simplify_algebra.cpp 44.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
Paul's avatar
Paul committed
24
#include <migraphx/simplify_algebra.hpp>
Paul's avatar
Paul committed
25
#include <migraphx/dead_code_elimination.hpp>
Paul's avatar
Paul committed
26
#include <migraphx/program.hpp>
27
#include <migraphx/op/concat.hpp>
28
#include <migraphx/op/slice.hpp>
29
#include <migraphx/op/convolution.hpp>
Paul's avatar
Paul committed
30
#include <migraphx/op/broadcast.hpp>
31
32
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/transpose.hpp>
Paul's avatar
Paul committed
33
34
#include <migraphx/matcher.hpp>
#include <migraphx/literal.hpp>
35
36
37
#include <migraphx/make_op.hpp>
#include <migraphx/serialize.hpp>

38
#include <migraphx/algorithm.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
39
#include <unordered_set>
Paul's avatar
Paul committed
40

Paul's avatar
Paul committed
41
namespace migraphx {
Paul's avatar
Paul committed
42
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
43

Paul's avatar
Paul committed
44
auto lit_broadcast() { return match::any_of(match::is_constant(), match::name("broadcast")); }
Paul's avatar
Paul committed
45
auto not_lit_broadcast() { return match::none_of(match::is_constant(), match::name("broadcast")); }
Paul's avatar
Paul committed
46
47
auto op_lit_broadcast(std::string op, std::string x, std::string y)
{
Paul's avatar
Paul committed
48
49
    return match::name(std::move(op))(match::either_arg(0, 1)(
        lit_broadcast().bind(std::move(x)), not_lit_broadcast().bind(std::move(y))));
Paul's avatar
Paul committed
50
51
}

Paul's avatar
Paul committed
52
53
auto conv_const_weights()
{
Paul's avatar
Format  
Paul committed
54
55
56
    return match::name("convolution")(
        match::used_once(),
        match::args(match::none_of(match::is_constant()), match::is_constant().bind("w")));
Paul's avatar
Paul committed
57
58
}

Shucai Xiao's avatar
Shucai Xiao committed
59
60
auto reduction() { return match::name_contains("reduce"); }

61
// conv(x, w) * a => conv(x, a * w)
Paul's avatar
Paul committed
62
63
64
struct find_mul_conv
{
    auto matcher() const
Paul's avatar
Paul committed
65
    {
66
67
68
        return match::name("mul")(
            match::either_arg(0, 1)(conv_const_weights().bind("conv"),
                                    match::name("broadcast", "multibroadcast").bind("a")));
Paul's avatar
Paul committed
69
    }
Paul's avatar
Paul committed
70

71
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
72
    {
Paul's avatar
Paul committed
73
        auto ins      = r.result;
Paul's avatar
Paul committed
74
        auto conv_ins = r.instructions["conv"];
Paul's avatar
Paul committed
75
76
77
        auto a_ins    = r.instructions["a"];
        auto w_ins    = r.instructions["w"];

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
        const auto& a_input_lens = a_ins->inputs().front()->get_shape().lens();

        std::size_t num_not_one_dims = std::count_if(
            a_input_lens.cbegin(), a_input_lens.cend(), [](auto dim) { return dim != 1; });
        if(num_not_one_dims > 1)
            return;

        // check broadcasted along channels
        const auto& a_lens    = a_ins->get_shape().lens();
        const auto& a_strides = a_ins->get_shape().strides();

        auto is_broadcasted_axis = [](auto len, auto stride) { return len == 1 or stride == 0; };

        if(a_strides.at(1) != 1)
            return;

        if(not is_broadcasted_axis(a_lens.front(), a_strides.front()))
            return;

        if(not std::equal(a_lens.begin() + 2,
                          a_lens.end(),
                          a_strides.begin() + 2,
                          a_strides.end(),
                          is_broadcasted_axis))
Paul's avatar
Paul committed
102
103
            return;

104
        auto sq    = m.insert_instruction(ins, make_op("squeeze"), a_ins->inputs().front());
105
        auto new_a = m.insert_instruction(
106
            ins, make_op("broadcast", {{"axis", 0}, {"out_lens", w_ins->get_shape().lens()}}), sq);
107
108
        auto new_mul  = m.insert_instruction(ins, make_op("mul"), new_a, w_ins);
        auto new_conv = m.insert_instruction(
Paul's avatar
Paul committed
109
            ins, conv_ins->get_operator(), conv_ins->inputs().front(), new_mul);
110
        m.replace_instruction(ins, new_conv);
Paul's avatar
Paul committed
111
    }
Paul's avatar
Paul committed
112
113
};

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
struct find_mul_slice_conv
{
    static auto conv()
    {
        return match::name("convolution")(
            match::all_of[match::outputs()](match::name("slice")),
            match::args(match::any(), match::is_constant().bind("w")));
    }
    auto matcher() const
    {
        return match::name("mul")(match::either_arg(0, 1)(
            match::name("slice")(match::used_once(), match::arg(0)(conv().bind("conv")))
                .bind("slice"),
            match::name("broadcast")(match::is_constant()).bind("a")));
    }

130
    void apply(module& m, const match::matcher_result& r) const
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
    {
        auto ins       = r.result;
        auto slice_ins = r.instructions["slice"];
        auto conv_ins  = r.instructions["conv"];
        auto a_ins     = r.instructions["a"];
        auto w_ins     = r.instructions["w"];

        auto broadcast_op = any_cast<op::broadcast>(a_ins->get_operator());
        if(broadcast_op.axis != 1)
            return;

        auto slice_op = any_cast<op::slice>(slice_ins->get_operator());
        if(slice_op.axes.size() != 1)
            return;
        if(slice_op.axes.front() != 1)
            return;

        auto slice_idx = std::distance(conv_ins, slice_ins);
        if(std::any_of(conv_ins->outputs().begin(), conv_ins->outputs().end(), [&](auto i) {
               if(i == slice_ins)
                   return false;
               if(std::distance(conv_ins, i) < slice_idx)
                   return true;
               auto sop = any_cast<op::slice>(i->get_operator());
               if(sop.axes != slice_op.axes)
                   return true;
               if(std::max(sop.starts.front(), slice_op.starts.front()) <
                  std::min(sop.ends.front(), slice_op.ends.front()))
                   return true;
               return false;
           }))
            return;

        auto w_slice_op  = slice_op;
        w_slice_op.axes  = {0};
166
        auto slice_w_ins = m.insert_instruction(ins, w_slice_op, w_ins);
167

168
        auto new_a = m.insert_instruction(
169
            ins,
170
            make_op("broadcast", {{"axis", 0}, {"out_lens", slice_w_ins->get_shape().lens()}}),
171
            a_ins->inputs().front());
172
        auto new_mul = m.insert_instruction(ins, make_op("mul"), new_a, slice_w_ins);
173
174
175

        std::vector<instruction_ref> sliced_weights;
        if(slice_op.starts.front() != 0)
176
            sliced_weights.push_back(m.insert_instruction(
177
178
179
                ins,
                make_op("slice", {{"axes", {0}}, {"starts", {0}}, {"ends", slice_op.starts}}),
                w_ins));
180
181
182
        sliced_weights.push_back(new_mul);
        int64_t end_axis = w_ins->get_shape().lens().at(0);
        if(slice_op.ends.front() != end_axis)
183
            sliced_weights.push_back(m.insert_instruction(
184
185
186
                ins,
                make_op("slice", {{"axes", {0}}, {"starts", slice_op.ends}, {"ends", {end_axis}}}),
                w_ins));
187

188
        auto new_weights =
189
            m.insert_instruction(ins, make_op("concat", {{"axis", 0}}), sliced_weights);
190

191
        auto new_conv = m.insert_instruction(
192
193
194
            ins, conv_ins->get_operator(), conv_ins->inputs().front(), new_weights);
        assert(conv_ins->get_shape() == new_conv->get_shape());

195
        auto slice1 = m.insert_instruction(ins, slice_op, new_conv);
196
        assert(ins->get_shape().lens() == slice1->get_shape().lens());
197
        m.replace_instruction(ins, slice1);
198
        // TODO: Check each slice doesn't overlap and that it occurs after slice_ins
199
200
        auto outputs = conv_ins->outputs();
        for(auto output : outputs)
201
202
203
204
205
            if(output != slice_ins)
                instruction::replace_argument(output, conv_ins, new_conv);
    }
};

Paul's avatar
Paul committed
206
// a * (x + b) => a * x + a * b
Paul's avatar
Paul committed
207
208
209
210
211
struct find_mul_add
{
    auto matcher() const
    {
        return match::name("mul")(match::either_arg(0, 1)(
Paul's avatar
Paul committed
212
213
214
            match::name("add")(
                match::either_arg(0, 1)(
                    match::any().bind("x"),
Paul's avatar
Paul committed
215
                    match::any_of(conv_const_weights(), match::is_constant()).bind("b")),
Paul's avatar
Paul committed
216
                match::none_of(match::args(match::is_constant(), match::is_constant())),
Paul's avatar
Paul committed
217
                match::used_once()),
Paul's avatar
Paul committed
218
            match::is_constant().bind("a")));
Paul's avatar
Paul committed
219
220
    }

221
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
222
    {
Paul's avatar
Paul committed
223
        auto ins   = r.result;
Paul's avatar
Paul committed
224
        auto a_ins = r.instructions["a"];
Paul's avatar
Paul committed
225
        auto b_ins = r.instructions["b"];
Paul's avatar
Paul committed
226
        auto x_ins = r.instructions["x"];
Paul's avatar
Paul committed
227
        assert(x_ins != b_ins);
Paul's avatar
Paul committed
228

229
230
231
        auto ax_ins = m.insert_instruction(ins, make_op("mul"), a_ins, x_ins);
        auto ab_ins = m.insert_instruction(ins, make_op("mul"), a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), ax_ins, ab_ins);
Paul's avatar
Paul committed
232
233
234
    }
};

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
struct find_dot_add
{
    auto matcher() const
    {
        return match::name("dot")(match::either_arg(0, 1)(
            match::name("add")(
                match::either_arg(0, 1)(match::any().bind("x"),
                                        match::any_of(match::is_constant()).bind("b")),
                match::none_of(match::args(match::is_constant(), match::is_constant())),
                match::used_once()),
            match::is_constant().bind("a")));
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins   = r.result;
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];
        auto x_ins = r.instructions["x"];
        assert(x_ins != b_ins);

        const bool flipped = a_ins == ins->inputs().back();

        auto insert_dot = [&](auto x, auto y) {
            if(flipped)
                return m.insert_instruction(ins, make_op("dot"), y, x);
            else
                return m.insert_instruction(ins, make_op("dot"), x, y);
        };

        auto ax_ins = insert_dot(a_ins, x_ins);
        auto ab_ins = insert_dot(a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), ax_ins, ab_ins);
    }
};

Paul's avatar
Paul committed
271
272
273
274
275
struct find_conv_add
{
    auto matcher() const
    {
        auto add = match::name("add")(
Paul's avatar
Format  
Paul committed
276
277
278
            match::either_arg(0, 1)(match::any().bind("x"),
                                    match::any_of(match::is_constant()).bind("a")),
            match::used_once());
Paul's avatar
Paul committed
279
        return match::name("convolution")(match::used_once(),
Paul's avatar
Format  
Paul committed
280
                                          match::args(add, match::is_constant().bind("w")));
Paul's avatar
Paul committed
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins   = r.result;
        auto a_ins = r.instructions["a"];
        auto x_ins = r.instructions["x"];
        auto w_ins = r.instructions["w"];

        auto conv1 = m.insert_instruction(ins, ins->get_operator(), a_ins, w_ins);
        auto conv2 = m.insert_instruction(ins, ins->get_operator(), x_ins, w_ins);

        m.replace_instruction(ins, make_op("add"), conv1, conv2);
    }
};

Paul's avatar
Paul committed
297
struct find_add_lit_broadcast
Paul's avatar
Paul committed
298
299
300
301
302
303
304
{
    auto matcher() const
    {
        return match::name("add")(
            match::either_arg(0, 1)(op_lit_broadcast("add", "a", "x"), lit_broadcast().bind("b")));
    }

305
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
306
307
308
309
310
311
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];

312
313
        auto sumab = m.insert_instruction(ins, make_op("add"), a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), x_ins, sumab);
Paul's avatar
Paul committed
314
315
316
317
    }
};

struct find_double_add_lit_broadcast
Paul's avatar
Paul committed
318
{
Paul's avatar
Paul committed
319
320
    auto matcher() const
    {
Paul's avatar
Paul committed
321
        return match::name("add")(
Paul's avatar
Paul committed
322
            match::args(op_lit_broadcast("add", "a", "x"), op_lit_broadcast("add", "b", "y")));
Paul's avatar
Paul committed
323
324
    }

325
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
326
    {
Paul's avatar
Paul committed
327
328
329
330
331
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto y_ins = r.instructions["y"];
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];
Paul's avatar
Paul committed
332
333
334

        instruction_ref sumab;

Paul's avatar
Paul committed
335
        if(a_ins->name() == "broadcast" and b_ins->name() == "broadcast")
Paul's avatar
Paul committed
336
337
338
        {
            if(a_ins->inputs().at(0)->get_shape() != b_ins->inputs().at(0)->get_shape())
                return;
339
            auto op     = a_ins->get_operator();
340
            auto presum = m.insert_instruction(
341
                ins, make_op("add"), a_ins->inputs().at(0), b_ins->inputs().at(0));
342
            sumab = m.insert_instruction(ins, op, presum);
Paul's avatar
Paul committed
343
344
345
        }
        else
        {
346
            sumab = m.insert_instruction(ins, make_op("add"), a_ins, b_ins);
Paul's avatar
Paul committed
347
348
        }

349
350
        auto sumxy = m.insert_instruction(ins, make_op("add"), x_ins, y_ins);
        m.replace_instruction(ins, make_op("add"), sumxy, sumab);
Paul's avatar
Paul committed
351
352
353
    }
};

Paul's avatar
Paul committed
354
355
struct find_inner_broadcast
{
356
    auto matcher() const { return pointwise(match::all_of[match::inputs()](match::broadcast())); }
Paul's avatar
Paul committed
357

358
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
359
    {
360
361
362
363
364
365
366
367
368
369
370
371
        auto ins        = r.result;
        auto broadcasts = ins->inputs();
        if(broadcasts.empty())
            return;
        std::vector<instruction_ref> inputs;
        std::transform(broadcasts.begin(),
                       broadcasts.end(),
                       std::back_inserter(inputs),
                       [](auto i) { return i->inputs().front(); });
        if(std::any_of(inputs.begin(), inputs.end(), [&](auto i) {
               return i->get_shape() != inputs.front()->get_shape();
           }))
Paul's avatar
Paul committed
372
373
            return;

374
375
        auto op = m.insert_instruction(ins, ins->get_operator(), inputs);
        m.replace_instruction(ins, broadcasts.front()->get_operator(), op);
Paul's avatar
Paul committed
376
377
378
    }
};

379
struct find_concat_op
380
381
382
{
    auto matcher() const
    {
383
        return match::name("concat")(match::any_of[match::inputs()](
384
            match::any_of(match::pointwise(), match::name("broadcast")), match::used_once()));
385
386
    }

387
388
    template <class Iterator>
    static std::vector<std::size_t> get_output_lens(Iterator start, Iterator last, std::size_t axis)
389
    {
390
391
392
        assert(start != last);
        std::size_t dim = 0;
        for(auto ins : range(start, last))
393
        {
394
            dim += ins->get_shape().lens().at(axis);
395
        }
396
397
398
        auto lens  = (*start)->get_shape().lens();
        lens[axis] = dim;
        return lens;
399
400
    }

401
402
403
404
405
    static bool is_valid_op(const operation& op)
    {
        return op.name() == "broadcast" or op.attributes().contains("pointwise");
    }

406
    void apply(module& m, const match::matcher_result& r) const
407
    {
408
409
        auto ins  = r.result;
        auto axis = any_cast<op::concat>(ins->get_operator()).axis;
410

411
412
413
414
415
416
        auto each = [&](auto start, auto last) -> std::vector<instruction_ref> {
            if(std::distance(start, last) < 2)
                return {start, last};
            auto x = *start;
            if(x->inputs().size() > 2 or x->inputs().empty() or x->outputs().size() > 1)
                return {start, last};
417
418
            auto op = x->get_operator();
            if(not is_valid_op(op))
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
                return {start, last};
            auto iaxis = axis;
            // Adjust broadcast lens
            if(op.name() == "broadcast")
            {
                auto b = any_cast<op::broadcast>(op);
                if(b.axis != iaxis)
                    return {start, last};
                b.broadcast_lens = get_output_lens(start, last, iaxis);
                op               = b;
                iaxis            = 0;
            }

            std::vector<instruction_ref> concats;
            for(std::size_t i = 0; i < x->inputs().size(); i++)
            {
                std::vector<instruction_ref> inputs;
                std::transform(start, last, std::back_inserter(inputs), [&](auto j) {
                    return j->inputs().at(i);
                });
439
                auto concat =
440
                    m.insert_instruction(ins, make_op("concat", {{"axis", iaxis}}), inputs);
441
442
                concats.push_back(concat);
            }
443
            auto y = m.insert_instruction(ins, op, concats);
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
            return {y};
        };

        std::vector<instruction_ref> args;
        auto update_args = [&](auto start, auto last) {
            auto x = each(start, last);
            args.insert(args.end(), x.begin(), x.end());
        };
        auto pred = [](auto i, auto j) {
            return i->get_operator() == j->get_operator() and
                   i->inputs().size() == i->inputs().size() and
                   i->outputs().size() == i->outputs().size();
        };
        group_unique(ins->inputs().begin(), ins->inputs().end(), update_args, pred);
        if(args.size() == 1)
459
            m.replace_instruction(ins, args.front());
460
        else
461
            m.replace_instruction(ins, make_op("concat", {{"axis", axis}}), args);
462
463
464
    }
};

465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
void move_instructions_back(module& m, instruction_ref pos, std::vector<instruction_ref> inss)
{
    auto start = range(m.begin(), pos);
    for(auto ins : iterator_for(start))
    {
        auto it = std::find(inss.begin(), inss.end(), ins);
        if(it != inss.end())
            inss.erase(it);
    }
    for(auto ins : inss)
    {
        if(not m.has_instruction(ins))
            continue;
        move_instructions_back(m, pos, ins->inputs());
        m.move_instruction(ins, pos);
    }
}

483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
std::vector<instruction_ref> get_splits(instruction_ref ins)
{
    std::vector<instruction_ref> result;
    std::copy_if(ins->outputs().begin(),
                 ins->outputs().end(),
                 std::back_inserter(result),
                 [&](auto i) { return i->name() == "slice"; });
    if(result.size() < 2)
        return {};
    auto get_slice = [](auto& i) -> auto& { return any_cast<op::slice>(i->get_operator()); };
    auto&& axes    = get_slice(result.front()).axes;
    if(std::any_of(result.begin(), result.end(), [&](auto i) { return get_slice(i).axes != axes; }))
        return {};
    auto get_start = [&](auto& i) -> auto& { return get_slice(i).starts; };
    auto get_end   = [&](auto& i) -> auto& { return get_slice(i).ends; };
    std::sort(
        result.begin(), result.end(), [&](auto x, auto y) { return get_start(x) < get_start(y); });
    if(std::any_of(get_start(result.front()).begin(), get_start(result.front()).end(), [&](auto i) {
           return i != 0;
       }))
        return {};
    auto it = std::adjacent_find(
        result.begin(), result.end(), [&](auto x, auto y) { return get_end(x) != get_start(y); });
    if(it != result.end())
        return {};
    for(std::size_t i = 0; i < axes.size(); i++)
    {
        auto axis = axes[i];
        if(ins->get_shape().lens()[axis] != get_slice(result.back()).ends[i])
            return {};
    }
    return result;
}

struct find_splits
{
    auto matcher() const
    {
521
522
523
        return match::any(
            match::any_of[match::outputs()](match::name("slice")(match::any_of[match::outputs()](
                match::pointwise(match::any_of(match::nargs(1), match::nargs(2))), reduction()))));
524
525
    }

Shucai Xiao's avatar
Shucai Xiao committed
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
    static bool is_dependent(const module& m, instruction_ref ins1, instruction_ref ins2)
    {

        std::unordered_set<instruction_ref> traversed;
        return fix<bool>([&](auto self, auto ins) -> bool {
            if(ins == ins2)
                return true;

            if(contains(traversed, ins))
                return false;

            traversed.insert(ins);
            const auto& inputs = ins->inputs();
            return std::any_of(inputs.begin(), inputs.end(), [&](auto in) {
                return m.has_instruction(in) and self(in);
            });
        })(ins1);
    }

545
    static std::vector<std::vector<instruction_ref>>
Shucai Xiao's avatar
Shucai Xiao committed
546
    get_split_groups(const module& m, const std::vector<instruction_ref>& splits)
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
    {
        std::vector<std::vector<instruction_ref>> groups;
        for(auto out : splits.front()->outputs())
        {
            if(out->name() == "slice")
                continue;
            std::vector<instruction_ref> group;
            for(auto split : splits)
            {
                auto it =
                    std::find_if(split->outputs().begin(), split->outputs().end(), [&](auto i) {
                        return i->get_operator() == out->get_operator();
                    });
                if(it == split->outputs().end())
                    break;
                assert((*it)->name() != "slice");
Shucai Xiao's avatar
Shucai Xiao committed
563

564
                // If there is a duplicate bail
Shucai Xiao's avatar
Shucai Xiao committed
565
566
567
568
569
                // there are should be no dependency between instructions in the group
                if(std::any_of(group.begin(), group.end(), [&](auto i) {
                       return is_dependent(m, *it, i) or is_dependent(m, i, *it);
                   }))
                {
570
                    return {};
Shucai Xiao's avatar
Shucai Xiao committed
571
572
                }

573
574
575
576
577
578
579
580
581
                group.push_back(*it);
            }
            if(group.size() != splits.size())
                continue;
            groups.push_back(group);
        }
        return groups;
    }

Shucai Xiao's avatar
Shucai Xiao committed
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
    bool is_fusable(instruction_ref start, instruction_ref split_front) const
    {
        auto op = start->get_operator();
        if(contains(op.name(), "reduce"))
        {
            auto slc         = any_cast<op::slice>(split_front->get_operator());
            auto slc_axes    = slc.axes;
            auto reduce_axes = start->get_operator().to_value()["axes"].to_vector<int64_t>();
            // axes of slice and reduce op cannot have overlap
            if(std::any_of(slc_axes.begin(), slc_axes.end(), [&](auto axis) {
                   return (std::find(reduce_axes.begin(), reduce_axes.end(), axis) !=
                           reduce_axes.end());
               }))
            {
                return false;
            }
        }
        else if(not op.attributes().contains("pointwise"))
        {
            return false;
        }

        return true;
    }

607
    void apply(module& m, const match::matcher_result& r) const
608
    {
Shucai Xiao's avatar
Shucai Xiao committed
609
        auto ins    = r.result;
610
611
612
        auto splits = get_splits(ins);
        if(splits.empty())
            return;
Shucai Xiao's avatar
Shucai Xiao committed
613

614
        for(const auto& group : get_split_groups(m, splits))
615
        {
Shucai Xiao's avatar
Shucai Xiao committed
616
617
618
619
620
            auto start       = group.front();
            auto split_front = splits.front();
            auto op          = start->get_operator();
            if(not is_fusable(start, split_front))
            {
621
                continue;
Shucai Xiao's avatar
Shucai Xiao committed
622
            }
623
624
625
626
627
628

            // Make sure there is no duplicates
            assert(std::none_of(
                std::next(group.begin()), group.end(), [&](auto i) { return i == start; }));

            auto split_idx    = 0;
629
            instruction_ref c = m.end();
630
631
            if(start->inputs().size() == 1)
            {
632
                c = m.insert_instruction(std::next(ins), op, ins);
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
            }
            else if(start->inputs().size() == 2)
            {
                assert(not std::none_of(start->inputs().begin(), start->inputs().end(), [](auto i) {
                    return i->name() == "slice";
                }) && "one argument must be a split");
                auto data_idx = 1;
                if(start->inputs().back()->name() == "slice")
                {
                    split_idx = 1;
                    data_idx  = 0;
                }

                std::vector<instruction_ref> data_args;
                std::transform(group.begin(),
                               group.end(),
                               std::back_inserter(data_args),
                               [&](auto i) { return i->inputs()[data_idx]; });

                // Data arguments must be a constant
                if(std::any_of(data_args.begin(), data_args.end(), [](auto i) {
                       return not i->can_eval();
                   }))
                    return;

658
                move_instructions_back(m, ins, data_args);
659
660
661
662
663
664
665

                auto slice_op = any_cast<op::slice>(splits.front()->get_operator());
                assert(not slice_op.axes.empty());
                if(slice_op.axes.size() > 1)
                    return;
                auto concat_axis = slice_op.axes.front();
                // TODO: Check if axises match
666
                auto concat = m.insert_instruction(
667
                    ins, make_op("concat", {{"axis", concat_axis}}), data_args);
668
669
670
671
672

                std::vector<instruction_ref> args;
                args.resize(2);
                args[split_idx] = ins;
                args[data_idx]  = concat;
673
                c               = m.insert_instruction(std::next(ins), op, args);
674
            }
675
            if(c != m.end())
676
677
678
679
680
681
            {
                for(auto i : group)
                {
                    auto split = i->inputs()[split_idx];
                    assert(split->name() == "slice");
                    // Insert contiguous for reshapes
682
683
                    auto outputs = i->outputs();
                    for(auto output : outputs)
684
                    {
685
                        if(output->name() != "reshape")
686
                            continue;
687
                        auto x = m.insert_instruction(output, make_op("contiguous"), i);
688
                        m.replace_instruction(output, output->get_operator(), x);
689
690
                    }

691
                    m.replace_instruction(i, split->get_operator(), c);
692
693
694
695
696
697
698
699
700
701
702
703
704
705
                }
            }
        }
    }
};

struct find_split_concat
{
    auto matcher() const
    {
        return match::any(match::any_of[match::outputs()](
            match::name("slice")(match::all_of[match::outputs()](match::name("concat")))));
    }

706
    void apply(module& m, const match::matcher_result& r) const
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
    {
        auto ins = r.result;

        auto splits = get_splits(ins);
        if(splits.empty())
            return;
        if(std::any_of(
               splits.begin(), splits.end(), [](auto i) { return i->outputs().size() != 1; }))
            return;
        // Check for concat operator
        auto concat = splits.front()->outputs().front();
        if(std::any_of(splits.begin(), splits.end(), [&](auto i) {
               return i->outputs().front() != concat;
           }))
            return;
        // Check axis match
        auto concat_op = any_cast<op::concat>(concat->get_operator());
        auto split_op  = any_cast<op::slice>(splits.front()->get_operator());
        if(split_op.axes.size() != 1)
            return;
        if(split_op.axes.front() != concat_op.axis)
            return;
        // Replace args
        auto args = concat->inputs();
        auto it =
            std::find_if(args.begin(), args.end(), [&](auto i) { return i == splits.front(); });
        if(std::distance(it, args.end()) < splits.size())
            return;
735
736
737
738
739
740
741
        // If the slices are not in order then stop
        if(not std::is_sorted(it, it + splits.size(), [](instruction_ref x, instruction_ref y) {
               auto xop = any_cast<op::slice>(x->get_operator());
               auto yop = any_cast<op::slice>(y->get_operator());
               return std::tie(xop.starts, xop.ends) < std::tie(yop.starts, yop.ends);
           }))
            return;
742
743
744
745
        *it = splits.front()->inputs().front();
        args.erase(std::next(it), it + splits.size());

        if(args.size() == 1)
746
            m.replace_instruction(concat, args.front());
747
        else
748
            m.replace_instruction(concat, concat->get_operator(), args);
749
750
751
    }
};

752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
bool axis_equal(const std::vector<std::size_t>& x,
                const std::vector<std::size_t>& y,
                std::size_t axis)
{
    return x.size() == y.size() and x.size() > axis and
           std::equal(x.begin(), x.begin() + axis, y.begin()) and
           std::equal(x.begin() + axis + 1, x.end(), y.begin() + axis + 1);
}

bool axis_shape_equal(const shape& x, const shape& y, std::size_t axis)
{
    // TODO: Check strides
    return axis_equal(x.lens(), y.lens(), axis);
}

struct find_add_convs
{
    auto matcher() const
    {
        return match::name("add")(
            match::args(conv_const_weights().bind("a"), conv_const_weights().bind("b")));
    }

    static bool symmetrical_strides(const op::convolution& op)
    {
        return op.stride[0] == op.stride[1];
    }

    static std::size_t compute_stride_factor(const op::convolution& x, const op::convolution& y)
    {
        if(not symmetrical_strides(x))
            return 0;
        if(not symmetrical_strides(y))
            return 0;
        if((x.stride[0] % y.stride[0]) != 0)
            return 0;
        return x.stride[0] / y.stride[0];
    }

791
    void apply(module& m, const match::matcher_result& r) const
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
    {
        auto ins       = r.result;
        auto a_conv    = r.instructions["a"];
        auto a_input   = a_conv->inputs().at(0);
        auto a_weights = a_conv->inputs().at(1);
        auto b_conv    = r.instructions["b"];
        auto b_input   = b_conv->inputs().at(0);
        auto b_weights = b_conv->inputs().at(1);

        if(not axis_shape_equal(a_weights->get_shape(), b_weights->get_shape(), 1))
            return;

        auto a_op   = any_cast<op::convolution>(a_conv->get_operator());
        auto b_op   = any_cast<op::convolution>(b_conv->get_operator());
        auto new_op = a_op;

        if(a_op != b_op)
        {
            if(std::tie(a_op.padding, a_op.dilation, a_op.group) ==
                   std::tie(b_op.padding, b_op.dilation, b_op.group) and
               a_weights->get_shape().lens()[2] == 1 and a_weights->get_shape().lens()[3] == 1)
            {
                if(a_op.stride < b_op.stride)
                {
                    auto n = compute_stride_factor(b_op, a_op);
                    if(n == 0)
                        return;
                    new_op  = a_op;
820
                    b_input = m.insert_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
821
                        ins, make_op("step", {{"axes", {2, 3}}, {"steps", {n, n}}}), b_input);
822
823
824
825
826
827
828
                }
                else if(b_op.stride < a_op.stride)
                {
                    auto n = compute_stride_factor(a_op, b_op);
                    if(n == 0)
                        return;
                    new_op  = b_op;
829
                    a_input = m.insert_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
830
                        ins, make_op("step", {{"axes", {2, 3}}, {"steps", {n, n}}}), a_input);
831
832
833
834
835
836
837
838
                }
                else
                    return;
            }
            else
                return;
        }

839
        auto concat_input =
840
            m.insert_instruction(ins, make_op("concat", {{"axis", 1}}), a_input, b_input);
841
        auto concat_weights =
842
843
            m.insert_instruction(ins, make_op("concat", {{"axis", 1}}), a_weights, b_weights);
        m.replace_instruction(ins, new_op, concat_input, concat_weights);
844
845
846
    }
};

847
848
849
850
851
852
853
854
855
856
MIGRAPHX_PRED_MATCHER(horiz_conv_dot, instruction_ref ins)
{
    auto pred = [&](auto name) {
        return [=](auto i) {
            return i->name() == name and i->inputs().front() == ins and
                   i->inputs().at(1)->can_eval();
        };
    };
    auto dots  = std::count_if(ins->outputs().begin(), ins->outputs().end(), pred("dot"));
    auto convs = std::count_if(ins->outputs().begin(), ins->outputs().end(), pred("convolution"));
857
    return (dots >= 2 or convs >= 2);
858
859
860
861
862
863
}

struct find_conv_dot_horiz_fusion
{
    auto matcher() const { return horiz_conv_dot(); }

864
    void apply(module& m, const match::matcher_result& r) const
865
866
867
868
869
870
871
872
873
874
875
876
    {
        auto ins = r.result;

        auto pred = [](auto i, auto j) {
            if(i->get_operator() != j->get_operator())
                return false;
            if(not contains({"dot", "convolution"}, i->name()))
                return true;
            auto x = i->inputs()[1]->get_shape().lens();
            auto y = j->inputs()[1]->get_shape().lens();
            if(x.size() != y.size())
                return false;
877
            // Check that non-axes match
878
879
880
881
882
883
884
885
886
887
888
889
890
891
            int axis = 1;
            if(i->name() == "dot")
            {
                axis = x.size() - 1;
            }
            return axis_equal(x, y, axis);
        };

        auto each = [&](auto start, auto last) {
            if(std::distance(start, last) < 2)
                return;
            auto&& name = (*start)->name();
            if(not contains({"dot", "convolution"}, name))
                return;
892
893
894
895
896
897
898
            auto op   = (*start)->get_operator();
            int group = 1;
            if(name == "convolution")
                group = any_cast<op::convolution>(op).group;
            // Skip group convolution
            if(group != 1)
                return;
899
900
901
902
903
904
905
906
907
908
909
910
            auto input = (*start)->inputs().front();
            std::vector<instruction_ref> args;
            std::transform(
                start, last, std::back_inserter(args), [&](auto x) { return x->inputs().at(1); });
            int axis        = 1;
            int concat_axis = 0;
            if(name == "dot")
            {
                axis        = int(args.front()->get_shape().lens().size() - 1);
                concat_axis = axis;
            }

911
            move_instructions_back(m, input, args);
912
            // TODO: Check if axes match
913
            auto concat =
914
915
                m.insert_instruction(input, make_op("concat", {{"axis", concat_axis}}), args);
            auto fused     = m.insert_instruction(std::next(input), op, input, concat);
916
917
918
            int64_t offset = 0;
            for(auto arg : range(start, last))
            {
919
920
921
922
923
924
925
926
927
                auto outputs = arg->outputs();
                for(auto output : outputs)
                {
                    if(output->name() != "reshape")
                        continue;
                    auto x = m.insert_instruction(output, make_op("contiguous"), arg);
                    m.replace_instruction(output, output->get_operator(), x);
                }

928
                int64_t len = arg->get_shape().lens()[axis];
929
                m.replace_instruction(
930
931
932
933
                    arg,
                    make_op("slice",
                            {{"axes", {axis}}, {"starts", {offset}}, {"ends", {offset + len}}}),
                    fused);
934
935
936
937
938
939
940
941
942
                offset += len;
            }
        };

        auto outputs = ins->outputs();
        group_by(outputs.begin(), outputs.end(), each, pred);
    }
};

943
944
945
946
947
948
949
struct find_div_const
{
    auto matcher() const
    {
        return match::name("div")(match::arg(1)(match::is_constant().bind("c")));
    }

950
    void apply(module& m, const match::matcher_result& r) const
951
952
953
954
    {
        auto ins   = r.result;
        auto c_ins = r.instructions["c"];

955
        auto recip = m.insert_instruction(std::next(c_ins), make_op("recip"), c_ins);
956
957
958

        auto args = ins->inputs();

959
        m.replace_instruction(ins, make_op("mul"), args.front(), recip);
960
961
962
    }
};

963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
struct find_unit_ops
{
    auto matcher() const
    {
        auto mul_1 = match::name("mul")(
            match::either_arg(0, 1)(match::has_value(1.0f), match::any().bind("x")));
        auto div_1 =
            match::name("div")(match::args(match::any().bind("x"), match::has_value(1.0f)));
        auto add_0 = match::name("add")(
            match::either_arg(0, 1)(match::has_value(0.0f, 1e-12), match::any().bind("x")));
        auto sub_0 =
            match::name("sub")(match::args(match::any().bind("x"), match::has_value(0.0f)));
        return match::any_of(mul_1, div_1, add_0, sub_0);
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins  = r.result;
        auto c_in = r.instructions["x"];

        m.replace_instruction(ins, c_in);
    }
};

struct find_neg_unit_ops
{
    auto matcher() const
    {
        auto mul_neg_1 = match::name("mul")(
            match::either_arg(0, 1)(match::has_value(-1.0f), match::any().bind("x")));
        auto div_neg_1 =
            match::name("div")(match::args(match::any().bind("x"), match::has_value(-1.0f)));
        auto sub_0 =
            match::name("sub")(match::args(match::has_value(0.0f), match::any().bind("x")));
        return match::any_of(mul_neg_1, div_neg_1, sub_0);
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins  = r.result;
        auto c_in = r.instructions["x"];

        auto neg = m.add_instruction(make_op("neg"), c_in);
        m.replace_instruction(ins, neg);
    }
};

struct find_zero_ops
{
    auto matcher() const
    {
        auto mul_zero = match::name("mul")(
            match::either_arg(0, 1)(match::has_value(0.0f).bind("x"), match::any()));
        auto div_zero =
            match::name("div")(match::args(match::has_value(0.0f).bind("x"), match::any()));
        return match::any_of(mul_zero, div_zero);
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins      = r.result;
        auto zero_ins = r.instructions["x"];

        m.replace_instruction(ins, zero_ins);
    }
};

1030
1031
1032
1033
1034
1035
1036
struct find_sub_const
{
    auto matcher() const
    {
        return match::name("sub")(match::arg(1)(match::is_constant().bind("c")));
    }

1037
    void apply(module& m, const match::matcher_result& r) const
1038
1039
1040
1041
    {
        auto ins   = r.result;
        auto c_ins = r.instructions["c"];

1042
        auto neg = m.insert_instruction(std::next(c_ins), make_op("neg"), c_ins);
1043
1044
1045

        auto args = ins->inputs();

1046
        m.replace_instruction(ins, make_op("add"), args.front(), neg);
1047
1048
1049
    }
};

kahmed10's avatar
kahmed10 committed
1050
1051
1052
1053
1054
1055
1056
1057
struct find_rsqrt
{
    auto matcher() const
    {
        return match::name("recip")(match::args(
            match::name("sqrt")(match::used_once(), match::args(match::any().bind("x")))));
    }

1058
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
1059
1060
1061
1062
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];

1063
        m.replace_instruction(ins, make_op("rsqrt"), x_ins);
kahmed10's avatar
kahmed10 committed
1064
1065
1066
    }
};

1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
static bool same_ops(const std::vector<instruction_ref>& vec_ins)
{
    return std::all_of(vec_ins.begin(), vec_ins.end(), [&](auto i) {
        return i->get_operator() == vec_ins.front()->get_operator();
    });
}

struct find_split_reshape
{
    auto matcher() const
    {
        return match::name("reshape")(match::arg(0)(match::name("contiguous")(
                                          match::arg(0)(match::name("slice").bind("slice")))))
            .bind("reshape");
    }

1083
    void apply(module& m, const match::matcher_result& r) const
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
    {
        auto slc = r.instructions["slice"];
        auto rsp = r.instructions["reshape"];

        auto input         = slc->inputs().front();
        auto split_outputs = get_splits(input);
        if(split_outputs.empty())
        {
            return;
        }

        std::vector<instruction_ref> vec_rsp(split_outputs.size());
        std::transform(split_outputs.begin(), split_outputs.end(), vec_rsp.begin(), [](auto i) {
            assert(i->outputs().size() == 1);
            auto cont = i->outputs().front();
            assert(cont->outputs().size() == 1);
            return cont->outputs().front();
        });

        // all outputs are reshape and of the same shape
        auto dims = any_cast<op::reshape>(rsp->get_operator()).dims;
1105
        if(not same_ops(vec_rsp))
1106
1107
1108
1109
1110
        {
            return;
        }

        // ensure reshape happens after the axis dimension
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
        auto axis         = any_cast<op::slice>(slc->get_operator()).axes[0];
        auto slc_lens     = slc->get_shape().lens();
        auto slc_dim_size = std::accumulate(
            slc_lens.begin() + axis, slc_lens.end(), 1, std::multiplies<std::size_t>());

        // search the reshape output (standard shape) to decide which axis are
        // in its output corresponding to the slc_dim_size
        auto rsp_lens    = rsp->get_shape().lens();
        auto rsp_strides = rsp->get_shape().strides();
        rsp_strides.insert(rsp_strides.begin(), rsp_strides[0] * rsp_lens[0]);
1121
1122
1123

        auto ait     = std::find(rsp_strides.begin(), rsp_strides.end(), slc_dim_size);
        int rsp_axis = -1;
1124
        if(ait == rsp_strides.end())
1125
1126
1127
        {
            return;
        }
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
        else if(ait == rsp_strides.end() - 1)
        {
            // edge case
            // slice_dim == 1, in that case it could match with last stride of 1.
            // it should accumulate lengths from last dim in that case. discount 1 to avoid going
            // out of bounds.
            assert(slc_dim_size == 1);
            rsp_axis = std::distance(rsp_strides.begin(), ait) - 1;
        }
        else
        {
            rsp_axis = std::distance(rsp_strides.begin(), ait);
        }
1141
        // calculate reshape output shape
1142
        std::vector<int64_t> vec_dims(vec_rsp.size());
1143

1144
1145
1146
1147
1148
        std::transform(vec_rsp.begin(), vec_rsp.end(), vec_dims.begin(), [&](auto is) {
            return is->get_shape().lens()[rsp_axis];
        });

        std::vector<int64_t> rsp_out_lens(rsp_lens.begin(), rsp_lens.end());
1149

1150
        rsp_out_lens[rsp_axis] = std::accumulate(vec_dims.begin(), vec_dims.end(), std::int64_t{0});
1151

1152
1153
1154
1155
1156
        // insert the reshape instruction and add contiguous if needed
        if(not input->get_shape().standard())
        {
            input = m.insert_instruction(std::next(input), make_op("contiguous"), input);
        }
1157
        auto rsp_ins = m.insert_instruction(
1158
            std::next(input), make_op("reshape", {{"dims", rsp_out_lens}}), input);
1159
1160

        // replace the original reshape with slice
1161
1162
        int64_t start = 0;
        for(std::size_t i = 0; i < vec_rsp.size(); ++i)
1163
        {
1164
            m.replace_instruction(
1165
1166
1167
1168
1169
                vec_rsp[i],
                make_op(
                    "slice",
                    {{"axes", {rsp_axis}}, {"starts", {start}}, {"ends", {start + vec_dims[i]}}}),
                rsp_ins);
1170
            start += vec_dims[i];
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
        }
    }
};

struct find_split_transpose
{
    auto matcher() const
    {
        return match::name("transpose")(match::arg(0)(match::name("slice").bind("slice")))
            .bind("trans");
    }

1183
    void apply(module& m, const match::matcher_result& r) const
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
    {
        auto slc   = r.instructions["slice"];
        auto trans = r.instructions["trans"];

        auto input         = slc->inputs().front();
        auto split_outputs = get_splits(input);
        if(split_outputs.empty())
        {
            return;
        }

        std::vector<instruction_ref> vec_trans(split_outputs.size());
        std::transform(split_outputs.begin(), split_outputs.end(), vec_trans.begin(), [](auto i) {
            assert(i->outputs().size() == 1);
            return i->outputs().front();
        });

        // all transpose are the same
        auto perm = any_cast<op::transpose>(trans->get_operator()).dims;
1203
        if(not same_ops(vec_trans))
1204
1205
1206
1207
1208
        {
            return;
        }

        // insert an transpose instruction
1209
        auto tr = m.insert_instruction(
1210
            std::next(input), make_op("transpose", {{"permutation", perm}}), input);
1211
1212
1213
1214
1215

        // compute the axis in the slice
        auto axis = any_cast<op::slice>(slc->get_operator()).axes.front();
        auto it   = std::find(perm.begin(), perm.end(), axis);
        assert(it != perm.end());
Paul Fultz II's avatar
Paul Fultz II committed
1216
        int64_t axis_new = std::distance(perm.begin(), it);
1217
1218
1219
1220
1221
1222
1223

        for(auto in : split_outputs)
        {
            auto oper    = any_cast<op::slice>(in->get_operator());
            auto starts  = oper.starts;
            auto ends    = oper.ends;
            auto tr_orig = in->outputs().front();
1224
            m.replace_instruction(
1225
1226
1227
                tr_orig,
                make_op("slice", {{"axes", {axis_new}}, {"starts", starts}, {"ends", ends}}),
                tr);
1228
1229
1230
1231
        }
    }
};

1232
void simplify_algebra::apply(module& m) const
Paul's avatar
Paul committed
1233
{
Paul's avatar
Paul committed
1234
    // Run simplifications multiple times
1235
    for(int i = 0; i < 8; i++)
Paul's avatar
Paul committed
1236
    {
1237
        match::find_matches(m,
Paul's avatar
Paul committed
1238
                            find_inner_broadcast{},
Paul's avatar
Paul committed
1239
1240
                            find_double_add_lit_broadcast{},
                            find_add_lit_broadcast{},
1241
                            find_add_convs{},
1242
                            find_conv_dot_horiz_fusion{},
Paul's avatar
Paul committed
1243
                            find_mul_conv{},
1244
                            find_mul_slice_conv{},
1245
                            find_mul_add{},
1246
1247
1248
                            find_unit_ops{},
                            find_neg_unit_ops{},
                            find_zero_ops{},
1249
                            find_dot_add{},
Paul's avatar
Paul committed
1250
                            find_conv_add{},
1251
1252
                            find_div_const{},
                            find_sub_const{},
kahmed10's avatar
kahmed10 committed
1253
                            find_rsqrt{},
1254
                            find_concat_op{},
1255
                            find_split_concat{},
1256
1257
1258
                            find_splits{},
                            find_split_reshape{},
                            find_split_transpose{});
1259
        dead_code_elimination{}.apply(m);
Paul's avatar
Paul committed
1260
    }
Paul's avatar
Paul committed
1261
}
Paul's avatar
Paul committed
1262

Paul's avatar
Paul committed
1263
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1264
} // namespace migraphx