.end());
365
            });
Khalique's avatar
Khalique committed
366
367
        });

368
369
370
371
372
373
374
375
376
377
378
        return result;
    }
};

struct cpu_concat
{
    op::concat op;
    std::string name() const { return "cpu::concat"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
Paul's avatar
Paul committed
379
        return op.compute(output_shape, std::move(args));
380
381
382
    }
};

Paul's avatar
Paul committed
383
384
struct cpu_gemm
{
Shucai Xiao's avatar
Shucai Xiao committed
385
386
    op::dot op;
    std::string name() const { return "cpu::dot"; }
Shucai Xiao's avatar
Shucai Xiao committed
387
388
    shape compute_shape(const std::vector<shape>& inputs) const
    {
Shucai Xiao's avatar
Shucai Xiao committed
389
390
391
392
393
        if(inputs.size() == 3)
        {
            auto c_shape = inputs.at(2);
            check_shapes{{c_shape}}.not_broadcasted();
        }
Shucai Xiao's avatar
Shucai Xiao committed
394
        return op.compute_shape(inputs);
Shucai Xiao's avatar
Shucai Xiao committed
395
    }
Paul's avatar
Paul committed
396

Paul's avatar
Paul committed
397
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
398
399
    {
        argument result{output_shape};
Shucai Xiao's avatar
Shucai Xiao committed
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
        // 3 inputs, it is alpha * A * B + beta * C, then
        // A and B are matrics, and C is broadcastable to A * B
        if(args.size() == 3)
        {
            // no need to consider the value of args[2]
            if(op.beta == 0.0f)
            {
                result.visit([&](auto output) { std::fill(output.begin(), output.end(), 0); });
            }
            else
            {
                visit_all(result, args[2])([&](auto output, auto input) {
                    std::copy(input.begin(), input.end(), output.begin());
                });
            }

            migemm(result, args[0], args[1], op.alpha, op.beta);

            return result;
        }

        // 2 input arguments
        migemm(result, args[0], args[1], op.alpha, 0.0f);

Paul's avatar
Paul committed
424
425
426
427
        return result;
    }
};

428
429
430
431
432
433
434
435
struct cpu_gather
{
    op::gather op;
    std::string name() const { return "cpu::gather"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }

    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
Shucai Xiao's avatar
Shucai Xiao committed
436
        return op.compute(output_shape, std::move(args));
437
438
439
    }
};

Paul's avatar
Paul committed
440
441
442
443
444
445
446
447
448
449
450
451
452
453
struct identity_op
{
    std::string name() const { return "cpu::identity"; }
    auto fcn() const
    {
        return [](auto x) { return x; };
    }
};

struct abs_op
{
    std::string name() const { return "cpu::abs"; }
    auto fcn() const
    {
Khalique's avatar
Khalique committed
454
        return [](auto x) { return std::abs(make_signed(x)); };
Paul's avatar
Paul committed
455
456
457
458
459
460
461
462
463
464
465
466
    }
};

struct exp_op
{
    std::string name() const { return "cpu::exp"; }
    auto fcn() const
    {
        return [](auto x) { return std::exp(x); };
    }
};

Shucai Xiao's avatar
Shucai Xiao committed
467
468
469
470
471
472
473
474
475
struct log_op
{
    std::string name() const { return "cpu::log"; }
    auto fcn() const
    {
        return [](auto x) { return std::log(x); };
    }
};

Paul's avatar
Paul committed
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
struct sin_op
{
    std::string name() const { return "cpu::sin"; }
    auto fcn() const
    {
        return [](auto x) { return std::sin(x); };
    }
};

struct cos_op
{
    std::string name() const { return "cpu::cos"; }
    auto fcn() const
    {
        return [](auto x) { return std::cos(x); };
    }
};

struct tan_op
{
    std::string name() const { return "cpu::tan"; }
    auto fcn() const
    {
        return [](auto x) { return std::tan(x); };
    }
};

struct asin_op
{
    std::string name() const { return "cpu::asin"; }
    auto fcn() const
    {
        return [](auto x) { return std::asin(x); };
    }
};

struct acos_op
{
    std::string name() const { return "cpu::acos"; }
    auto fcn() const
    {
        return [](auto x) { return std::acos(x); };
    }
};

struct atan_op
{
    std::string name() const { return "cpu::atan"; }
    auto fcn() const
    {
        return [](auto x) { return std::atan(x); };
    }
};

530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
struct sinh_op
{
    std::string name() const { return "cpu::sinh"; }
    auto fcn() const
    {
        return [](auto x) { return std::sinh(x); };
    }
};

struct cosh_op
{
    std::string name() const { return "cpu::cosh"; }
    auto fcn() const
    {
        return [](auto x) { return std::cosh(x); };
    }
};

Paul's avatar
Paul committed
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
struct tanh_op
{
    std::string name() const { return "cpu::tanh"; }
    auto fcn() const
    {
        return [](auto x) { return std::tanh(x); };
    }
};

struct sigmoid_op
{
    std::string name() const { return "cpu::sigmoid"; }
    auto fcn() const
    {
        return [](auto x) { return 1.f / (1.f + std::exp(-x)); };
    }
};

struct neg_op
{
    std::string name() const { return "cpu::neg"; }
    auto fcn() const
    {
        return [](auto x) { return -x; };
    }
};

struct relu_op
{
    std::string name() const { return "cpu::relu"; }
    auto fcn() const
    {
Paul's avatar
Paul committed
580
        return [](auto x) { return std::max(decltype(x){0}, x); };
Paul's avatar
Paul committed
581
582
583
    }
};

Khalique's avatar
Khalique committed
584
585
586
587
588
589
590
591
592
593
594
struct leaky_relu_op
{
    op::leaky_relu op;
    std::string name() const { return "cpu::leaky_relu"; }
    auto fcn() const
    {
        auto& a = op.alpha;
        return [a](auto x) { return x > 0 ? x : x * a; };
    }
};

Khalique's avatar
Khalique committed
595
596
597
598
599
600
601
602
603
604
605
struct elu_op
{
    op::elu op;
    std::string name() const { return "cpu::elu"; }
    auto fcn() const
    {
        auto& a = op.alpha;
        return [a](auto x) { return x > 0 ? x : a * std::expm1(x); };
    }
};

Paul's avatar
Paul committed
606
607
608
609
610
template <typename Op>
struct cpu_unary
{
    Op op;
    std::string name() const { return op.name(); }
Paul's avatar
Paul committed
611
612
    shape compute_shape(const std::vector<shape>& inputs) const { return inputs.front(); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
613
614
615
616
617
618
619
    {
        argument result{output_shape};
        result.visit([&](auto output) {
            args[0].visit([&](auto input) {
                std::transform(input.begin(), input.end(), output.begin(), op.fcn());
            });
        });
620

Paul's avatar
Paul committed
621
622
623
624
625
626
627
        return result;
    }
};

struct softmax2d
{
    std::string name() const { return "cpu::softmax2d"; }
Paul's avatar
Paul committed
628
629
    shape compute_shape(const std::vector<shape>& inputs) const { return inputs.front(); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
            using value_type = typename decltype(input)::value_type;
            auto nb          = input.get_shape().lens()[0];
            auto nc          = input.get_shape().lens()[1];
            auto nh          = input.get_shape().lens()[2];
            auto nw          = input.get_shape().lens()[3];
            dfor(nb, nh, nw)([&](std::size_t b, std::size_t i, std::size_t j) {
                value_type cmax = std::numeric_limits<value_type>::lowest();
                for(int c = 0; c < nc; c++)
                {
                    cmax = std::max(cmax, input(b, c, i, j));
                }
                for(int c = 0; c < nc; c++)
                {
                    output(b, c, i, j) = std::exp(input(b, c, i, j) - cmax);
                }
                value_type sum = value_type(0);
                for(int c = 0; c < nc; c++)
                {
                    sum += output(b, c, i, j);
                }
                for(int c = 0; c < nc; c++)
                {
                    output(b, c, i, j) = output(b, c, i, j) / sum;
                }
            });
        });
        return result;
    }
};

Shucai Xiao's avatar
Shucai Xiao committed
663
664
665
666
667
668
struct cpu_logsoftmax
{
    op::logsoftmax op;
    std::string name() const { return "cpu::logsoftmax"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }

Shucai Xiao's avatar
Shucai Xiao committed
669
    template <typename T>
Shucai Xiao's avatar
Shucai Xiao committed
670
671
    std::size_t compute_batch_index(const T& idx, shape& batch_shape, int axis) const
    {
Shucai Xiao's avatar
Shucai Xiao committed
672
        if(axis == 0)
673
674
675
676
677
678
        {
            return 0;
        }
        else
        {
            std::vector<std::size_t> batch_idx(idx.begin(), idx.begin() + axis);
Shucai Xiao's avatar
Shucai Xiao committed
679
            return batch_shape.index(batch_idx.begin(), batch_idx.end());
680
        }
Shucai Xiao's avatar
Shucai Xiao committed
681
682
683
684
685
686
    }

    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        auto lens = output_shape.lens();
687
        std::vector<std::size_t> batch_lens{};
Shucai Xiao's avatar
Shucai Xiao committed
688
        if(op.axis == 0)
689
690
691
        {
            batch_lens.push_back(1);
        }
Shucai Xiao's avatar
Shucai Xiao committed
692
        else
693
694
695
        {
            batch_lens.insert(batch_lens.begin(), lens.begin(), lens.begin() + op.axis);
        }
Shucai Xiao's avatar
Shucai Xiao committed
696
697
698
        shape batch_shape{migraphx::shape::uint32_type, batch_lens};
        visit_all(result, args[0])([&](auto output, auto input) {
            using value_type = typename decltype(input)::value_type;
Shucai Xiao's avatar
Shucai Xiao committed
699
700
            std::vector<value_type> batch_max(batch_shape.elements(),
                                              std::numeric_limits<value_type>::lowest());
Shucai Xiao's avatar
Shucai Xiao committed
701
            shape_for_each(output_shape, [&](auto idx) {
702
                auto index       = this->compute_batch_index(idx, batch_shape, op.axis);
Shucai Xiao's avatar
Shucai Xiao committed
703
704
705
706
                batch_max[index] = std::max(batch_max[index], input(idx.begin(), idx.end()));
            });

            shape_for_each(output_shape, [&](auto idx) {
Shucai Xiao's avatar
Shucai Xiao committed
707
                auto index = this->compute_batch_index(idx, batch_shape, op.axis);
Shucai Xiao's avatar
Shucai Xiao committed
708
709
710
711
712
                output(idx.begin(), idx.end()) = input(idx.begin(), idx.end()) - batch_max[index];
            });

            std::vector<value_type> batch_sum(batch_shape.elements(), value_type(0));
            shape_for_each(output_shape, [&](auto idx) {
713
                auto index = this->compute_batch_index(idx, batch_shape, op.axis);
Shucai Xiao's avatar
Shucai Xiao committed
714
715
716
                batch_sum[index] += std::exp(output(idx.begin(), idx.end()));
            });

Shucai Xiao's avatar
Shucai Xiao committed
717
            for(std::size_t i = 0; i < batch_sum.size(); ++i)
Shucai Xiao's avatar
Shucai Xiao committed
718
719
720
721
722
            {
                batch_sum[i] = std::log(batch_sum[i]);
            }

            shape_for_each(output_shape, [&](auto idx) {
723
                auto index = this->compute_batch_index(idx, batch_shape, op.axis);
724
                output(idx.begin(), idx.end()) -= batch_sum[index];
Shucai Xiao's avatar
Shucai Xiao committed
725
726
727
728
729
730
731
            });
        });

        return result;
    }
};

Paul's avatar
Paul committed
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
struct add_op
{
    std::string name() const { return "add"; }
    auto fcn() const
    {
        return [](auto x, auto y) { return x + y; };
    }
};

struct sub_op
{
    std::string name() const { return "sub"; }
    auto fcn() const
    {
        return [](auto x, auto y) { return x - y; };
    }
};

struct mul_op
{
    std::string name() const { return "mul"; }
    auto fcn() const
    {
        return [](auto x, auto y) { return x * y; };
    }
};

struct div_op
{
    std::string name() const { return "div"; }
    auto fcn() const
    {
        return [](auto x, auto y) { return x / y; };
    }
};

Khalique's avatar
Khalique committed
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
struct max_op
{
    std::string name() const { return "max"; }
    auto fcn() const
    {
        return [](auto x, auto y) { return std::max(x, y); };
    }
};

struct min_op
{
    std::string name() const { return "min"; }
    auto fcn() const
    {
        return [](auto x, auto y) { return std::min(x, y); };
    }
};

Paul's avatar
Paul committed
786
787
788
789
790
template <typename Op>
struct cpu_binary
{
    Op op;
    std::string name() const { return op.name(); }
Paul's avatar
Paul committed
791
792
    shape compute_shape(const std::vector<shape>& inputs) const { return inputs.front(); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
    {
        argument result{output_shape};
        visit_all(result, args[0], args[1])([&](auto output, auto input1, auto input2) {
            if(input1.get_shape().packed() and input2.get_shape().packed())
            {
                std::transform(
                    input1.begin(), input1.end(), input2.begin(), output.begin(), op.fcn());
            }
            else
            {
                shape_for_each(output.get_shape(), [&](const auto& idx) {
                    output(idx.begin(), idx.end()) =
                        op.fcn()(input1(idx.begin(), idx.end()), input2(idx.begin(), idx.end()));
                });
            }
        });
        return result;
    }
};

struct cpu_apply
{
    program* prog;
    std::unordered_map<std::string, std::function<void(instruction_ref)>> apply_map{};

    template <class T>
    auto simple_op()
    {
        return [this](instruction_ref ins) { apply_simple_op<T>(ins); };
    }

    template <class T, class Op>
    auto extend_op()
    {
        return [this](instruction_ref ins) { apply_extend_op<T, Op>(ins); };
    }

    void init()
    {
832
833
        apply_map["im2col"]      = extend_op<cpu_im2col, op::im2col>();
        apply_map["convolution"] = extend_op<cpu_convolution, op::convolution>();
834
        apply_map["dot"]         = extend_op<cpu_gemm, op::dot>();
Aditya Atluri's avatar
Aditya Atluri committed
835
        apply_map["batch_norm_inference"] =
836
            extend_op<cpu_batch_norm_inference, op::batch_norm_inference>();
Khalique's avatar
Khalique committed
837
        apply_map["lrn"]        = extend_op<cpu_lrn, op::lrn>();
Khalique's avatar
Khalique committed
838
        apply_map["clip"]       = extend_op<cpu_unary<clip_op>, op::clip>();
839
        apply_map["contiguous"] = extend_op<cpu_contiguous, op::contiguous>();
Khalique's avatar
Khalique committed
840
        apply_map["pad"]        = extend_op<cpu_pad, op::pad>();
Scott Thornton's avatar
Scott Thornton committed
841
        apply_map["concat"]     = extend_op<cpu_concat, op::concat>();
842
        apply_map["gather"]     = extend_op<cpu_gather, op::gather>();
Shucai Xiao's avatar
Shucai Xiao committed
843
        apply_map["logsoftmax"] = extend_op<cpu_logsoftmax, op::logsoftmax>();
Khalique's avatar
Khalique committed
844
        apply_map["leaky_relu"] = extend_op<cpu_unary<leaky_relu_op>, op::leaky_relu>();
Khalique's avatar
Khalique committed
845
        apply_map["elu"]        = extend_op<cpu_unary<elu_op>, op::elu>();
wsttiger's avatar
wsttiger committed
846
        apply_map["identity"]   = simple_op<cpu_unary<identity_op>>();
Khalique's avatar
Khalique committed
847
        apply_map["abs"]        = simple_op<cpu_unary<abs_op>>();
848
849
        apply_map["sinh"]       = simple_op<cpu_unary<sinh_op>>();
        apply_map["cosh"]       = simple_op<cpu_unary<cosh_op>>();
wsttiger's avatar
wsttiger committed
850
851
852
        apply_map["tanh"]       = simple_op<cpu_unary<tanh_op>>();
        apply_map["sigmoid"]    = simple_op<cpu_unary<sigmoid_op>>();
        apply_map["exp"]        = simple_op<cpu_unary<exp_op>>();
Shucai Xiao's avatar
Shucai Xiao committed
853
        apply_map["log"]        = simple_op<cpu_unary<log_op>>();
wsttiger's avatar
wsttiger committed
854
855
856
857
        apply_map["neg"]        = simple_op<cpu_unary<neg_op>>();
        apply_map["sin"]        = simple_op<cpu_unary<sin_op>>();
        apply_map["cos"]        = simple_op<cpu_unary<cos_op>>();
        apply_map["tan"]        = simple_op<cpu_unary<tan_op>>();
858
859
860
        apply_map["asin"]       = simple_op<cpu_unary<asin_op>>();
        apply_map["acos"]       = simple_op<cpu_unary<acos_op>>();
        apply_map["atan"]       = simple_op<cpu_unary<atan_op>>();
Khalique's avatar
Khalique committed
861
        apply_map["relu"]       = simple_op<cpu_unary<relu_op>>();
wsttiger's avatar
wsttiger committed
862
863
864
865
        apply_map["add"]        = simple_op<cpu_binary<add_op>>();
        apply_map["sub"]        = simple_op<cpu_binary<sub_op>>();
        apply_map["mul"]        = simple_op<cpu_binary<mul_op>>();
        apply_map["div"]        = simple_op<cpu_binary<div_op>>();
Khalique's avatar
Khalique committed
866
867
        apply_map["max"]        = simple_op<cpu_binary<max_op>>();
        apply_map["min"]        = simple_op<cpu_binary<min_op>>();
Paul's avatar
Paul committed
868
869
870
871
872
873
874
875
876

        apply_map["softmax"] = simple_op<softmax2d>();
    }

    void apply()
    {
        init();
        for(auto it : iterator_for(*prog))
        {
Khalique's avatar
Khalique committed
877
            if(it->name() == "pooling")
Paul's avatar
Paul committed
878
879
880
            {
                apply_pooling(it);
            }
Paul's avatar
Paul committed
881
            else if(apply_map.count(it->name()) > 0)
Paul's avatar
Paul committed
882
            {
Paul's avatar
Paul committed
883
                apply_map.at(it->name())(it);
Paul's avatar
Paul committed
884
885
886
887
888
889
890
            }
        }
    }

    template <class T>
    void apply_simple_op(instruction_ref ins)
    {
Paul's avatar
Paul committed
891
        prog->replace_instruction(ins, T{}, ins->inputs());
Paul's avatar
Paul committed
892
893
894
895
896
    }

    template <class T, class Op>
    void apply_extend_op(instruction_ref ins)
    {
897
        auto&& op = any_cast<Op>(ins->get_operator());
Paul's avatar
Paul committed
898
        prog->replace_instruction(ins, T{op}, ins->inputs());
Paul's avatar
Paul committed
899
900
901
902
    }

    void apply_pooling(instruction_ref ins)
    {
903
        auto&& op = any_cast<op::pooling>(ins->get_operator());
Paul's avatar
Paul committed
904
        if(op.mode == "max")
Paul's avatar
Paul committed
905
            prog->replace_instruction(ins, cpu_pooling<max_pool>{op}, ins->inputs());
Paul's avatar
Paul committed
906
        else if(op.mode == "average")
Paul's avatar
Paul committed
907
            prog->replace_instruction(ins, cpu_pooling<avg_pool>{op}, ins->inputs());
Paul's avatar
Paul committed
908
909
910
    }
};

Shucai Xiao's avatar
Shucai Xiao committed
911
void lowering::apply(program& p) const { cpu_apply{&p}.apply(); }
Paul's avatar
Paul committed
912
913

} // namespace cpu
Paul's avatar
Paul committed
914
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
915
} // namespace migraphx