accuracy_checker.py 11.7 KB
Newer Older
kahmed10's avatar
kahmed10 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
#####################################################################################
# The MIT License (MIT)
#
# Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#####################################################################################
import argparse
import numpy as np
import migraphx
import onnxruntime as ort
28
import sys
kahmed10's avatar
kahmed10 committed
29
30
31
32
33
34
35
36


def parse_args():
    parser = argparse.ArgumentParser(
        description=
        'MIGraphX accuracy checker. Use to verify onnx files to ensure MIGraphX\'s output \
                                                  is within tolerance of onnx runtime\'s expected output.'
    )
37
38
39
40
41
42
43
    file_args = parser.add_argument_group(title='file type arguments')
    file_args.add_argument('--onnx', type=str, help='path to onnx file')
    file_args.add_argument('--tf', type=str, help='path to tf pb file')
    parser.add_argument('--provider',
                        type=str,
                        default='CPUExecutionProvider',
                        help='execution provider for onnx runtime \
kahmed10's avatar
kahmed10 committed
44
45
46
47
48
49
50
51
                                (default = CPUExecutionProvider)')
    parser.add_argument('--batch',
                        type=int,
                        default=1,
                        help='batch size (if specified in onnx file)')
    parser.add_argument('--fill1',
                        action='store_true',
                        help='fill all arguments with a value of 1')
52
53
54
    parser.add_argument('--fill0',
                        action='store_true',
                        help='fill all arguments with a value of 0')
umangyadav's avatar
umangyadav committed
55
56
57
58
59
60
61
62
    parser.add_argument('--numpy',
                        action='append',
                        help='fill argument with numpy saved array',
                        type=str)
    parser.add_argument('--np_path',
                        action='append',
                        help='Path for the saved numpy array',
                        type=str)
kahmed10's avatar
kahmed10 committed
63
64
65
66
67
68
69
    parser.add_argument('--verbose',
                        action='store_true',
                        help='show verbose information (for debugging)')
    parser.add_argument('--tolerance',
                        type=float,
                        default=1e-3,
                        help='accuracy tolerance (default = 1e-3)')
70
71
72
73
    parser.add_argument('--input-dim',
                        type=str,
                        action='append',
                        help='specify input parameter dimension \
74
                                with the following format --input-dim input_name:dim0,dim1,dim2...'
75
                        )
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
    parser.add_argument('--target',
                        type=str,
                        default='gpu',
                        help='target to compile and run MIGraphX on')

    parser.add_argument('--ort-run',
                        dest="ort_run",
                        action='store_true',
                        default=False,
                        help='only perform an onnxruntime run')

    parser.add_argument('--ort-logging',
                        dest="ort_logging",
                        action='store_true',
                        default=False,
                        help='Turn on ort VERBOSE logging via session options')
umangyadav's avatar
umangyadav committed
92
93
94
95
96
97
    parser.add_argument(
        '--save-ort-res',
        dest="save_ort",
        type=str,
        help=
        'Save output of ORT as numpy array at path provided by this argument')
kahmed10's avatar
kahmed10 committed
98
    args = parser.parse_args()
99
    if args.verbose:
umangyadav's avatar
umangyadav committed
100
        print(f"Tolerance is set at {args.tolerance}")
kahmed10's avatar
kahmed10 committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
    return args


# taken from ../test_runner.py
def check_correctness(gold_outputs,
                      outputs,
                      rtol=1e-3,
                      atol=1e-3,
                      verbose=False):
    if len(gold_outputs) != len(outputs):
        print('Number of outputs {} is not equal to expected number {}'.format(
            len(outputs), len(gold_outputs)))
        return False

    out_num = len(gold_outputs)
    ret = True
    for i in range(out_num):
        if not np.allclose(gold_outputs[i], outputs[i], rtol, atol):
119
120
121
122
123
124
125
126
127
            failed_idx = ~np.isclose(gold_outputs[i], outputs[i], rtol, atol)
            if verbose:
                print("Shape of Failed elements{} :\n".format(
                    gold_outputs[i][failed_idx].shape))
                print("Expected :\n{}".format(
                    gold_outputs[i][failed_idx].tolist()[0:400:5]))
                print('......')
                print("Actual \n{}".format(
                    outputs[i][failed_idx].tolist()[0:400:5]))
kahmed10's avatar
kahmed10 committed
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
            ret = False
            if verbose:
                print('\nOutput {} is incorrect ...'.format(i))
                print('Expected value: \n{}'.format(gold_outputs[i]))
                print('......')
                print('Actual value: \n{}\n'.format(outputs[i]))
            else:
                print('Outputs do not match')
                break

    return ret


def get_np_datatype(in_type):
    datatypes = {
        'double_type': np.float64,
        'float_type': np.float32,
        'half_type': np.half,
        'int64_type': np.int64,
        'uint64_type': np.uint64,
        'int32_type': np.int32,
        'uint32_type': np.uint32,
        'int16_type': np.int16,
        'uint16_type': np.uint16,
        'int8_type': np.int8,
        'uint8_type': np.uint8,
154
        'bool_type': bool
kahmed10's avatar
kahmed10 committed
155
156
157
158
159
160
161
    }
    return datatypes[in_type]


def main():
    args = parse_args()

162
163
164
165
166
167
168
    use_onnx = True
    if args.onnx == None:
        use_onnx = False
    if not use_onnx and args.tf == None:
        print('Error: please specify either an onnx or tf pb file')
        sys.exit(-1)

kahmed10's avatar
kahmed10 committed
169
    model_name = args.onnx
170

kahmed10's avatar
kahmed10 committed
171
172
    batch = args.batch

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
    custom_inputs = args.input_dim

    input_dims = {}
    if custom_inputs != None:
        for input in custom_inputs:
            input_dim = ''.join(input.split(':')[:-1])
            dims = [int(dim) for dim in input.split(':')[-1].split(',')]
            input_dims[input_dim] = dims

    if use_onnx:
        if not input_dims:
            model = migraphx.parse_onnx(model_name, default_dim_value=batch)
        else:
            model = migraphx.parse_onnx(model_name,
                                        default_dim_value=batch,
                                        map_input_dims=input_dims)
    else:
        model_name = args.tf

        if not input_dims:
            model = migraphx.parse_tf(model_name, batch_size=batch)
        else:
            model = migraphx.parse_tf(model_name,
                                      batch_size=batch,
                                      map_input_dims=input_dims)
kahmed10's avatar
kahmed10 committed
198

199
200
201
    if args.verbose:
        print(model)

202
203
    if not args.ort_run:
        model.compile(migraphx.get_target(args.target))
kahmed10's avatar
kahmed10 committed
204
205
206
207
208

    params = {}
    test_inputs = {}
    for name, shape in model.get_parameter_shapes().items():
        if args.verbose:
209
            print(f'Parameter {name} -> {shape}')
kahmed10's avatar
kahmed10 committed
210
211
        in_shape = shape.lens()
        in_type = shape.type_string()
212
213
214
        if name in args.numpy:
            in_path = args.np_path[args.numpy.index(name)]
            if args.verbose:
umangyadav's avatar
umangyadav committed
215
                print(
umangyadav's avatar
umangyadav committed
216
                    f"Loading numpy array for input name : {name}, from path : {in_path}"
umangyadav's avatar
umangyadav committed
217
                )
218
219
            test_input = np.load(in_path).astype(get_np_datatype(in_type))
        elif not args.fill1 and not args.fill0:
kahmed10's avatar
kahmed10 committed
220
221
            test_input = np.random.rand(*(in_shape)).astype(
                get_np_datatype(in_type))
222
        elif not args.fill0:
kahmed10's avatar
kahmed10 committed
223
            test_input = np.ones(in_shape).astype(get_np_datatype(in_type))
224
225
        else:
            test_input = np.zeros(in_shape).astype(get_np_datatype(in_type))
kahmed10's avatar
kahmed10 committed
226
        test_inputs[name] = test_input
227
228
        params[name] = migraphx.argument(test_input)

229
230
    if not args.ort_run:
        pred_migx = np.array(model.run(params)[-1])
kahmed10's avatar
kahmed10 committed
231

232
    if use_onnx:
233
234
235
236
237
238
239
240
241
        sess_op = ort.SessionOptions()

        if args.ort_logging:
            sess_op.log_verbosity_level = 0
            sess_op.log_severity_level = 0

        sess = ort.InferenceSession(model_name,
                                    sess_options=sess_op,
                                    providers=[args.provider])
kahmed10's avatar
kahmed10 committed
242

243
244
245
246
247
248
        ort_params = {}
        for input in sess.get_inputs():
            ort_params[input.name] = test_inputs[input.name]

        try:
            pred_fw = sess.run(None, ort_params)[-1]
umangyadav's avatar
umangyadav committed
249
            if (args.save_ort):
250
                if args.verbose:
umangyadav's avatar
umangyadav committed
251
                    print(
umangyadav's avatar
umangyadav committed
252
                        f"saving ORT result as numpy array at location : {args.save_ort}"
umangyadav's avatar
umangyadav committed
253
                    )
254
                np.save(args.save_ort, pred_fw)
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
        except Exception as e:
            if any(input_dims):
                print(
                    'Error: custom input dim may not be compatible with onnx runtime'
                )
            raise e
    else:
        import tensorflow as tf

        def load_tf_graph(model_name):
            with tf.io.gfile.GFile(model_name, 'rb') as f:
                graph_def = tf.compat.v1.GraphDef()
                graph_def.ParseFromString(f.read())

            with tf.compat.v1.Graph().as_default() as graph:
                tf.graph_util.import_graph_def(graph_def)
            return graph

        graph = load_tf_graph(model_name)
        is_nhwc = False
        graph_ops = []
        for op in graph.get_operations():
            graph_ops.append(op.name)
            if 'Conv' in op.node_def.op:
                if 'NHWC' in op.get_attr('data_format').decode('utf-8'):
                    is_nhwc = True
        graph_ops_set = set(graph_ops)
        tf_dict = {}

        for name in test_inputs.keys():
            # graph.get_operations() adds 'import/' to the op name
            tf_name = f'import/{name}'
            if tf_name not in graph_ops_set:
                continue
            x = graph.get_tensor_by_name(f'{tf_name}:0')
            tf_input = test_inputs[name]
            # transpose input for NHWC model
            if tf_input.ndim == 4 and is_nhwc:
                tf_dict[x] = np.transpose(tf_input, (0, 2, 3, 1))
            else:
                tf_dict[x] = tf_input
kahmed10's avatar
kahmed10 committed
296

297
298
299
        # assume last node in graph is output
        # TODO: let user specify op name for output
        y = graph.get_tensor_by_name(f'{graph_ops[-1]}:0')
kahmed10's avatar
kahmed10 committed
300

301
302
303
        with tf.compat.v1.Session(graph=graph) as sess:
            y_out = sess.run(y, feed_dict=tf_dict)
            pred_fw = y_out
kahmed10's avatar
kahmed10 committed
304

305
306
307
308
309
310
311
312
313
    if not args.ort_run:
        is_correct = check_correctness(pred_fw, pred_migx, args.tolerance,
                                       args.tolerance, args.verbose)
        verbose_string = ' Rerun with --verbose for detailed information.' \
                if not args.verbose else ''
        if is_correct:
            print('PASSED: MIGraphX meets tolerance')
        else:
            print('FAILED: MIGraphX is not within tolerance.' + verbose_string)
kahmed10's avatar
kahmed10 committed
314
315
316
317


if __name__ == '__main__':
    main()