fuse_ops.cpp 25.4 KB
Newer Older
kahmed10's avatar
kahmed10 committed
1
2
#include <migraphx/pass_manager.hpp>
#include <migraphx/dead_code_elimination.hpp>
Paul's avatar
Paul committed
3
4
5
#include <migraphx/gpu/fuse_ops.hpp>
#include <migraphx/matcher.hpp>
#include <migraphx/gpu/miopen.hpp>
kahmed10's avatar
kahmed10 committed
6
#include <migraphx/gpu/clip.hpp>
Paul's avatar
Paul committed
7
#include <migraphx/gpu/convolution.hpp>
8
#include <migraphx/gpu/oper.hpp>
kahmed10's avatar
kahmed10 committed
9
10
#include <migraphx/gpu/add.hpp>
#include <migraphx/gpu/mul.hpp>
11
#include <migraphx/gpu/gemm.hpp>
kahmed10's avatar
kahmed10 committed
12
#include <migraphx/gpu/device/layernorm.hpp>
kahmed10's avatar
kahmed10 committed
13
#include <migraphx/gpu/device/gelu.hpp>
Paul's avatar
Paul committed
14
#include <migraphx/gpu/device/mul_add.hpp>
15
16
17
18
19
#include <migraphx/gpu/device/add_clip.hpp>
#include <migraphx/gpu/device/add_relu.hpp>
#include <migraphx/gpu/device/add_sigmoid.hpp>
#include <migraphx/gpu/device/add_tanh.hpp>
#include <migraphx/gpu/device/mul_add_relu.hpp>
Paul's avatar
Paul committed
20
#include <migraphx/gpu/device/add.hpp>
Paul's avatar
Paul committed
21
#include <migraphx/instruction.hpp>
22
#include <migraphx/register_op.hpp>
Paul's avatar
Paul committed
23
#include <migraphx/array.hpp>
kahmed10's avatar
kahmed10 committed
24
#include <migraphx/op/clip.hpp>
kahmed10's avatar
kahmed10 committed
25
#include <cmath>
Paul's avatar
Paul committed
26
27

namespace migraphx {
Paul's avatar
Paul committed
28
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
29
30
namespace gpu {

31
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_DISABLE_MIOPEN_FUSION)
kahmed10's avatar
kahmed10 committed
32
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_DISABLE_FAST_GELU)
33

Paul's avatar
Paul committed
34
35
36
37
38
39
40
41
struct fusion
{
    using op_t = miopenFusionOpDescriptor_t;
    shared<fusion_plan_descriptor> fp;

    // Used as a temporary hack to keep descriptor references alive
    std::vector<std::shared_ptr<void>> storage;

Paul's avatar
Paul committed
42
    template <class T>
Paul's avatar
Paul committed
43
44
45
46
47
48
49
    auto keep_alive(T x)
    {
        auto result = share(std::move(x));
        storage.push_back(result);
        return result;
    }

50
51
    fusion() = default;

Paul's avatar
Paul committed
52
53
    fusion(const shape& input)
    {
54
        assert(input.standard());
Paul's avatar
Paul committed
55
        auto t = make_tensor(input);
Paul's avatar
Paul committed
56
        fp     = make_fusion_plan(t);
57
        assert(fp);
Paul's avatar
Paul committed
58
59
60
61
62
        keep_alive(std::move(t));
    }

    op_t operator[](std::size_t i) const
    {
63
        assert(fp);
Paul's avatar
Paul committed
64
65
66
        op_t result;
        auto status = miopenFusionPlanGetOp(fp.get(), i, &result);
        if(status != miopenStatusSuccess)
Paul's avatar
Paul committed
67
            MIGRAPHX_THROW("Failed retrieving operator at " + std::to_string(i));
Paul's avatar
Paul committed
68
69
70
        return result;
    }

71
72
73
74
75
    auto get() const
    {
        assert(fp);
        return fp.get();
    }
Paul's avatar
Paul committed
76
77
78

    op_t create_bias(const shape& bias)
    {
79
        assert(fp);
Paul's avatar
Paul committed
80
        op_t result;
Paul's avatar
Paul committed
81
82
        auto b      = shape{bias.type(), {1, bias.lens().at(1), 1, 1}};
        auto t      = keep_alive(make_tensor(b));
Paul's avatar
Paul committed
83
84
        auto status = miopenCreateOpBiasForward(fp.get(), &result, t.get());
        if(status != miopenStatusSuccess)
Paul's avatar
Paul committed
85
            MIGRAPHX_THROW("Creating operator failed");
Paul's avatar
Paul committed
86
87
88
89
90
        return result;
    }

    op_t create_relu()
    {
91
        assert(fp);
Paul's avatar
Paul committed
92
93
94
        op_t result;
        auto status = miopenCreateOpActivationForward(fp.get(), &result, miopenActivationRELU);
        if(status != miopenStatusSuccess)
Paul's avatar
Paul committed
95
            MIGRAPHX_THROW("Creating operator failed");
Paul's avatar
Paul committed
96
97
98
99
100
        return result;
    }

    op_t create_conv(const op::convolution& op, const shape& weights)
    {
101
        assert(fp);
Paul's avatar
Paul committed
102
        op_t result;
Paul's avatar
Paul committed
103
104
        auto cd     = keep_alive(make_conv(op));
        auto t      = keep_alive(make_tensor(weights));
Paul's avatar
Paul committed
105
106
        auto status = miopenCreateOpConvForward(fp.get(), &result, cd.get(), t.get());
        if(status != miopenStatusSuccess)
Paul's avatar
Paul committed
107
            MIGRAPHX_THROW("Creating operator failed");
Paul's avatar
Paul committed
108
109
        return result;
    }
Paul's avatar
Paul committed
110
111
112

    shape get_workspace(context&)
    {
113
        // assert(fp);
Paul's avatar
Paul committed
114
115
116
117
118
        // TODO: Use zero workspace for now
        std::size_t ws_size = 0;
        // int algo_count = 1;
        // miopenConvFwdAlgorithm_t algo;
        // miopenFusionPlanConvolutionGetAlgo(fp.get(), 1, &algo_count, &algo);
Paul's avatar
Paul committed
119
120
        // miopenFusionPlanGetWorkSpaceSize(ctx.get_stream().get_miopen(), fp.get(), &ws_size,
        // algo);
Paul's avatar
Paul committed
121
122
123
124
125
        return shape{shape::int8_type, {ws_size}};
    }

    void compile(context& ctx)
    {
126
        assert(fp);
Paul's avatar
Paul committed
127
        auto status = miopenCompileFusionPlan(ctx.get_stream().get_miopen(), fp.get());
Paul's avatar
Paul committed
128
        if(status != miopenStatusSuccess)
Paul's avatar
Paul committed
129
            MIGRAPHX_THROW("Compiling fusion plan failed");
Paul's avatar
Paul committed
130
131
    }

Paul's avatar
Paul committed
132
133
134
135
    argument execute(context& ctx,
                     const fused_operator_args& fargs,
                     const argument& x,
                     const argument& y) const
Paul's avatar
Paul committed
136
    {
137
        assert(fp);
Paul's avatar
Paul committed
138
139
        auto x_td   = make_tensor(x.get_shape());
        auto y_td   = make_tensor(y.get_shape());
Paul's avatar
Paul committed
140
        auto status = miopenExecuteFusionPlan(ctx.get_stream().get_miopen(),
Paul's avatar
Paul committed
141
142
143
144
145
146
                                              fp.get(),
                                              x_td.get(),
                                              x.implicit(),
                                              y_td.get(),
                                              y.implicit(),
                                              fargs.get());
Paul's avatar
Paul committed
147
        if(status != miopenStatusSuccess)
Paul's avatar
Paul committed
148
            MIGRAPHX_THROW("Failed to execute fusion plan");
Paul's avatar
Paul committed
149
150
        return y;
    }
Paul's avatar
Paul committed
151
152
};

Paul's avatar
Paul committed
153
MIGRAPHX_PRED_MATCHER(bias_shape, instruction_ref ins)
Paul's avatar
Paul committed
154
155
{
    auto&& s = ins->get_shape();
Paul's avatar
Paul committed
156
157
    return s.broadcasted() and s.strides().size() == 4 and s.strides()[0] == 0 and
           s.strides()[1] != 0 and s.strides()[2] == 0 and s.strides()[3] == 0;
Paul's avatar
Paul committed
158
159
}

Paul's avatar
Paul committed
160
MIGRAPHX_PRED_MATCHER(fusable_conv, instruction_ref ins)
Paul's avatar
Paul committed
161
{
162
163
    if(enabled(MIGRAPHX_DISABLE_MIOPEN_FUSION{}))
        return false;
Paul's avatar
Paul committed
164
165
    if(ins->name() != "gpu::convolution")
        return false;
Paul's avatar
Paul committed
166
167
    if(ins->get_shape().type() != shape::float_type)
        return false;
Paul's avatar
Paul committed
168
169
170
    auto wei = ins->inputs().at(1)->get_shape();
    assert(wei.lens().size() == 4);
    auto conv = any_cast<miopen_convolution>(ins->get_operator());
Khalique's avatar
Khalique committed
171
    if(conv.op.group > 1)
Khalique's avatar
Khalique committed
172
        return false;
Paul's avatar
Paul committed
173
    if(wei.lens()[1] > 512 and conv.algo != miopenConvolutionFwdAlgoWinograd)
Paul's avatar
Paul committed
174
        return false;
175
176
177
178
179
180

    // Do not fuse non-symmetric input
    auto input_lens = ins->inputs().at(0)->get_shape().lens();
    if(input_lens[2] != input_lens[3] or wei.lens()[2] != wei.lens()[3])
        return false;

Paul's avatar
Paul committed
181
    auto op = conv.op;
182
183
    // Dont fuse winograd for non-3x3s since there is no fused windograd for those configs
    if(conv.algo == miopenConvolutionFwdAlgoWinograd and wei.lens()[2] != 3 and
184
       wei.lens()[3] != 3 and contains({{1, 1}}, op.stride))
185
        return false;
Paul's avatar
Paul committed
186
    return contains({{0, 0}, {1, 1}, {2, 2}}, op.padding) and
187
           contains({{0, 0}, {1, 1}}, op.stride) and contains({{1, 1}}, op.dilation);
Paul's avatar
Paul committed
188
189
}

190
struct hip_triadd : ternary_device<hip_triadd, &device::add>
Paul's avatar
Paul committed
191
192
{
};
193
MIGRAPHX_REGISTER_OP(hip_triadd)
Paul's avatar
Paul committed
194

195
struct hip_triadd_clip : quinary_device<hip_triadd_clip, &device::add_clip>
kahmed10's avatar
kahmed10 committed
196
197
{
};
198
MIGRAPHX_REGISTER_OP(hip_triadd_clip)
kahmed10's avatar
kahmed10 committed
199

200
struct hip_add_clip : quaternary_device<hip_add_clip, &device::add_clip>
kahmed10's avatar
kahmed10 committed
201
202
{
};
203
MIGRAPHX_REGISTER_OP(hip_add_clip)
kahmed10's avatar
kahmed10 committed
204

205
struct hip_triadd_relu : ternary_device<hip_triadd_relu, &device::add_relu>
Paul's avatar
Paul committed
206
207
{
};
208
MIGRAPHX_REGISTER_OP(hip_triadd_relu)
Paul's avatar
Paul committed
209

210
211
212
struct hip_triadd_sigmoid : ternary_device<hip_triadd_sigmoid, &device::add_sigmoid>
{
};
213
MIGRAPHX_REGISTER_OP(hip_triadd_sigmoid)
214
215
216
217

struct hip_triadd_tanh : ternary_device<hip_triadd_tanh, &device::add_tanh>
{
};
218
MIGRAPHX_REGISTER_OP(hip_triadd_tanh)
219
220
221
222

struct hip_add_relu : binary_device<hip_add_relu, &device::add_relu>
{
};
223
MIGRAPHX_REGISTER_OP(hip_add_relu)
224
225
226
227

struct hip_add_sigmoid : binary_device<hip_add_relu, &device::add_sigmoid>
{
};
228
MIGRAPHX_REGISTER_OP(hip_add_sigmoid)
229
230

struct hip_add_tanh : binary_device<hip_add_tanh, &device::add_tanh>
Paul's avatar
Paul committed
231
232
{
};
233
MIGRAPHX_REGISTER_OP(hip_add_tanh)
Paul's avatar
Paul committed
234

kahmed10's avatar
kahmed10 committed
235
236
struct hip_layernorm : unary_device<hip_layernorm, &device::layernorm>
{
237
238
    // Empty finalize to skip dimension reduction
    void finalize(context&, const shape&, const std::vector<shape>&) {}
kahmed10's avatar
kahmed10 committed
239
};
240
MIGRAPHX_REGISTER_OP(hip_layernorm)
kahmed10's avatar
kahmed10 committed
241

kahmed10's avatar
kahmed10 committed
242
243
244
struct hip_gelu : unary_device<hip_gelu, &device::gelu>
{
};
245
MIGRAPHX_REGISTER_OP(hip_gelu)
kahmed10's avatar
kahmed10 committed
246
247
248
249

struct hip_add_gelu : binary_device<hip_add_gelu, &device::add_gelu>
{
};
250
MIGRAPHX_REGISTER_OP(hip_add_gelu)
kahmed10's avatar
kahmed10 committed
251
252
253
254

struct hip_gelu_new : unary_device<hip_gelu_new, &device::gelu_new>
{
};
255
MIGRAPHX_REGISTER_OP(hip_gelu_new)
kahmed10's avatar
kahmed10 committed
256
257
258
259

struct hip_add_gelu_new : binary_device<hip_add_gelu_new, &device::add_gelu_new>
{
};
260
MIGRAPHX_REGISTER_OP(hip_add_gelu_new)
kahmed10's avatar
kahmed10 committed
261

262
struct hip_mul_add : ternary_device<hip_mul_add, &device::mul_add>
Paul's avatar
Paul committed
263
264
{
};
265
MIGRAPHX_REGISTER_OP(hip_mul_add)
Paul's avatar
Paul committed
266

267
struct hip_mul_add_relu : ternary_device<hip_mul_add_relu, &device::mul_add_relu>
Paul's avatar
Paul committed
268
269
{
};
270
MIGRAPHX_REGISTER_OP(hip_mul_add_relu)
Paul's avatar
Paul committed
271

Paul's avatar
Paul committed
272
273
274
void move_broadcasted_back(std::vector<instruction_ref>& args)
{
    // Ensure the last arguments is the broadcasted one
Paul's avatar
Paul committed
275
    auto last = std::prev(args.end());
Paul's avatar
Paul committed
276
277
    auto it =
        std::find_if(args.begin(), last, [](auto arg) { return arg->get_shape().broadcasted(); });
Paul's avatar
Paul committed
278
279
    if(it != last)
        std::swap(*it, *std::prev(last));
Paul's avatar
Paul committed
280
281
282
283
284
}

void move_standard_front(std::vector<instruction_ref>& args)
{
    // Ensure the first arguments is the standard one
Paul's avatar
Paul committed
285
    auto last = std::prev(args.end());
Paul's avatar
Paul committed
286
287
    auto it =
        std::find_if(args.begin(), last, [](auto arg) { return arg->get_shape().standard(); });
Paul's avatar
Paul committed
288
    if(it != last)
Paul's avatar
Paul committed
289
290
291
        std::swap(*it, args.front());
}

kahmed10's avatar
kahmed10 committed
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
struct find_layernorm
{
    template <class... Ts>
    static auto multibroadcast_op(Ts... xs)
    {
        return match::name("multibroadcast")(match::arg(0)(xs...));
    }

    static auto x_minus_mean()
    {
        return match::name("gpu::sub")(
            match::arg(0)(match::any().bind("x")),
            match::arg(1)(multibroadcast_op(match::name("gpu::reduce_mean"))));
    }

    static auto variance()
    {
        return match::name("gpu::reduce_mean")(match::arg(0)(
            match::name("gpu::pow")(match::arg(0)(x_minus_mean()),
                                    match::arg(1)(multibroadcast_op(match::has_value(2.0f))))));
    }

    static auto layernorm_onnx()
    {
        return match::name("gpu::div")(
            match::arg(0)(x_minus_mean()),

            match::arg(1)(multibroadcast_op(
                match::name("gpu::sqrt")(match::arg(0)(match::name("gpu::add")(match::either_arg(
                    0, 1)(variance(), multibroadcast_op(match::has_value(1e-12f)))))))));
    }

    auto matcher() const { return layernorm_onnx(); }

    void apply(program& p, match::matcher_result r) const
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto args  = ins->inputs();

332
333
334
335
336
337
338
339
340
        // We dont fuse for non-standard layouts
        if(not x_ins->get_shape().standard())
            return;

        auto relements = x_ins->get_shape().lens().back();

        if(relements > 1024 or (relements % 4 != 0 and relements > 256))
            return;

kahmed10's avatar
kahmed10 committed
341
342
343
344
        p.replace_instruction(ins, hip_layernorm{}, x_ins, args.back());
    }
};

kahmed10's avatar
kahmed10 committed
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
struct find_gelu
{

    static auto erf_fn()
    {
        return match::name("gpu::erf")(
            match::used_once(),
            match::arg(0)(match::used_once(),
                          match::name("gpu::mul")(match::either_arg(0, 1)(
                              match::none_of(match::has_value(M_SQRT1_2)).bind("x"),
                              match::has_value(M_SQRT1_2)))));
    }

    auto matcher() const
    {
        return match::name("gpu::mul")(match::either_arg(0, 1)(
            match::name("gpu::mul")(match::any_arg(0, 1)(match::args(match::has_value(0.5f)))),
            match::name("gpu::add")(
                match::used_once(),
                match::either_arg(0, 1)(erf_fn(), match::args(match::has_value(1.0f))))));
    }

    void apply(program& p, match::matcher_result r) const
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto args  = ins->inputs();

        p.replace_instruction(ins, hip_gelu{}, x_ins, args.back());
    }
};

struct find_add_gelu
{
    auto matcher() const
    {
        return match::name("gpu::gelu")(match::arg(0)(match::name("gpu::add").bind("add")));
    }

    void apply(program& p, match::matcher_result r) const
    {
        auto add_ins = r.instructions["add"];
        auto ins     = r.result;
        auto args    = add_ins->inputs();
        move_standard_front(args);
        move_broadcasted_back(args);

        args.back() = ins->inputs().back();
        p.replace_instruction(ins, hip_add_gelu{}, args);
    }
};

struct find_gelu_new
{

    static auto pow_fn()
    {
        return match::name("gpu::pow")(match::used_once(),
                                       match::arg(1)(match::args(match::has_value(3.0f))));
    }

    static auto tanh_fn()
    {
        return match::name("gpu::tanh")(
            match::used_once(),
            match::arg(0)(match::name("gpu::mul")(match::either_arg(0, 1)(
                match::args(match::has_value(sqrt(M_2_PI))),
                match::name("gpu::add")(
                    match::any_arg(0, 1)(match::name("gpu::mul")(match::either_arg(0, 1)(
                        match::args(match::has_value(0.044715f)), pow_fn()))))))));
    }

    auto matcher() const
    {
        return match::name("gpu::mul")(
            match::used_once(),
            match::either_arg(0, 1)(
                match::any().bind("x"),
                match::name("gpu::add")(match::any_arg(0, 1)(match::name("gpu::mul")(
                    match::either_arg(0, 1)(match::args(match::has_value(0.5f)), tanh_fn()))))));
    }

    void apply(program& p, match::matcher_result r) const
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto args  = ins->inputs();

        if(enabled(MIGRAPHX_DISABLE_FAST_GELU{}))
            p.replace_instruction(ins, hip_gelu_new{}, x_ins, args.back());
        else
            p.replace_instruction(ins, hip_gelu{}, x_ins, args.back());
    }
};

struct find_add_gelu_new
{
    auto matcher() const
    {
        return match::name("gpu::gelu_new")(match::arg(0)(match::name("gpu::add").bind("add")));
    }

    void apply(program& p, match::matcher_result r) const
    {
        auto add_ins = r.instructions["add"];
        auto ins     = r.result;
        auto args    = add_ins->inputs();
        move_standard_front(args);
        move_broadcasted_back(args);

        args.back() = ins->inputs().back();
        p.replace_instruction(ins, hip_add_gelu_new{}, args);
    }
};

kahmed10's avatar
kahmed10 committed
460
461
462
463
464
465
struct find_add_clip
{
    auto matcher() const
    {
        return match::name(std::unordered_set<std::string>{"gpu::clip", "gpu::clipped_relu"})(
            match::arg(0)(match::any_of(match::name("gpu::add"),
kahmed10's avatar
kahmed10 committed
466
                                        match::name("gpu::triadd"),
kahmed10's avatar
kahmed10 committed
467
468
469
470
471
472
                                        match::any_of[match::inputs()](match::standard_shape()))
                              .bind("add")));
    }

    void apply(program& p, match::matcher_result r) const
    {
kahmed10's avatar
kahmed10 committed
473
474
475
476
477
478
479
480
481
482
        auto add_ins  = r.instructions["add"];
        auto ins      = r.result;
        auto ins_args = ins->inputs();
        auto add_args = add_ins->inputs();
        move_standard_front(add_args);
        move_broadcasted_back(add_args);

        // Use the allocation from the clip operator
        add_args.pop_back();
        add_args.insert(add_args.end(), std::next(ins_args.begin()), ins_args.end());
kahmed10's avatar
kahmed10 committed
483
        if(add_ins->name() == "gpu::add")
kahmed10's avatar
kahmed10 committed
484
            p.replace_instruction(ins, hip_add_clip{}, add_args);
kahmed10's avatar
kahmed10 committed
485
        else if(add_ins->name() == "gpu::triadd")
kahmed10's avatar
kahmed10 committed
486
            p.replace_instruction(ins, hip_triadd_clip{}, add_args);
kahmed10's avatar
kahmed10 committed
487
488
489
    }
};

490
struct find_add_unary
Paul's avatar
Paul committed
491
{
492
493
494
    std::string op_name;
    operation binary_add_op;
    operation ternary_add_op;
Paul's avatar
Paul committed
495
496
    auto matcher() const
    {
497
        return match::name(op_name)(match::arg(0)(
Paul's avatar
Paul committed
498
            match::used_once(),
Paul's avatar
Paul committed
499
            match::any_of(match::name("gpu::add"),
kahmed10's avatar
kahmed10 committed
500
                          match::name("gpu::triadd"),
Paul's avatar
Paul committed
501
502
503
                          match::any_of(match::name("@literal"),
                                        match::any_of[match::inputs()](match::standard_shape())))
                .bind("add")));
Paul's avatar
Paul committed
504
    }
Paul's avatar
Paul committed
505

Paul's avatar
Paul committed
506
507
    void apply(program& p, match::matcher_result r) const
    {
Paul's avatar
Paul committed
508
        auto add_ins = r.instructions["add"];
Paul's avatar
Paul committed
509
510
        auto ins     = r.result;
        auto args    = add_ins->inputs();
Paul's avatar
Paul committed
511
512
513
        move_standard_front(args);
        move_broadcasted_back(args);

Paul's avatar
Paul committed
514
        // Use the allocation from the relu operator
Paul's avatar
Paul committed
515
        args.back() = ins->inputs().back();
Paul's avatar
Paul committed
516
        if(add_ins->name() == "gpu::add")
517
            p.replace_instruction(ins, binary_add_op, args);
kahmed10's avatar
kahmed10 committed
518
        else if(add_ins->name() == "gpu::triadd")
519
            p.replace_instruction(ins, ternary_add_op, args);
Paul's avatar
Paul committed
520
521
522
    }
};

Paul's avatar
Paul committed
523
struct find_triadd
Paul's avatar
Paul committed
524
525
526
{
    auto matcher() const
    {
Paul's avatar
Paul committed
527
        return match::name("gpu::add")(match::either_arg(0, 1)(
Paul's avatar
Paul committed
528
            match::name("gpu::add")(match::used_once()).bind("add"),
Paul's avatar
Paul committed
529
530
531
            match::any(match::any_of(match::name("@literal"),
                                     match::any_of[match::inputs()](match::standard_shape())))
                .bind("input")));
Paul's avatar
Paul committed
532
533
534
535
    }

    void apply(program& p, match::matcher_result r) const
    {
Paul's avatar
Paul committed
536
537
538
539
        auto add_ins   = r.instructions["add"];
        auto input_ins = r.instructions["input"];
        auto ins       = r.result;
        auto args      = add_ins->inputs();
540

Paul's avatar
Paul committed
541
        auto is_broadcasted = [](auto arg) { return arg->get_shape().broadcasted(); };
542
        if(std::count_if(args.begin(), args.end(), is_broadcasted) > 2)
Paul's avatar
Paul committed
543
544
            return;
        args.insert(args.begin(), input_ins);
Paul's avatar
Paul committed
545
546
547
        move_standard_front(args);
        move_broadcasted_back(args);

Paul's avatar
Paul committed
548
549
        args.back() = ins->inputs().back();
        p.replace_instruction(ins, hip_triadd{}, args);
Paul's avatar
Paul committed
550
    }
Paul's avatar
Paul committed
551
552
};

Paul's avatar
Paul committed
553
554
555
556
struct find_mul_add
{
    auto matcher() const
    {
Paul's avatar
Paul committed
557
558
        return match::name("gpu::add")(match::either_arg(0, 1)(
            match::name("gpu::mul")(match::used_once()).bind("mul"), match::any().bind("b")));
Paul's avatar
Paul committed
559
560
561
562
    }

    void apply(program& p, match::matcher_result r) const
    {
Paul's avatar
Paul committed
563
564
565
566
        auto mul_ins = r.instructions["mul"];
        auto b_ins   = r.instructions["b"];
        auto ins     = r.result;
        auto args    = mul_ins->inputs();
Paul's avatar
Paul committed
567
568
569
570
571
572
573
574
575
576
577
        assert(mul_ins != b_ins);

        move_standard_front(args);
        move_broadcasted_back(args);
        args.insert(std::prev(args.end()), b_ins);

        args.back() = ins->inputs().back();
        p.replace_instruction(ins, hip_mul_add{}, args);
    }
};

Paul's avatar
Paul committed
578
579
580
581
struct find_mul_add_relu
{
    auto matcher() const
    {
Paul's avatar
Paul committed
582
        return match::name("gpu::relu")(
kahmed10's avatar
kahmed10 committed
583
            match::arg(0)(match::name("gpu::mul_add")(match::used_once()).bind("mul_add")));
Paul's avatar
Paul committed
584
585
586
587
588
    }

    void apply(program& p, match::matcher_result r) const
    {
        auto mul_add_ins = r.instructions["mul_add"];
Paul's avatar
Paul committed
589
590
        auto ins         = r.result;
        auto args        = mul_add_ins->inputs();
Paul's avatar
Paul committed
591
592
593
594
595
596
597

        // Use the allocation from the relu operator
        args.back() = ins->inputs().back();
        p.replace_instruction(ins, hip_mul_add_relu{}, args);
    }
};

Paul's avatar
Paul committed
598
599
600
struct miopen_conv_bias
{
    op::convolution op;
601
602
603
    fusion f          = {};
    fusion::op_t conv = {};
    fusion::op_t bias = {};
Paul's avatar
Paul committed
604

Paul's avatar
Paul committed
605
606
607
608
609
610
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return op::convolution::reflect(self.op, f);
    }

Paul's avatar
Paul committed
611
612
613
614
615
616
617
    std::string name() const { return "gpu::conv_bias"; }
    shape compute_shape(const std::vector<shape>& inputs) const
    {
        check_shapes{inputs, *this}.has(5);
        // TODO: Check slices
        return op.compute_shape({inputs.at(0), inputs.at(1)});
    }
Paul's avatar
Paul committed
618
    argument compute(context& ctx, const shape&, const std::vector<argument>& args) const
Paul's avatar
Paul committed
619
    {
Paul's avatar
Paul committed
620
        auto fargs  = make_fused_args();
Paul's avatar
Paul committed
621
        float alpha = 1;
Paul's avatar
Paul committed
622
        float beta  = 0;
Paul's avatar
Paul committed
623
624
        miopenSetOpArgsConvForward(fargs.get(), conv, &alpha, &beta, args[1].implicit());
        miopenSetOpArgsBiasForward(fargs.get(), bias, &alpha, &beta, args[3].implicit());
Paul's avatar
Paul committed
625
        return f.execute(ctx, fargs, args[0], args[4]);
Paul's avatar
Paul committed
626
627
    }

628
629
630
631
632
633
634
635
    void finalize(context& ctx, const shape&, const std::vector<shape>& inputs)
    {
        f    = fusion(inputs[0]);
        conv = f.create_conv(op, inputs[1]);
        bias = f.create_bias(inputs[3]);
        f.compile(ctx);
    }

Paul's avatar
Paul committed
636
    shape get_workspace(context& ctx) { return f.get_workspace(ctx); }
Paul's avatar
Paul committed
637
638
639
640
    std::ptrdiff_t output_alias(const std::vector<shape>& shapes) const
    {
        return shapes.size() - 1;
    }
Paul's avatar
Paul committed
641
};
642
MIGRAPHX_REGISTER_OP(miopen_conv_bias)
Paul's avatar
Paul committed
643

Paul's avatar
Add cbr  
Paul committed
644
645
646
struct miopen_conv_bias_relu
{
    op::convolution op;
647
648
649
650
    fusion f          = {};
    fusion::op_t conv = {};
    fusion::op_t bias = {};
    fusion::op_t relu = {};
Paul's avatar
Add cbr  
Paul committed
651

Paul's avatar
Paul committed
652
653
654
655
656
657
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return op::convolution::reflect(self.op, f);
    }

Paul's avatar
Add cbr  
Paul committed
658
659
660
661
662
663
664
    std::string name() const { return "gpu::conv_bias_relu"; }
    shape compute_shape(const std::vector<shape>& inputs) const
    {
        check_shapes{inputs, *this}.has(5);
        // TODO: Check slices
        return op.compute_shape({inputs.at(0), inputs.at(1)});
    }
Paul's avatar
Paul committed
665
    argument compute(context& ctx, const shape&, const std::vector<argument>& args) const
Paul's avatar
Add cbr  
Paul committed
666
667
    {
        auto fargs  = make_fused_args();
Paul's avatar
Paul committed
668
        float alpha = 1;
Paul's avatar
Paul committed
669
        float beta  = 0;
Paul's avatar
Add cbr  
Paul committed
670
671
        miopenSetOpArgsConvForward(fargs.get(), conv, &alpha, &beta, args[1].implicit());
        miopenSetOpArgsBiasForward(fargs.get(), bias, &alpha, &beta, args[3].implicit());
Paul's avatar
Paul committed
672
673
        miopenSetOpArgsActivForward(fargs.get(), relu, &alpha, &beta, 0, 0, 0);
        return f.execute(ctx, fargs, args[0], args[4]);
Paul's avatar
Add cbr  
Paul committed
674
    }
675
676
677
678
679
680
681
682
683
    void finalize(context& ctx, const shape&, const std::vector<shape>& inputs)
    {
        f    = fusion(inputs[0]);
        conv = f.create_conv(op, inputs[1]);
        bias = f.create_bias(inputs[3]);
        relu = f.create_relu();
        f.compile(ctx);
    }

Paul's avatar
Paul committed
684
    shape get_workspace(context& ctx) { return f.get_workspace(ctx); }
Paul's avatar
Paul committed
685
686
687
688
    std::ptrdiff_t output_alias(const std::vector<shape>& shapes) const
    {
        return shapes.size() - 1;
    }
Paul's avatar
Add cbr  
Paul committed
689
};
690
MIGRAPHX_REGISTER_OP(miopen_conv_bias_relu)
Paul's avatar
Add cbr  
Paul committed
691

Paul's avatar
Paul committed
692
template <class... Ms>
Paul's avatar
Add cbr  
Paul committed
693
694
auto conv_bias(Ms... ms)
{
Paul's avatar
Paul committed
695
    return match::name("gpu::add")(
Paul's avatar
Paul committed
696
697
        match::either_arg(0, 1)(bias_shape(match::used_once()).bind("bias"),
                                fusable_conv(match::used_once()).bind("conv")),
Paul's avatar
Paul committed
698
        ms...);
Paul's avatar
Paul committed
699
700
}

Paul's avatar
Paul committed
701
template <class Op>
Paul's avatar
Paul committed
702
703
704
705
706
707
708
709
710
711
712
void apply_conv_bias(context& ctx, program& p, match::matcher_result r)
{
    auto conv_ins    = r.instructions["conv"];
    auto bias_ins    = r.instructions["bias"];
    auto ins         = r.result;
    auto input_ins   = conv_ins->inputs().at(0);
    auto weights_ins = conv_ins->inputs().at(1);
    auto conv_op     = any_cast<miopen_convolution>(conv_ins->get_operator()).op;
    auto alloc_ins   = ins->inputs().back();
    auto old_ws_ins  = conv_ins->inputs().at(2);

713
    Op cb{conv_op};
Paul's avatar
Paul committed
714
    // TODO: Insert ws allocation
Paul's avatar
Paul committed
715
    auto ws = cb.get_workspace(ctx);
Paul's avatar
Paul committed
716
    (void)ws;
Paul's avatar
Paul committed
717
    p.replace_instruction(ins, cb, input_ins, weights_ins, old_ws_ins, bias_ins, alloc_ins);
Paul's avatar
Add cbr  
Paul committed
718
719
}

Paul's avatar
Paul committed
720
struct find_conv_bias
Paul's avatar
Paul committed
721
{
Paul's avatar
Paul committed
722
    context* ctx = nullptr;
Paul's avatar
Paul committed
723
724
    auto matcher() const
    {
kahmed10's avatar
kahmed10 committed
725
726
        return conv_bias(match::none_of(
            match::output(match::name(std::unordered_set<std::string>{"gpu::relu"}))));
Paul's avatar
Paul committed
727
728
729
730
    }

    void apply(program& p, match::matcher_result r) const
    {
Paul's avatar
Paul committed
731
        apply_conv_bias<miopen_conv_bias>(*ctx, p, std::move(r));
Paul's avatar
Paul committed
732
733
734
    }
};

Paul's avatar
Paul committed
735
struct find_conv_bias_relu
Paul's avatar
Add cbr  
Paul committed
736
737
{
    context* ctx = nullptr;
Paul's avatar
Paul committed
738
    auto matcher() const { return match::name("gpu::relu")(match::arg(0)(conv_bias())); }
Paul's avatar
Add cbr  
Paul committed
739
740
741

    void apply(program& p, match::matcher_result r) const
    {
Paul's avatar
Paul committed
742
        apply_conv_bias<miopen_conv_bias_relu>(*ctx, p, std::move(r));
Paul's avatar
Add cbr  
Paul committed
743
744
745
    }
};

746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
struct find_gemm_add
{
    auto matcher() const
    {
        return match::name("gpu::add")(
            match::all_of[match::inputs()](match::standard_shape()),
            match::either_arg(0, 1)(match::used_once().bind("c"),
                                    match::name("gpu::gemm")(match::nargs(3)).bind("gemm")));
    }

    void apply(program& p, match::matcher_result r) const
    {
        auto ins      = r.result;
        auto gemm_ins = r.instructions["gemm"];
        auto c_ins    = r.instructions["c"];

        auto gemm = any_cast<rocblas_gemm<op::dot>>(gemm_ins->get_operator());

        // Already fused gemm
        if(not float_equal(gemm.op.beta, 0))
            return;

        if(std::any_of(ins->inputs().begin(), ins->inputs().end(), [](auto i) {
               return not i->get_shape().standard();
           }))
            return;

        auto inputs = gemm_ins->inputs();
        inputs.pop_back();

        auto copy_ins = c_ins;

        // Insert copy
        if(ins == p.end() or c_ins->outputs().size() > 1 or c_ins->inputs().empty())
        {
            copy_ins = p.insert_instruction(ins, hip_copy{}, c_ins, ins->inputs().back());
        }
        inputs.push_back(copy_ins);
        inputs.push_back(copy_ins);

        gemm.op.beta = 1;
        p.replace_instruction(ins, gemm, inputs);
    }
};

struct find_commutative_broadcast
{
    auto matcher() const
    {
        return match::name("gpu::add", "gpu::mul")(match::arg(1)(match::broadcast_shape()));
    }

    void apply(program& p, const match::matcher_result& r) const
    {
        auto ins  = r.result;
        auto args = ins->inputs();
        move_broadcasted_back(args);

        p.replace_instruction(ins, ins->get_operator(), args);
    }
};

Paul's avatar
Paul committed
808
809
void fuse_ops::apply(program& p) const
{
kahmed10's avatar
kahmed10 committed
810
811
    match::find_matches(p, find_gelu{}, find_gelu_new{});
    run_passes(p, {dead_code_elimination{}});
Paul's avatar
Paul committed
812
    match::find_matches(p, find_triadd{});
813
    match::find_matches(p,
kahmed10's avatar
kahmed10 committed
814
                        find_layernorm{},
815
816
817
818
819
820
821
822
823
824
                        find_conv_bias_relu{ctx},
                        find_conv_bias{ctx},
                        find_add_gelu{},
                        find_add_gelu_new{},
                        find_mul_add{},
                        find_mul_add_relu{},
                        find_add_unary{"gpu::relu", hip_add_relu{}, hip_triadd_relu{}},
                        find_add_unary{"gpu::sigmoid", hip_add_sigmoid{}, hip_triadd_sigmoid{}},
                        find_add_unary{"gpu::tanh", hip_add_tanh{}, hip_triadd_tanh{}},
                        find_add_clip{});
825
    match::find_matches(p, find_gemm_add{}, find_commutative_broadcast{});
Paul's avatar
Paul committed
826
}
Paul's avatar
Paul committed
827
828

} // namespace gpu
Paul's avatar
Paul committed
829
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
830
} // namespace migraphx