lowering.cpp 29.1 KB
Newer Older
Paul's avatar
Paul committed
1

Paul's avatar
Paul committed
2
3
4
5
6
7
#include <migraphx/cpu/lowering.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/dfor.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/iterator_for.hpp>
Paul's avatar
Paul committed
8
#include <migraphx/par_dfor.hpp>
Paul's avatar
Paul committed
9
#include <migraphx/cpu/gemm.hpp>
Paul's avatar
Paul committed
10
#include <unordered_map>
Paul's avatar
Paul committed
11
#include <utility>
Paul's avatar
Paul committed
12

Paul's avatar
Paul committed
13
namespace migraphx {
Paul's avatar
Paul committed
14
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
15
16
17
18
19
20
21
22
namespace cpu {

template <typename T>
T zero(const T&)
{
    return T(0);
}

Khalique's avatar
Khalique committed
23
24
25
26
template <class T>
typename std::conditional_t<std::is_integral<T>{}, std::make_signed<T>, std::enable_if<true, T>>::
    type
    make_signed(T x)
Khalique's avatar
Khalique committed
27
28
29
30
{
    return x;
}

31
32
33
34
//
// cpu implemenataion of batch norm for inference
//
// inputs are:
35
36
37
38
// args[0] -> input data buffer
// args[1] -> mini batch mean
// args[2] -> mini batch variance
// args[3] -> gamma
Aditya Atluri's avatar
Aditya Atluri committed
39
// args[4] -> bias
40
41
42
//
// The equation to compute batch norm for inference is:
//
Aditya Atluri's avatar
Aditya Atluri committed
43
// output[i] = bias + gamma * (input[i] + mean) / sqrt(variance + epsilon)
44
45
46
47
48
//
// the input data format should be nchw
//
struct cpu_batch_norm_inference
{
49
    op::batch_norm_inference op;
50

51
52
    std::string name() const { return "cpu::batch_norm_inference"; }

Paul's avatar
Paul committed
53
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
54

Paul's avatar
Paul committed
55
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
56
    {
57
58
        argument output{output_shape};

Aditya Atluri's avatar
Aditya Atluri committed
59
60
        double epsilon           = op.epsilon;
        auto input               = args[0];
Paul's avatar
Paul committed
61
62
63
64
        auto arg_gamma           = args[1];
        auto arg_bias            = args[2];
        auto mini_batch_mean     = args[3];
        auto mini_batch_variance = args[4];
65

66
        auto num_batch    = output_shape.lens()[0];
Aditya Atluri's avatar
Aditya Atluri committed
67
68
        auto num_channels = output_shape.lens()[1];
        auto image_height = output_shape.lens()[2];
69
        auto image_width  = output_shape.lens()[3];
Aditya Atluri's avatar
Aditya Atluri committed
70

71
        if(op.bn_mode == op::batch_norm_inference::spatial)
Scott Thornton's avatar
Scott Thornton committed
72
73
74
75
        {
            visit_all(output, input, mini_batch_mean, mini_batch_variance, arg_gamma, arg_bias)(
                [&](auto result, auto buffer, auto mean, auto variance, auto gamma, auto bias) {

Paul's avatar
Paul committed
76
                    par_dfor(num_batch, num_channels, image_height, image_width)(
Scott Thornton's avatar
Scott Thornton committed
77
                        [&](std::size_t n, std::size_t c, std::size_t h, std::size_t w) {
78
79
80
81
                            assert((variance[c] + epsilon) > 0);
                            result(n, c, h, w) = gamma[c] * (buffer(n, c, h, w) - mean[c]) /
                                                     std::sqrt(variance[c] + epsilon) +
                                                 bias[c];
Scott Thornton's avatar
Scott Thornton committed
82
83
                        });
                });
84
85
        }

86
        if(op.bn_mode == op::batch_norm_inference::per_activation)
Scott Thornton's avatar
Scott Thornton committed
87
        {
88
89
90
            visit_all(output, input, mini_batch_mean, mini_batch_mean, arg_gamma, arg_bias)(
                [&](auto result, auto buffer, auto mean, auto variance, auto gamma, auto bias) {

Paul's avatar
Paul committed
91
                    par_dfor(num_batch, num_channels, image_height, image_width)(
92
                        [&](std::size_t n, std::size_t c, std::size_t h, std::size_t w) {
Paul's avatar
Paul committed
93
                            assert((variance(c, h, w) + epsilon) > 0);
Scott Thornton's avatar
Scott Thornton committed
94
95
96
97
98
99
                            result(n, c, h, w) = gamma(c, h, w) *
                                                     (buffer(n, c, h, w) - mean(c, h, w)) /
                                                     std::sqrt(variance(c, h, w) + epsilon) +
                                                 bias(c, h, w);
                        });
                });
100
        }
101
102
103
104
105

        return output;
    }
};

Khalique's avatar
Khalique committed
106
struct cpu_lrn
Khalique's avatar
Khalique committed
107
{
Khalique's avatar
Khalique committed
108
    op::lrn op;
Khalique's avatar
Khalique committed
109

Khalique's avatar
Khalique committed
110
    std::string name() const { return "cpu::lrn"; }
Khalique's avatar
Khalique committed
111
112
113
114
115
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
Khalique's avatar
Khalique committed
116
117
118
119
            int n_batch         = output_shape.lens()[0];
            int channels        = output_shape.lens()[1];
            int height          = output_shape.lens()[2];
            int width           = output_shape.lens()[3];
Khalique's avatar
Khalique committed
120
            float alphaoverarea = op.alpha / op.size;
Khalique's avatar
Khalique committed
121
            int radius          = (op.size - 1) / 2;
Khalique's avatar
Khalique committed
122

123
            par_dfor(n_batch, height, width)([&](int b, int h, int w) {
Khalique's avatar
Khalique committed
124
                float scale = 0;
Khalique's avatar
Khalique committed
125
126
                dfor(channels)([&](int c) {
                    auto start = (c - radius) < 0 ? 0 : (c - radius);
Khalique's avatar
Khalique committed
127
                    auto end   = (c + radius) > channels ? channels : (c + radius);
Khalique's avatar
Khalique committed
128
129
                    for(auto k = start; k < end; ++k)
                    {
Khalique's avatar
Khalique committed
130
                        scale += std::pow(input(b, k, h, w), 2);
Khalique's avatar
Khalique committed
131
132
133
                    }
                    scale *= alphaoverarea;
                    scale += op.bias;
Khalique's avatar
Khalique committed
134
                    scale              = std::pow(scale, -op.beta);
Khalique's avatar
Khalique committed
135
136
137
138
139
140
141
142
                    output(b, c, h, w) = input(b, c, h, w) * scale;
                });
            });
        });
        return result;
    }
};

Khalique's avatar
Khalique committed
143
144
145
146
147
148
149
150
struct clip_op
{
    op::clip op;
    std::string name() const { return "cpu::clip"; }
    auto fcn() const
    {
        auto& max = op.max_val;
        auto& min = op.min_val;
Khalique's avatar
Khalique committed
151
152
153
        return [max, min](auto x) {     
            using type = decltype(x);
            return std::min(std::max(type(min), x), type(max)); };
Khalique's avatar
Khalique committed
154
155
156
    }
};

Paul's avatar
Paul committed
157
158
struct cpu_convolution
{
159
    op::convolution op;
Paul's avatar
Paul committed
160
161

    std::string name() const { return "cpu::convolution"; }
Paul's avatar
Paul committed
162
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Paul's avatar
Paul committed
163
164
165
166
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        visit_all(result, args[0], args[1])([&](auto output, auto input, auto weights) {
Khalique's avatar
Khalique committed
167
            auto in   = input.get_shape().lens();
Khalique's avatar
Khalique committed
168
169
            auto in_h = in[2];
            auto in_w = in[3];
Paul's avatar
Paul committed
170

Khalique's avatar
Khalique committed
171
            auto wei   = weights.get_shape().lens();
Khalique's avatar
Khalique committed
172
173
174
175
            auto wei_n = wei[0];
            auto wei_c = wei[1];
            auto wei_h = wei[2];
            auto wei_w = wei[3];
Paul's avatar
Paul committed
176

Paul's avatar
Paul committed
177
            par_dfor(output_shape.lens()[0],
Paul's avatar
Paul committed
178
179
180
                     output_shape.lens()[1],
                     output_shape.lens()[2],
                     output_shape.lens()[3])(
Paul's avatar
Paul committed
181
                [&](std::size_t o, std::size_t w, std::size_t i, std::size_t j) {
Khalique's avatar
Khalique committed
182
183
                    const int start_x  = i * op.stride[0] - op.padding[0];
                    const int start_y  = j * op.stride[1] - op.padding[1];
Khalique's avatar
Khalique committed
184
                    const int group_id = w / (wei_n / op.group);
Paul's avatar
Paul committed
185
186
187

                    double acc = 0;
                    dfor(wei_c, wei_h, wei_w)([&](std::size_t k, std::size_t x, std::size_t y) {
Khalique's avatar
Khalique committed
188
189
                        const int in_x  = start_x + x;
                        const int in_y  = start_y + y;
Khalique's avatar
Khalique committed
190
                        const int in_ch = group_id * wei_c + k;
Paul's avatar
Paul committed
191
192
                        if(in_x >= 0 && in_x < in_h && in_y >= 0 && in_y < in_w)
                        {
Khalique's avatar
Khalique committed
193
                            acc += input(o, in_ch, in_x, in_y) * weights(w, k, x, y);
Paul's avatar
Paul committed
194
195
196
197
198
199
200
201
202
                        }
                    });
                    output(o, w, i, j) = acc;
                });
        });
        return result;
    }
};

Scott Thornton's avatar
Scott Thornton committed
203
204
struct cpu_im2col
{
205
    op::im2col op;
Scott Thornton's avatar
Scott Thornton committed
206

Scott Thornton's avatar
Scott Thornton committed
207
208
    static std::string name() { return "cpu::im2col"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Scott Thornton's avatar
Scott Thornton committed
209

wsttiger's avatar
wsttiger committed
210
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Scott Thornton's avatar
Scott Thornton committed
211
    {
Scott Thornton's avatar
Scott Thornton committed
212
        argument result{output_shape};
Scott Thornton's avatar
Scott Thornton committed
213
        auto input_shape   = args[0].get_shape();
Scott Thornton's avatar
Scott Thornton committed
214
215
        auto weights_shape = args[1].get_shape();
        visit_all(result, args[0])([&](auto col, auto input) {
Scott Thornton's avatar
Scott Thornton committed
216
217
            const std::size_t& height   = input_shape.lens()[2];
            const std::size_t& width    = input_shape.lens()[3];
Scott Thornton's avatar
Scott Thornton committed
218
219
220
            const std::size_t& channels = weights_shape.lens()[1];
            const std::size_t& kernel_h = weights_shape.lens()[2];
            const std::size_t& kernel_w = weights_shape.lens()[3];
Scott Thornton's avatar
Scott Thornton committed
221
222
            const std::size_t& pad_h    = op.padding[0];
            const std::size_t& pad_w    = op.padding[1];
Scott Thornton's avatar
Scott Thornton committed
223
224
225
            const std::size_t& stride_h = op.stride[0];
            const std::size_t& stride_w = op.stride[1];

Paul's avatar
Paul committed
226
227
            int kdiv2_h;
            int kdiv2_w;
Scott Thornton's avatar
Scott Thornton committed
228
229
            kdiv2_h = kernel_h / 2;
            kdiv2_w = kernel_w / 2;
Scott Thornton's avatar
Scott Thornton committed
230
            // calculate output sizes
Scott Thornton's avatar
Scott Thornton committed
231
232
            const std::size_t col_height = (height - kernel_h + 2 * pad_h) / stride_h + 1;
            const std::size_t col_width  = (width - kernel_w + 2 * pad_w) / stride_w + 1;
wsttiger's avatar
wsttiger committed
233
            // account for padding for the starting position of the input pixels
Scott Thornton's avatar
Scott Thornton committed
234
            std::size_t iinput = kdiv2_h - pad_h;
wsttiger's avatar
wsttiger committed
235
            // loop over output pixels (ioutput, joutput)
Scott Thornton's avatar
Scott Thornton committed
236
237
238
239
240
241
242
243
            for(std::size_t ioutput = 0; ioutput < col_height; ioutput++, iinput += stride_h)
            {
                std::size_t jinput = kdiv2_w - pad_w;
                for(std::size_t joutput = 0; joutput < col_width; joutput++, jinput += stride_w)
                {
                    // compute linear index for output
                    std::size_t ldx = ioutput * col_width + joutput;
                    std::size_t p   = 0;
wsttiger's avatar
wsttiger committed
244
245
246
247
248
249
250
251
252
253
                    dfor(channels,
                         kernel_h,
                         kernel_w)([&](std::size_t c, std::size_t koffset, std::size_t loffset) {
                        int idx     = iinput + koffset - kdiv2_h;
                        int jdx     = jinput + loffset - kdiv2_w;
                        col(ldx, p) = ((idx >= 0) && (idx < height) && (jdx >= 0) && (jdx < width))
                                          ? input(0, c, idx, jdx)
                                          : 0;
                        p++;
                    });
Scott Thornton's avatar
Scott Thornton committed
254
255
                }
            }
Scott Thornton's avatar
Scott Thornton committed
256
        });
Scott Thornton's avatar
Scott Thornton committed
257
258
259
260
        return result;
    }
};

Paul's avatar
Paul committed
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
struct max_pool
{
    static std::string name() { return "max"; }
    static double start() { return std::numeric_limits<double>::lowest(); }

    static double apply(double x, double y)
    {
        double m = std::max(x, y);
        return (m);
    }

    static double final(double x, double) { return (x); }
};

struct avg_pool
{
    static std::string name() { return "average"; }
    static double start() { return 0.0; }

    static double apply(double x, double y) { return x + y; }

    static double final(double x, double y) { return x / y; }
};

template <class Op>
struct cpu_pooling
{
288
    op::pooling op;
Paul's avatar
Paul committed
289
290

    std::string name() const { return "cpu::pooling_" + Op::name(); }
Paul's avatar
Paul committed
291
292
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
293
294
295
296
297
298
299
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
            using type = typename decltype(output)::value_type;
            auto in_h  = input.get_shape().lens()[2];
            auto in_w  = input.get_shape().lens()[3];

Paul's avatar
Paul committed
300
            par_dfor(output_shape.lens()[0],
Paul's avatar
Paul committed
301
302
303
                     output_shape.lens()[1],
                     output_shape.lens()[2],
                     output_shape.lens()[3])(
Paul's avatar
Paul committed
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
                [&](std::size_t o, std::size_t w, std::size_t i, std::size_t j) {
                    const int start_x0 = i * op.stride[0] - op.padding[0];
                    const int start_y0 = j * op.stride[1] - op.padding[1];

                    const int hend = std::min(start_x0 + op.lengths[0], in_h);
                    const int wend = std::min(start_y0 + op.lengths[1], in_w);

                    const int start_x = std::max(start_x0, 0);
                    const int start_y = std::max(start_y0, 0);

                    const int w_h       = (hend - start_x);
                    const int w_w       = (wend - start_y);
                    const int pool_size = std::max(w_h * w_w, 1);

                    double acc = Op::start();
                    dfor(w_h, w_w)([&](int x, int y) {
                        const int in_x = start_x + x;
                        const int in_y = start_y + y;
                        if(in_x >= 0 && in_x < in_h && in_y >= 0 && in_y < in_w)
                        {
                            acc = Op::apply(acc, input(o, w, in_x, in_y));
                        }
                    });
                    output(o, w, i, j) = type(Op::final(acc, pool_size));
                });
        });
        return result;
    }
};

struct cpu_contiguous
{
336
    op::contiguous op;
Paul's avatar
Paul committed
337
    std::string name() const { return "cpu::contiguous"; }
Paul's avatar
Paul committed
338
339
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
340
    {
Paul's avatar
Paul committed
341
        return op.compute(output_shape, std::move(args));
Paul's avatar
Paul committed
342
343
344
    }
};

Khalique's avatar
Khalique committed
345
struct cpu_pad
346
{
Khalique's avatar
Khalique committed
347
348
    op::pad op;
    std::string name() const { return "cpu::contiguous"; }
349
350
351
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
Khalique's avatar
Khalique committed
352
        assert(output_shape.standard());
353
        argument result{output_shape};
Khalique's avatar
Khalique committed
354
        result.visit([&](auto output) { std::fill(output.begin(), output.end(), op.value); });
Khalique's avatar
Khalique committed
355
356

        visit_all(result, args[0])([&](auto output, auto input) {
357
            shape_for_each(input.get_shape(), [&](const auto& idx) {
Khalique's avatar
Khalique committed
358
                std::vector<std::size_t> new_idx(idx.size());
Khalique's avatar
Khalique committed
359
360
361
362
                std::transform(
                    idx.begin(), idx.end(), op.pads.begin(), new_idx.begin(), [](auto i, auto j) {
                        return i + j;
                    });
Khalique's avatar
Khalique committed
363
                output(new_idx.begin(), new_idx.end()) = input(idx.begin(), idx.end());
364
            });
Khalique's avatar
Khalique committed
365
366
        });

367
368
369
370
371
372
373
374
375
376
377
        return result;
    }
};

struct cpu_concat
{
    op::concat op;
    std::string name() const { return "cpu::concat"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
Paul's avatar
Paul committed
378
        return op.compute(output_shape, std::move(args));
379
380
381
    }
};

Paul's avatar
Paul committed
382
383
struct cpu_gemm
{
Shucai Xiao's avatar
Shucai Xiao committed
384
385
    op::dot op;
    std::string name() const { return "cpu::dot"; }
Shucai Xiao's avatar
Shucai Xiao committed
386
387
    shape compute_shape(const std::vector<shape>& inputs) const
    {
Shucai Xiao's avatar
Shucai Xiao committed
388
389
390
391
392
        if(inputs.size() == 3)
        {
            auto c_shape = inputs.at(2);
            check_shapes{{c_shape}}.not_broadcasted();
        }
Shucai Xiao's avatar
Shucai Xiao committed
393
        return op.compute_shape(inputs);
Shucai Xiao's avatar
Shucai Xiao committed
394
    }
Paul's avatar
Paul committed
395

Paul's avatar
Paul committed
396
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
397
398
    {
        argument result{output_shape};
Shucai Xiao's avatar
Shucai Xiao committed
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
        // 3 inputs, it is alpha * A * B + beta * C, then
        // A and B are matrics, and C is broadcastable to A * B
        if(args.size() == 3)
        {
            // no need to consider the value of args[2]
            if(op.beta == 0.0f)
            {
                result.visit([&](auto output) { std::fill(output.begin(), output.end(), 0); });
            }
            else
            {
                visit_all(result, args[2])([&](auto output, auto input) {
                    std::copy(input.begin(), input.end(), output.begin());
                });
            }

            migemm(result, args[0], args[1], op.alpha, op.beta);

            return result;
        }

        // 2 input arguments
        migemm(result, args[0], args[1], op.alpha, 0.0f);

Paul's avatar
Paul committed
423
424
425
426
        return result;
    }
};

427
428
429
430
431
432
433
434
struct cpu_gather
{
    op::gather op;
    std::string name() const { return "cpu::gather"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }

    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
Shucai Xiao's avatar
Shucai Xiao committed
435
        return op.compute(output_shape, std::move(args));
436
437
438
    }
};

Paul's avatar
Paul committed
439
440
441
442
443
444
445
446
447
448
449
450
451
452
struct identity_op
{
    std::string name() const { return "cpu::identity"; }
    auto fcn() const
    {
        return [](auto x) { return x; };
    }
};

struct abs_op
{
    std::string name() const { return "cpu::abs"; }
    auto fcn() const
    {
Khalique's avatar
Khalique committed
453
        return [](auto x) { return std::abs(make_signed(x)); };
Paul's avatar
Paul committed
454
455
456
457
458
459
460
461
462
463
464
465
    }
};

struct exp_op
{
    std::string name() const { return "cpu::exp"; }
    auto fcn() const
    {
        return [](auto x) { return std::exp(x); };
    }
};

Shucai Xiao's avatar
Shucai Xiao committed
466
467
468
469
470
471
472
473
474
struct log_op
{
    std::string name() const { return "cpu::log"; }
    auto fcn() const
    {
        return [](auto x) { return std::log(x); };
    }
};

Paul's avatar
Paul committed
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
struct sin_op
{
    std::string name() const { return "cpu::sin"; }
    auto fcn() const
    {
        return [](auto x) { return std::sin(x); };
    }
};

struct cos_op
{
    std::string name() const { return "cpu::cos"; }
    auto fcn() const
    {
        return [](auto x) { return std::cos(x); };
    }
};

struct tan_op
{
    std::string name() const { return "cpu::tan"; }
    auto fcn() const
    {
        return [](auto x) { return std::tan(x); };
    }
};

struct asin_op
{
    std::string name() const { return "cpu::asin"; }
    auto fcn() const
    {
        return [](auto x) { return std::asin(x); };
    }
};

struct acos_op
{
    std::string name() const { return "cpu::acos"; }
    auto fcn() const
    {
        return [](auto x) { return std::acos(x); };
    }
};

struct atan_op
{
    std::string name() const { return "cpu::atan"; }
    auto fcn() const
    {
        return [](auto x) { return std::atan(x); };
    }
};

529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
struct sinh_op
{
    std::string name() const { return "cpu::sinh"; }
    auto fcn() const
    {
        return [](auto x) { return std::sinh(x); };
    }
};

struct cosh_op
{
    std::string name() const { return "cpu::cosh"; }
    auto fcn() const
    {
        return [](auto x) { return std::cosh(x); };
    }
};

Paul's avatar
Paul committed
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
struct tanh_op
{
    std::string name() const { return "cpu::tanh"; }
    auto fcn() const
    {
        return [](auto x) { return std::tanh(x); };
    }
};

struct sigmoid_op
{
    std::string name() const { return "cpu::sigmoid"; }
    auto fcn() const
    {
        return [](auto x) { return 1.f / (1.f + std::exp(-x)); };
    }
};

struct neg_op
{
    std::string name() const { return "cpu::neg"; }
    auto fcn() const
    {
        return [](auto x) { return -x; };
    }
};

struct relu_op
{
    std::string name() const { return "cpu::relu"; }
    auto fcn() const
    {
Paul's avatar
Paul committed
579
        return [](auto x) { return std::max(decltype(x){0}, x); };
Paul's avatar
Paul committed
580
581
582
    }
};

Khalique's avatar
Khalique committed
583
584
585
586
587
588
589
590
591
592
593
struct leaky_relu_op
{
    op::leaky_relu op;
    std::string name() const { return "cpu::leaky_relu"; }
    auto fcn() const
    {
        auto& a = op.alpha;
        return [a](auto x) { return x > 0 ? x : x * a; };
    }
};

Khalique's avatar
Khalique committed
594
595
596
597
598
599
600
601
602
603
604
struct elu_op
{
    op::elu op;
    std::string name() const { return "cpu::elu"; }
    auto fcn() const
    {
        auto& a = op.alpha;
        return [a](auto x) { return x > 0 ? x : a * std::expm1(x); };
    }
};

Paul's avatar
Paul committed
605
606
607
608
609
template <typename Op>
struct cpu_unary
{
    Op op;
    std::string name() const { return op.name(); }
Paul's avatar
Paul committed
610
611
    shape compute_shape(const std::vector<shape>& inputs) const { return inputs.front(); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
612
613
614
615
616
617
618
    {
        argument result{output_shape};
        result.visit([&](auto output) {
            args[0].visit([&](auto input) {
                std::transform(input.begin(), input.end(), output.begin(), op.fcn());
            });
        });
619

Paul's avatar
Paul committed
620
621
622
623
624
625
626
        return result;
    }
};

struct softmax2d
{
    std::string name() const { return "cpu::softmax2d"; }
Paul's avatar
Paul committed
627
628
    shape compute_shape(const std::vector<shape>& inputs) const { return inputs.front(); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
            using value_type = typename decltype(input)::value_type;
            auto nb          = input.get_shape().lens()[0];
            auto nc          = input.get_shape().lens()[1];
            auto nh          = input.get_shape().lens()[2];
            auto nw          = input.get_shape().lens()[3];
            dfor(nb, nh, nw)([&](std::size_t b, std::size_t i, std::size_t j) {
                value_type cmax = std::numeric_limits<value_type>::lowest();
                for(int c = 0; c < nc; c++)
                {
                    cmax = std::max(cmax, input(b, c, i, j));
                }
                for(int c = 0; c < nc; c++)
                {
                    output(b, c, i, j) = std::exp(input(b, c, i, j) - cmax);
                }
                value_type sum = value_type(0);
                for(int c = 0; c < nc; c++)
                {
                    sum += output(b, c, i, j);
                }
                for(int c = 0; c < nc; c++)
                {
                    output(b, c, i, j) = output(b, c, i, j) / sum;
                }
            });
        });
        return result;
    }
};

Shucai Xiao's avatar
Shucai Xiao committed
662
663
664
665
666
667
struct cpu_logsoftmax
{
    op::logsoftmax op;
    std::string name() const { return "cpu::logsoftmax"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }

Shucai Xiao's avatar
Shucai Xiao committed
668
    template <typename T>
Shucai Xiao's avatar
Shucai Xiao committed
669
670
    std::size_t compute_batch_index(const T& idx, shape& batch_shape, int axis) const
    {
Shucai Xiao's avatar
Shucai Xiao committed
671
        if(axis == 0)
672
673
674
675
676
677
        {
            return 0;
        }
        else
        {
            std::vector<std::size_t> batch_idx(idx.begin(), idx.begin() + axis);
Shucai Xiao's avatar
Shucai Xiao committed
678
            return batch_shape.index(batch_idx.begin(), batch_idx.end());
679
        }
Shucai Xiao's avatar
Shucai Xiao committed
680
681
682
683
684
685
    }

    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        auto lens = output_shape.lens();
686
        std::vector<std::size_t> batch_lens{};
Shucai Xiao's avatar
Shucai Xiao committed
687
        if(op.axis == 0)
688
689
690
        {
            batch_lens.push_back(1);
        }
Shucai Xiao's avatar
Shucai Xiao committed
691
        else
692
693
694
        {
            batch_lens.insert(batch_lens.begin(), lens.begin(), lens.begin() + op.axis);
        }
Shucai Xiao's avatar
Shucai Xiao committed
695
696
697
        shape batch_shape{migraphx::shape::uint32_type, batch_lens};
        visit_all(result, args[0])([&](auto output, auto input) {
            using value_type = typename decltype(input)::value_type;
Shucai Xiao's avatar
Shucai Xiao committed
698
699
            std::vector<value_type> batch_max(batch_shape.elements(),
                                              std::numeric_limits<value_type>::lowest());
Shucai Xiao's avatar
Shucai Xiao committed
700
            shape_for_each(output_shape, [&](auto idx) {
701
                auto index       = this->compute_batch_index(idx, batch_shape, op.axis);
Shucai Xiao's avatar
Shucai Xiao committed
702
703
704
705
                batch_max[index] = std::max(batch_max[index], input(idx.begin(), idx.end()));
            });

            shape_for_each(output_shape, [&](auto idx) {
Shucai Xiao's avatar
Shucai Xiao committed
706
                auto index = this->compute_batch_index(idx, batch_shape, op.axis);
Shucai Xiao's avatar
Shucai Xiao committed
707
708
709
710
711
                output(idx.begin(), idx.end()) = input(idx.begin(), idx.end()) - batch_max[index];
            });

            std::vector<value_type> batch_sum(batch_shape.elements(), value_type(0));
            shape_for_each(output_shape, [&](auto idx) {
712
                auto index = this->compute_batch_index(idx, batch_shape, op.axis);
Shucai Xiao's avatar
Shucai Xiao committed
713
714
715
                batch_sum[index] += std::exp(output(idx.begin(), idx.end()));
            });

Shucai Xiao's avatar
Shucai Xiao committed
716
            for(std::size_t i = 0; i < batch_sum.size(); ++i)
Shucai Xiao's avatar
Shucai Xiao committed
717
718
719
720
721
            {
                batch_sum[i] = std::log(batch_sum[i]);
            }

            shape_for_each(output_shape, [&](auto idx) {
722
                auto index = this->compute_batch_index(idx, batch_shape, op.axis);
723
                output(idx.begin(), idx.end()) -= batch_sum[index];
Shucai Xiao's avatar
Shucai Xiao committed
724
725
726
727
728
729
730
            });
        });

        return result;
    }
};

Paul's avatar
Paul committed
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
struct add_op
{
    std::string name() const { return "add"; }
    auto fcn() const
    {
        return [](auto x, auto y) { return x + y; };
    }
};

struct sub_op
{
    std::string name() const { return "sub"; }
    auto fcn() const
    {
        return [](auto x, auto y) { return x - y; };
    }
};

struct mul_op
{
    std::string name() const { return "mul"; }
    auto fcn() const
    {
        return [](auto x, auto y) { return x * y; };
    }
};

struct div_op
{
    std::string name() const { return "div"; }
    auto fcn() const
    {
        return [](auto x, auto y) { return x / y; };
    }
};

Khalique's avatar
Khalique committed
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
struct max_op
{
    std::string name() const { return "max"; }
    auto fcn() const
    {
        return [](auto x, auto y) { return std::max(x, y); };
    }
};

struct min_op
{
    std::string name() const { return "min"; }
    auto fcn() const
    {
        return [](auto x, auto y) { return std::min(x, y); };
    }
};

Paul's avatar
Paul committed
785
786
787
788
789
template <typename Op>
struct cpu_binary
{
    Op op;
    std::string name() const { return op.name(); }
Paul's avatar
Paul committed
790
791
    shape compute_shape(const std::vector<shape>& inputs) const { return inputs.front(); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
    {
        argument result{output_shape};
        visit_all(result, args[0], args[1])([&](auto output, auto input1, auto input2) {
            if(input1.get_shape().packed() and input2.get_shape().packed())
            {
                std::transform(
                    input1.begin(), input1.end(), input2.begin(), output.begin(), op.fcn());
            }
            else
            {
                shape_for_each(output.get_shape(), [&](const auto& idx) {
                    output(idx.begin(), idx.end()) =
                        op.fcn()(input1(idx.begin(), idx.end()), input2(idx.begin(), idx.end()));
                });
            }
        });
        return result;
    }
};

struct cpu_apply
{
    program* prog;
    std::unordered_map<std::string, std::function<void(instruction_ref)>> apply_map{};

    template <class T>
    auto simple_op()
    {
        return [this](instruction_ref ins) { apply_simple_op<T>(ins); };
    }

    template <class T, class Op>
    auto extend_op()
    {
        return [this](instruction_ref ins) { apply_extend_op<T, Op>(ins); };
    }

    void init()
    {
831
832
        apply_map["im2col"]      = extend_op<cpu_im2col, op::im2col>();
        apply_map["convolution"] = extend_op<cpu_convolution, op::convolution>();
833
        apply_map["dot"]         = extend_op<cpu_gemm, op::dot>();
Aditya Atluri's avatar
Aditya Atluri committed
834
        apply_map["batch_norm_inference"] =
835
            extend_op<cpu_batch_norm_inference, op::batch_norm_inference>();
Khalique's avatar
Khalique committed
836
        apply_map["lrn"]        = extend_op<cpu_lrn, op::lrn>();
Khalique's avatar
Khalique committed
837
        apply_map["clip"]       = extend_op<cpu_unary<clip_op>, op::clip>();
838
        apply_map["contiguous"] = extend_op<cpu_contiguous, op::contiguous>();
Khalique's avatar
Khalique committed
839
        apply_map["pad"]        = extend_op<cpu_pad, op::pad>();
Scott Thornton's avatar
Scott Thornton committed
840
        apply_map["concat"]     = extend_op<cpu_concat, op::concat>();
841
        apply_map["gather"]     = extend_op<cpu_gather, op::gather>();
Shucai Xiao's avatar
Shucai Xiao committed
842
        apply_map["logsoftmax"] = extend_op<cpu_logsoftmax, op::logsoftmax>();
Khalique's avatar
Khalique committed
843
        apply_map["leaky_relu"] = extend_op<cpu_unary<leaky_relu_op>, op::leaky_relu>();
Khalique's avatar
Khalique committed
844
        apply_map["elu"]        = extend_op<cpu_unary<elu_op>, op::elu>();
wsttiger's avatar
wsttiger committed
845
        apply_map["identity"]   = simple_op<cpu_unary<identity_op>>();
Khalique's avatar
Khalique committed
846
        apply_map["abs"]        = simple_op<cpu_unary<abs_op>>();
847
848
        apply_map["sinh"]       = simple_op<cpu_unary<sinh_op>>();
        apply_map["cosh"]       = simple_op<cpu_unary<cosh_op>>();
wsttiger's avatar
wsttiger committed
849
850
851
        apply_map["tanh"]       = simple_op<cpu_unary<tanh_op>>();
        apply_map["sigmoid"]    = simple_op<cpu_unary<sigmoid_op>>();
        apply_map["exp"]        = simple_op<cpu_unary<exp_op>>();
Shucai Xiao's avatar
Shucai Xiao committed
852
        apply_map["log"]        = simple_op<cpu_unary<log_op>>();
wsttiger's avatar
wsttiger committed
853
854
855
856
        apply_map["neg"]        = simple_op<cpu_unary<neg_op>>();
        apply_map["sin"]        = simple_op<cpu_unary<sin_op>>();
        apply_map["cos"]        = simple_op<cpu_unary<cos_op>>();
        apply_map["tan"]        = simple_op<cpu_unary<tan_op>>();
857
858
859
        apply_map["asin"]       = simple_op<cpu_unary<asin_op>>();
        apply_map["acos"]       = simple_op<cpu_unary<acos_op>>();
        apply_map["atan"]       = simple_op<cpu_unary<atan_op>>();
Khalique's avatar
Khalique committed
860
        apply_map["relu"]       = simple_op<cpu_unary<relu_op>>();
wsttiger's avatar
wsttiger committed
861
862
863
864
        apply_map["add"]        = simple_op<cpu_binary<add_op>>();
        apply_map["sub"]        = simple_op<cpu_binary<sub_op>>();
        apply_map["mul"]        = simple_op<cpu_binary<mul_op>>();
        apply_map["div"]        = simple_op<cpu_binary<div_op>>();
Khalique's avatar
Khalique committed
865
866
        apply_map["max"]        = simple_op<cpu_binary<max_op>>();
        apply_map["min"]        = simple_op<cpu_binary<min_op>>();
Paul's avatar
Paul committed
867
868
869
870
871
872
873
874
875

        apply_map["softmax"] = simple_op<softmax2d>();
    }

    void apply()
    {
        init();
        for(auto it : iterator_for(*prog))
        {
Khalique's avatar
Khalique committed
876
            if(it->name() == "pooling")
Paul's avatar
Paul committed
877
878
879
            {
                apply_pooling(it);
            }
Paul's avatar
Paul committed
880
            else if(apply_map.count(it->name()) > 0)
Paul's avatar
Paul committed
881
            {
Paul's avatar
Paul committed
882
                apply_map.at(it->name())(it);
Paul's avatar
Paul committed
883
884
885
886
887
888
889
            }
        }
    }

    template <class T>
    void apply_simple_op(instruction_ref ins)
    {
Paul's avatar
Paul committed
890
        prog->replace_instruction(ins, T{}, ins->inputs());
Paul's avatar
Paul committed
891
892
893
894
895
    }

    template <class T, class Op>
    void apply_extend_op(instruction_ref ins)
    {
896
        auto&& op = any_cast<Op>(ins->get_operator());
Paul's avatar
Paul committed
897
        prog->replace_instruction(ins, T{op}, ins->inputs());
Paul's avatar
Paul committed
898
899
900
901
    }

    void apply_pooling(instruction_ref ins)
    {
902
        auto&& op = any_cast<op::pooling>(ins->get_operator());
Paul's avatar
Paul committed
903
        if(op.mode == "max")
Paul's avatar
Paul committed
904
            prog->replace_instruction(ins, cpu_pooling<max_pool>{op}, ins->inputs());
Paul's avatar
Paul committed
905
        else if(op.mode == "average")
Paul's avatar
Paul committed
906
            prog->replace_instruction(ins, cpu_pooling<avg_pool>{op}, ins->inputs());
Paul's avatar
Paul committed
907
908
909
    }
};

Shucai Xiao's avatar
Shucai Xiao committed
910
void lowering::apply(program& p) const { cpu_apply{&p}.apply(); }
Paul's avatar
Paul committed
911
912

} // namespace cpu
Paul's avatar
Paul committed
913
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
914
} // namespace migraphx