accuracy_checker.py 10.9 KB
Newer Older
kahmed10's avatar
kahmed10 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
#####################################################################################
# The MIT License (MIT)
#
# Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#####################################################################################
import argparse
import numpy as np
import migraphx
import onnxruntime as ort
28
import sys
kahmed10's avatar
kahmed10 committed
29
30
31
32
33
34
35
36


def parse_args():
    parser = argparse.ArgumentParser(
        description=
        'MIGraphX accuracy checker. Use to verify onnx files to ensure MIGraphX\'s output \
                                                  is within tolerance of onnx runtime\'s expected output.'
    )
37
38
39
40
41
42
43
    file_args = parser.add_argument_group(title='file type arguments')
    file_args.add_argument('--onnx', type=str, help='path to onnx file')
    file_args.add_argument('--tf', type=str, help='path to tf pb file')
    parser.add_argument('--provider',
                        type=str,
                        default='CPUExecutionProvider',
                        help='execution provider for onnx runtime \
kahmed10's avatar
kahmed10 committed
44
45
46
47
48
49
50
51
                                (default = CPUExecutionProvider)')
    parser.add_argument('--batch',
                        type=int,
                        default=1,
                        help='batch size (if specified in onnx file)')
    parser.add_argument('--fill1',
                        action='store_true',
                        help='fill all arguments with a value of 1')
52
53
54
    parser.add_argument('--fill0',
                        action='store_true',
                        help='fill all arguments with a value of 0')
55
56
    parser.add_argument('--numpy', action='append', help='fill argument with numpy saved array', type=str)
    parser.add_argument('--np_path', action='append', help='Path for the saved numpy array', type=str)
kahmed10's avatar
kahmed10 committed
57
58
59
60
61
62
63
    parser.add_argument('--verbose',
                        action='store_true',
                        help='show verbose information (for debugging)')
    parser.add_argument('--tolerance',
                        type=float,
                        default=1e-3,
                        help='accuracy tolerance (default = 1e-3)')
64
65
66
67
    parser.add_argument('--input-dim',
                        type=str,
                        action='append',
                        help='specify input parameter dimension \
68
                                with the following format --input-dim input_name:dim0,dim1,dim2...'
69
                        )
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
    parser.add_argument('--target',
                        type=str,
                        default='gpu',
                        help='target to compile and run MIGraphX on')

    parser.add_argument('--ort-run',
                        dest="ort_run",
                        action='store_true',
                        default=False,
                        help='only perform an onnxruntime run')

    parser.add_argument('--ort-logging',
                        dest="ort_logging",
                        action='store_true',
                        default=False,
                        help='Turn on ort VERBOSE logging via session options')
86
    parser.add_argument('--save-ort-res', dest="save_ort", type=str, help='Save output of ORT as numpy array at path provided by this argument')
kahmed10's avatar
kahmed10 committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
    args = parser.parse_args()

    return args


# taken from ../test_runner.py
def check_correctness(gold_outputs,
                      outputs,
                      rtol=1e-3,
                      atol=1e-3,
                      verbose=False):
    if len(gold_outputs) != len(outputs):
        print('Number of outputs {} is not equal to expected number {}'.format(
            len(outputs), len(gold_outputs)))
        return False

    out_num = len(gold_outputs)
    ret = True
    for i in range(out_num):
        if not np.allclose(gold_outputs[i], outputs[i], rtol, atol):
            ret = False
            if verbose:
                print('\nOutput {} is incorrect ...'.format(i))
                print('Expected value: \n{}'.format(gold_outputs[i]))
                print('......')
                print('Actual value: \n{}\n'.format(outputs[i]))
            else:
                print('Outputs do not match')
                break

    return ret


def get_np_datatype(in_type):
    datatypes = {
        'double_type': np.float64,
        'float_type': np.float32,
        'half_type': np.half,
        'int64_type': np.int64,
        'uint64_type': np.uint64,
        'int32_type': np.int32,
        'uint32_type': np.uint32,
        'int16_type': np.int16,
        'uint16_type': np.uint16,
        'int8_type': np.int8,
        'uint8_type': np.uint8,
133
        'bool_type': bool
kahmed10's avatar
kahmed10 committed
134
135
136
137
138
139
140
    }
    return datatypes[in_type]


def main():
    args = parse_args()

141
142
143
144
145
146
147
    use_onnx = True
    if args.onnx == None:
        use_onnx = False
    if not use_onnx and args.tf == None:
        print('Error: please specify either an onnx or tf pb file')
        sys.exit(-1)

kahmed10's avatar
kahmed10 committed
148
    model_name = args.onnx
149

kahmed10's avatar
kahmed10 committed
150
151
    batch = args.batch

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
    custom_inputs = args.input_dim

    input_dims = {}
    if custom_inputs != None:
        for input in custom_inputs:
            input_dim = ''.join(input.split(':')[:-1])
            dims = [int(dim) for dim in input.split(':')[-1].split(',')]
            input_dims[input_dim] = dims

    if use_onnx:
        if not input_dims:
            model = migraphx.parse_onnx(model_name, default_dim_value=batch)
        else:
            model = migraphx.parse_onnx(model_name,
                                        default_dim_value=batch,
                                        map_input_dims=input_dims)
    else:
        model_name = args.tf

        if not input_dims:
            model = migraphx.parse_tf(model_name, batch_size=batch)
        else:
            model = migraphx.parse_tf(model_name,
                                      batch_size=batch,
                                      map_input_dims=input_dims)
kahmed10's avatar
kahmed10 committed
177

178
179
180
    if args.verbose:
        print(model)

181
182
    if not args.ort_run:
        model.compile(migraphx.get_target(args.target))
kahmed10's avatar
kahmed10 committed
183
184
185
186
187

    params = {}
    test_inputs = {}
    for name, shape in model.get_parameter_shapes().items():
        if args.verbose:
188
            print(f'Parameter {name} -> {shape}')
kahmed10's avatar
kahmed10 committed
189
190
        in_shape = shape.lens()
        in_type = shape.type_string()
191
192
193
194
195
196
        if name in args.numpy:
            in_path = args.np_path[args.numpy.index(name)]
            if args.verbose:
                print("Loading numpy array for input name : {name}, from path : {in_path}")
            test_input = np.load(in_path).astype(get_np_datatype(in_type))
        elif not args.fill1 and not args.fill0:
kahmed10's avatar
kahmed10 committed
197
198
            test_input = np.random.rand(*(in_shape)).astype(
                get_np_datatype(in_type))
199
        elif not args.fill0:
kahmed10's avatar
kahmed10 committed
200
            test_input = np.ones(in_shape).astype(get_np_datatype(in_type))
201
202
        else:
            test_input = np.zeros(in_shape).astype(get_np_datatype(in_type))
kahmed10's avatar
kahmed10 committed
203
        test_inputs[name] = test_input
204
205
        params[name] = migraphx.argument(test_input)

206
207
    if not args.ort_run:
        pred_migx = np.array(model.run(params)[-1])
kahmed10's avatar
kahmed10 committed
208

209
    if use_onnx:
210
211
212
213
214
215
216
217
218
        sess_op = ort.SessionOptions()

        if args.ort_logging:
            sess_op.log_verbosity_level = 0
            sess_op.log_severity_level = 0

        sess = ort.InferenceSession(model_name,
                                    sess_options=sess_op,
                                    providers=[args.provider])
kahmed10's avatar
kahmed10 committed
219

220
221
222
223
224
225
        ort_params = {}
        for input in sess.get_inputs():
            ort_params[input.name] = test_inputs[input.name]

        try:
            pred_fw = sess.run(None, ort_params)[-1]
226
227
228
229
            if(args.save_ort): 
                if args.verbose:
                    print("saving ORT result as numpy array at location : {args.save_ort}")
                np.save(args.save_ort, pred_fw)
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
        except Exception as e:
            if any(input_dims):
                print(
                    'Error: custom input dim may not be compatible with onnx runtime'
                )
            raise e
    else:
        import tensorflow as tf

        def load_tf_graph(model_name):
            with tf.io.gfile.GFile(model_name, 'rb') as f:
                graph_def = tf.compat.v1.GraphDef()
                graph_def.ParseFromString(f.read())

            with tf.compat.v1.Graph().as_default() as graph:
                tf.graph_util.import_graph_def(graph_def)
            return graph

        graph = load_tf_graph(model_name)
        is_nhwc = False
        graph_ops = []
        for op in graph.get_operations():
            graph_ops.append(op.name)
            if 'Conv' in op.node_def.op:
                if 'NHWC' in op.get_attr('data_format').decode('utf-8'):
                    is_nhwc = True
        graph_ops_set = set(graph_ops)
        tf_dict = {}

        for name in test_inputs.keys():
            # graph.get_operations() adds 'import/' to the op name
            tf_name = f'import/{name}'
            if tf_name not in graph_ops_set:
                continue
            x = graph.get_tensor_by_name(f'{tf_name}:0')
            tf_input = test_inputs[name]
            # transpose input for NHWC model
            if tf_input.ndim == 4 and is_nhwc:
                tf_dict[x] = np.transpose(tf_input, (0, 2, 3, 1))
            else:
                tf_dict[x] = tf_input
kahmed10's avatar
kahmed10 committed
271

272
273
274
        # assume last node in graph is output
        # TODO: let user specify op name for output
        y = graph.get_tensor_by_name(f'{graph_ops[-1]}:0')
kahmed10's avatar
kahmed10 committed
275

276
277
278
        with tf.compat.v1.Session(graph=graph) as sess:
            y_out = sess.run(y, feed_dict=tf_dict)
            pred_fw = y_out
kahmed10's avatar
kahmed10 committed
279

280
281
282
283
284
285
286
287
288
    if not args.ort_run:
        is_correct = check_correctness(pred_fw, pred_migx, args.tolerance,
                                       args.tolerance, args.verbose)
        verbose_string = ' Rerun with --verbose for detailed information.' \
                if not args.verbose else ''
        if is_correct:
            print('PASSED: MIGraphX meets tolerance')
        else:
            print('FAILED: MIGraphX is not within tolerance.' + verbose_string)
kahmed10's avatar
kahmed10 committed
289
290
291
292


if __name__ == '__main__':
    main()