accuracy_checker.py 11.2 KB
Newer Older
kahmed10's avatar
kahmed10 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
#####################################################################################
# The MIT License (MIT)
#
# Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#####################################################################################
import argparse
import numpy as np
import migraphx
import onnxruntime as ort
28
import sys
kahmed10's avatar
kahmed10 committed
29
30
31
32
33
34
35
36


def parse_args():
    parser = argparse.ArgumentParser(
        description=
        'MIGraphX accuracy checker. Use to verify onnx files to ensure MIGraphX\'s output \
                                                  is within tolerance of onnx runtime\'s expected output.'
    )
37
38
39
40
41
42
43
    file_args = parser.add_argument_group(title='file type arguments')
    file_args.add_argument('--onnx', type=str, help='path to onnx file')
    file_args.add_argument('--tf', type=str, help='path to tf pb file')
    parser.add_argument('--provider',
                        type=str,
                        default='CPUExecutionProvider',
                        help='execution provider for onnx runtime \
kahmed10's avatar
kahmed10 committed
44
45
46
47
48
49
50
51
                                (default = CPUExecutionProvider)')
    parser.add_argument('--batch',
                        type=int,
                        default=1,
                        help='batch size (if specified in onnx file)')
    parser.add_argument('--fill1',
                        action='store_true',
                        help='fill all arguments with a value of 1')
52
53
54
    parser.add_argument('--fill0',
                        action='store_true',
                        help='fill all arguments with a value of 0')
umangyadav's avatar
umangyadav committed
55
56
57
58
59
60
61
62
    parser.add_argument('--numpy',
                        action='append',
                        help='fill argument with numpy saved array',
                        type=str)
    parser.add_argument('--np_path',
                        action='append',
                        help='Path for the saved numpy array',
                        type=str)
kahmed10's avatar
kahmed10 committed
63
64
65
66
67
68
69
    parser.add_argument('--verbose',
                        action='store_true',
                        help='show verbose information (for debugging)')
    parser.add_argument('--tolerance',
                        type=float,
                        default=1e-3,
                        help='accuracy tolerance (default = 1e-3)')
70
71
72
73
    parser.add_argument('--input-dim',
                        type=str,
                        action='append',
                        help='specify input parameter dimension \
74
                                with the following format --input-dim input_name:dim0,dim1,dim2...'
75
                        )
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
    parser.add_argument('--target',
                        type=str,
                        default='gpu',
                        help='target to compile and run MIGraphX on')

    parser.add_argument('--ort-run',
                        dest="ort_run",
                        action='store_true',
                        default=False,
                        help='only perform an onnxruntime run')

    parser.add_argument('--ort-logging',
                        dest="ort_logging",
                        action='store_true',
                        default=False,
                        help='Turn on ort VERBOSE logging via session options')
umangyadav's avatar
umangyadav committed
92
93
94
95
96
97
    parser.add_argument(
        '--save-ort-res',
        dest="save_ort",
        type=str,
        help=
        'Save output of ORT as numpy array at path provided by this argument')
kahmed10's avatar
kahmed10 committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
    args = parser.parse_args()

    return args


# taken from ../test_runner.py
def check_correctness(gold_outputs,
                      outputs,
                      rtol=1e-3,
                      atol=1e-3,
                      verbose=False):
    if len(gold_outputs) != len(outputs):
        print('Number of outputs {} is not equal to expected number {}'.format(
            len(outputs), len(gold_outputs)))
        return False

    out_num = len(gold_outputs)
    ret = True
    for i in range(out_num):
        if not np.allclose(gold_outputs[i], outputs[i], rtol, atol):
            ret = False
            if verbose:
                print('\nOutput {} is incorrect ...'.format(i))
                print('Expected value: \n{}'.format(gold_outputs[i]))
                print('......')
                print('Actual value: \n{}\n'.format(outputs[i]))
            else:
                print('Outputs do not match')
                break

    return ret


def get_np_datatype(in_type):
    datatypes = {
        'double_type': np.float64,
        'float_type': np.float32,
        'half_type': np.half,
        'int64_type': np.int64,
        'uint64_type': np.uint64,
        'int32_type': np.int32,
        'uint32_type': np.uint32,
        'int16_type': np.int16,
        'uint16_type': np.uint16,
        'int8_type': np.int8,
        'uint8_type': np.uint8,
144
        'bool_type': bool
kahmed10's avatar
kahmed10 committed
145
146
147
148
149
150
151
    }
    return datatypes[in_type]


def main():
    args = parse_args()

152
153
154
155
156
157
158
    use_onnx = True
    if args.onnx == None:
        use_onnx = False
    if not use_onnx and args.tf == None:
        print('Error: please specify either an onnx or tf pb file')
        sys.exit(-1)

kahmed10's avatar
kahmed10 committed
159
    model_name = args.onnx
160

kahmed10's avatar
kahmed10 committed
161
162
    batch = args.batch

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
    custom_inputs = args.input_dim

    input_dims = {}
    if custom_inputs != None:
        for input in custom_inputs:
            input_dim = ''.join(input.split(':')[:-1])
            dims = [int(dim) for dim in input.split(':')[-1].split(',')]
            input_dims[input_dim] = dims

    if use_onnx:
        if not input_dims:
            model = migraphx.parse_onnx(model_name, default_dim_value=batch)
        else:
            model = migraphx.parse_onnx(model_name,
                                        default_dim_value=batch,
                                        map_input_dims=input_dims)
    else:
        model_name = args.tf

        if not input_dims:
            model = migraphx.parse_tf(model_name, batch_size=batch)
        else:
            model = migraphx.parse_tf(model_name,
                                      batch_size=batch,
                                      map_input_dims=input_dims)
kahmed10's avatar
kahmed10 committed
188

189
190
191
    if args.verbose:
        print(model)

192
193
    if not args.ort_run:
        model.compile(migraphx.get_target(args.target))
kahmed10's avatar
kahmed10 committed
194
195
196
197
198

    params = {}
    test_inputs = {}
    for name, shape in model.get_parameter_shapes().items():
        if args.verbose:
199
            print(f'Parameter {name} -> {shape}')
kahmed10's avatar
kahmed10 committed
200
201
        in_shape = shape.lens()
        in_type = shape.type_string()
202
203
204
        if name in args.numpy:
            in_path = args.np_path[args.numpy.index(name)]
            if args.verbose:
umangyadav's avatar
umangyadav committed
205
206
207
                print(
                    "Loading numpy array for input name : {name}, from path : {in_path}"
                )
208
209
            test_input = np.load(in_path).astype(get_np_datatype(in_type))
        elif not args.fill1 and not args.fill0:
kahmed10's avatar
kahmed10 committed
210
211
            test_input = np.random.rand(*(in_shape)).astype(
                get_np_datatype(in_type))
212
        elif not args.fill0:
kahmed10's avatar
kahmed10 committed
213
            test_input = np.ones(in_shape).astype(get_np_datatype(in_type))
214
215
        else:
            test_input = np.zeros(in_shape).astype(get_np_datatype(in_type))
kahmed10's avatar
kahmed10 committed
216
        test_inputs[name] = test_input
217
218
        params[name] = migraphx.argument(test_input)

219
220
    if not args.ort_run:
        pred_migx = np.array(model.run(params)[-1])
kahmed10's avatar
kahmed10 committed
221

222
    if use_onnx:
223
224
225
226
227
228
229
230
231
        sess_op = ort.SessionOptions()

        if args.ort_logging:
            sess_op.log_verbosity_level = 0
            sess_op.log_severity_level = 0

        sess = ort.InferenceSession(model_name,
                                    sess_options=sess_op,
                                    providers=[args.provider])
kahmed10's avatar
kahmed10 committed
232

233
234
235
236
237
238
        ort_params = {}
        for input in sess.get_inputs():
            ort_params[input.name] = test_inputs[input.name]

        try:
            pred_fw = sess.run(None, ort_params)[-1]
umangyadav's avatar
umangyadav committed
239
            if (args.save_ort):
240
                if args.verbose:
umangyadav's avatar
umangyadav committed
241
242
243
                    print(
                        "saving ORT result as numpy array at location : {args.save_ort}"
                    )
244
                np.save(args.save_ort, pred_fw)
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
        except Exception as e:
            if any(input_dims):
                print(
                    'Error: custom input dim may not be compatible with onnx runtime'
                )
            raise e
    else:
        import tensorflow as tf

        def load_tf_graph(model_name):
            with tf.io.gfile.GFile(model_name, 'rb') as f:
                graph_def = tf.compat.v1.GraphDef()
                graph_def.ParseFromString(f.read())

            with tf.compat.v1.Graph().as_default() as graph:
                tf.graph_util.import_graph_def(graph_def)
            return graph

        graph = load_tf_graph(model_name)
        is_nhwc = False
        graph_ops = []
        for op in graph.get_operations():
            graph_ops.append(op.name)
            if 'Conv' in op.node_def.op:
                if 'NHWC' in op.get_attr('data_format').decode('utf-8'):
                    is_nhwc = True
        graph_ops_set = set(graph_ops)
        tf_dict = {}

        for name in test_inputs.keys():
            # graph.get_operations() adds 'import/' to the op name
            tf_name = f'import/{name}'
            if tf_name not in graph_ops_set:
                continue
            x = graph.get_tensor_by_name(f'{tf_name}:0')
            tf_input = test_inputs[name]
            # transpose input for NHWC model
            if tf_input.ndim == 4 and is_nhwc:
                tf_dict[x] = np.transpose(tf_input, (0, 2, 3, 1))
            else:
                tf_dict[x] = tf_input
kahmed10's avatar
kahmed10 committed
286

287
288
289
        # assume last node in graph is output
        # TODO: let user specify op name for output
        y = graph.get_tensor_by_name(f'{graph_ops[-1]}:0')
kahmed10's avatar
kahmed10 committed
290

291
292
293
        with tf.compat.v1.Session(graph=graph) as sess:
            y_out = sess.run(y, feed_dict=tf_dict)
            pred_fw = y_out
kahmed10's avatar
kahmed10 committed
294

295
296
297
298
299
300
301
302
303
    if not args.ort_run:
        is_correct = check_correctness(pred_fw, pred_migx, args.tolerance,
                                       args.tolerance, args.verbose)
        verbose_string = ' Rerun with --verbose for detailed information.' \
                if not args.verbose else ''
        if is_correct:
            print('PASSED: MIGraphX meets tolerance')
        else:
            print('FAILED: MIGraphX is not within tolerance.' + verbose_string)
kahmed10's avatar
kahmed10 committed
304
305
306
307


if __name__ == '__main__':
    main()