simplify_algebra.cpp 42.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
Paul's avatar
Paul committed
24
#include <migraphx/simplify_algebra.hpp>
Paul's avatar
Paul committed
25
#include <migraphx/dead_code_elimination.hpp>
Paul's avatar
Paul committed
26
#include <migraphx/program.hpp>
27
#include <migraphx/op/concat.hpp>
28
#include <migraphx/op/slice.hpp>
29
#include <migraphx/op/convolution.hpp>
Paul's avatar
Paul committed
30
#include <migraphx/op/broadcast.hpp>
31
32
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/transpose.hpp>
Paul's avatar
Paul committed
33
34
#include <migraphx/matcher.hpp>
#include <migraphx/literal.hpp>
35
36
37
#include <migraphx/make_op.hpp>
#include <migraphx/serialize.hpp>

38
#include <migraphx/algorithm.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
39
#include <unordered_set>
Paul's avatar
Paul committed
40

Paul's avatar
Paul committed
41
namespace migraphx {
Paul's avatar
Paul committed
42
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
43

Paul's avatar
Paul committed
44
auto lit_broadcast() { return match::any_of(match::is_constant(), match::name("broadcast")); }
Paul's avatar
Paul committed
45
auto not_lit_broadcast() { return match::none_of(match::is_constant(), match::name("broadcast")); }
Paul's avatar
Paul committed
46
47
auto op_lit_broadcast(std::string op, std::string x, std::string y)
{
Paul's avatar
Paul committed
48
49
    return match::name(std::move(op))(match::either_arg(0, 1)(
        lit_broadcast().bind(std::move(x)), not_lit_broadcast().bind(std::move(y))));
Paul's avatar
Paul committed
50
51
}

Paul's avatar
Paul committed
52
53
auto conv_const_weights()
{
Paul's avatar
Paul committed
54
    return match::name("convolution")(match::used_once(),
Paul's avatar
Paul committed
55
                                      match::args(match::any(), match::is_constant().bind("w")));
Paul's avatar
Paul committed
56
57
}

Shucai Xiao's avatar
Shucai Xiao committed
58
59
auto reduction() { return match::name_contains("reduce"); }

60
// conv(x, w) * a => conv(x, a * w)
Paul's avatar
Paul committed
61
62
63
struct find_mul_conv
{
    auto matcher() const
Paul's avatar
Paul committed
64
    {
65
66
67
        return match::name("mul")(
            match::either_arg(0, 1)(conv_const_weights().bind("conv"),
                                    match::name("broadcast", "multibroadcast").bind("a")));
Paul's avatar
Paul committed
68
    }
Paul's avatar
Paul committed
69

70
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
71
    {
Paul's avatar
Paul committed
72
        auto ins      = r.result;
Paul's avatar
Paul committed
73
        auto conv_ins = r.instructions["conv"];
Paul's avatar
Paul committed
74
75
76
        auto a_ins    = r.instructions["a"];
        auto w_ins    = r.instructions["w"];

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
        const auto& a_input_lens = a_ins->inputs().front()->get_shape().lens();

        std::size_t num_not_one_dims = std::count_if(
            a_input_lens.cbegin(), a_input_lens.cend(), [](auto dim) { return dim != 1; });
        if(num_not_one_dims > 1)
            return;

        // check broadcasted along channels
        const auto& a_lens    = a_ins->get_shape().lens();
        const auto& a_strides = a_ins->get_shape().strides();

        auto is_broadcasted_axis = [](auto len, auto stride) { return len == 1 or stride == 0; };

        if(a_strides.at(1) != 1)
            return;

        if(not is_broadcasted_axis(a_lens.front(), a_strides.front()))
            return;

        if(not std::equal(a_lens.begin() + 2,
                          a_lens.end(),
                          a_strides.begin() + 2,
                          a_strides.end(),
                          is_broadcasted_axis))
Paul's avatar
Paul committed
101
102
            return;

103
        auto sq    = m.insert_instruction(ins, make_op("squeeze"), a_ins->inputs().front());
104
        auto new_a = m.insert_instruction(
105
            ins, make_op("broadcast", {{"axis", 0}, {"out_lens", w_ins->get_shape().lens()}}), sq);
106
107
        auto new_mul  = m.insert_instruction(ins, make_op("mul"), new_a, w_ins);
        auto new_conv = m.insert_instruction(
Paul's avatar
Paul committed
108
            ins, conv_ins->get_operator(), conv_ins->inputs().front(), new_mul);
109
        m.replace_instruction(ins, new_conv);
Paul's avatar
Paul committed
110
    }
Paul's avatar
Paul committed
111
112
};

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
struct find_mul_slice_conv
{
    static auto conv()
    {
        return match::name("convolution")(
            match::all_of[match::outputs()](match::name("slice")),
            match::args(match::any(), match::is_constant().bind("w")));
    }
    auto matcher() const
    {
        return match::name("mul")(match::either_arg(0, 1)(
            match::name("slice")(match::used_once(), match::arg(0)(conv().bind("conv")))
                .bind("slice"),
            match::name("broadcast")(match::is_constant()).bind("a")));
    }

129
    void apply(module& m, const match::matcher_result& r) const
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
    {
        auto ins       = r.result;
        auto slice_ins = r.instructions["slice"];
        auto conv_ins  = r.instructions["conv"];
        auto a_ins     = r.instructions["a"];
        auto w_ins     = r.instructions["w"];

        auto broadcast_op = any_cast<op::broadcast>(a_ins->get_operator());
        if(broadcast_op.axis != 1)
            return;

        auto slice_op = any_cast<op::slice>(slice_ins->get_operator());
        if(slice_op.axes.size() != 1)
            return;
        if(slice_op.axes.front() != 1)
            return;

        auto slice_idx = std::distance(conv_ins, slice_ins);
        if(std::any_of(conv_ins->outputs().begin(), conv_ins->outputs().end(), [&](auto i) {
               if(i == slice_ins)
                   return false;
               if(std::distance(conv_ins, i) < slice_idx)
                   return true;
               auto sop = any_cast<op::slice>(i->get_operator());
               if(sop.axes != slice_op.axes)
                   return true;
               if(std::max(sop.starts.front(), slice_op.starts.front()) <
                  std::min(sop.ends.front(), slice_op.ends.front()))
                   return true;
               return false;
           }))
            return;

        auto w_slice_op  = slice_op;
        w_slice_op.axes  = {0};
165
        auto slice_w_ins = m.insert_instruction(ins, w_slice_op, w_ins);
166

167
        auto new_a = m.insert_instruction(
168
            ins,
169
            make_op("broadcast", {{"axis", 0}, {"out_lens", slice_w_ins->get_shape().lens()}}),
170
            a_ins->inputs().front());
171
        auto new_mul = m.insert_instruction(ins, make_op("mul"), new_a, slice_w_ins);
172
173
174

        std::vector<instruction_ref> sliced_weights;
        if(slice_op.starts.front() != 0)
175
            sliced_weights.push_back(m.insert_instruction(
176
177
178
                ins,
                make_op("slice", {{"axes", {0}}, {"starts", {0}}, {"ends", slice_op.starts}}),
                w_ins));
179
180
181
        sliced_weights.push_back(new_mul);
        int64_t end_axis = w_ins->get_shape().lens().at(0);
        if(slice_op.ends.front() != end_axis)
182
            sliced_weights.push_back(m.insert_instruction(
183
184
185
                ins,
                make_op("slice", {{"axes", {0}}, {"starts", slice_op.ends}, {"ends", {end_axis}}}),
                w_ins));
186

187
        auto new_weights =
188
            m.insert_instruction(ins, make_op("concat", {{"axis", 0}}), sliced_weights);
189

190
        auto new_conv = m.insert_instruction(
191
192
193
            ins, conv_ins->get_operator(), conv_ins->inputs().front(), new_weights);
        assert(conv_ins->get_shape() == new_conv->get_shape());

194
        auto slice1 = m.insert_instruction(ins, slice_op, new_conv);
195
        assert(ins->get_shape().lens() == slice1->get_shape().lens());
196
        m.replace_instruction(ins, slice1);
197
        // TODO: Check each slice doesn't overlap and that it occurs after slice_ins
198
199
        auto outputs = conv_ins->outputs();
        for(auto output : outputs)
200
201
202
203
204
            if(output != slice_ins)
                instruction::replace_argument(output, conv_ins, new_conv);
    }
};

Paul's avatar
Paul committed
205
// a * (x + b) => a * x + a * b
Paul's avatar
Paul committed
206
207
208
209
210
struct find_mul_add
{
    auto matcher() const
    {
        return match::name("mul")(match::either_arg(0, 1)(
Paul's avatar
Paul committed
211
212
213
            match::name("add")(
                match::either_arg(0, 1)(
                    match::any().bind("x"),
Paul's avatar
Paul committed
214
                    match::any_of(conv_const_weights(), match::is_constant()).bind("b")),
Paul's avatar
Paul committed
215
                match::none_of(match::args(match::is_constant(), match::is_constant())),
Paul's avatar
Paul committed
216
                match::used_once()),
Paul's avatar
Paul committed
217
            match::is_constant().bind("a")));
Paul's avatar
Paul committed
218
219
    }

220
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
221
    {
Paul's avatar
Paul committed
222
        auto ins   = r.result;
Paul's avatar
Paul committed
223
        auto a_ins = r.instructions["a"];
Paul's avatar
Paul committed
224
        auto b_ins = r.instructions["b"];
Paul's avatar
Paul committed
225
        auto x_ins = r.instructions["x"];
Paul's avatar
Paul committed
226
        assert(x_ins != b_ins);
Paul's avatar
Paul committed
227

228
229
230
        auto ax_ins = m.insert_instruction(ins, make_op("mul"), a_ins, x_ins);
        auto ab_ins = m.insert_instruction(ins, make_op("mul"), a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), ax_ins, ab_ins);
Paul's avatar
Paul committed
231
232
233
    }
};

234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
struct find_dot_add
{
    auto matcher() const
    {
        return match::name("dot")(match::either_arg(0, 1)(
            match::name("add")(
                match::either_arg(0, 1)(match::any().bind("x"),
                                        match::any_of(match::is_constant()).bind("b")),
                match::none_of(match::args(match::is_constant(), match::is_constant())),
                match::used_once()),
            match::is_constant().bind("a")));
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins   = r.result;
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];
        auto x_ins = r.instructions["x"];
        assert(x_ins != b_ins);

        const bool flipped = a_ins == ins->inputs().back();

        auto insert_dot = [&](auto x, auto y) {
            if(flipped)
                return m.insert_instruction(ins, make_op("dot"), y, x);
            else
                return m.insert_instruction(ins, make_op("dot"), x, y);
        };

        auto ax_ins = insert_dot(a_ins, x_ins);
        auto ab_ins = insert_dot(a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), ax_ins, ab_ins);
    }
};

Paul's avatar
Paul committed
270
struct find_add_lit_broadcast
Paul's avatar
Paul committed
271
272
273
274
275
276
277
{
    auto matcher() const
    {
        return match::name("add")(
            match::either_arg(0, 1)(op_lit_broadcast("add", "a", "x"), lit_broadcast().bind("b")));
    }

278
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
279
280
281
282
283
284
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];

285
286
        auto sumab = m.insert_instruction(ins, make_op("add"), a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), x_ins, sumab);
Paul's avatar
Paul committed
287
288
289
290
    }
};

struct find_double_add_lit_broadcast
Paul's avatar
Paul committed
291
{
Paul's avatar
Paul committed
292
293
    auto matcher() const
    {
Paul's avatar
Paul committed
294
        return match::name("add")(
Paul's avatar
Paul committed
295
            match::args(op_lit_broadcast("add", "a", "x"), op_lit_broadcast("add", "b", "y")));
Paul's avatar
Paul committed
296
297
    }

298
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
299
    {
Paul's avatar
Paul committed
300
301
302
303
304
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto y_ins = r.instructions["y"];
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];
Paul's avatar
Paul committed
305
306
307

        instruction_ref sumab;

Paul's avatar
Paul committed
308
        if(a_ins->name() == "broadcast" and b_ins->name() == "broadcast")
Paul's avatar
Paul committed
309
310
311
        {
            if(a_ins->inputs().at(0)->get_shape() != b_ins->inputs().at(0)->get_shape())
                return;
312
            auto op     = a_ins->get_operator();
313
            auto presum = m.insert_instruction(
314
                ins, make_op("add"), a_ins->inputs().at(0), b_ins->inputs().at(0));
315
            sumab = m.insert_instruction(ins, op, presum);
Paul's avatar
Paul committed
316
317
318
        }
        else
        {
319
            sumab = m.insert_instruction(ins, make_op("add"), a_ins, b_ins);
Paul's avatar
Paul committed
320
321
        }

322
323
        auto sumxy = m.insert_instruction(ins, make_op("add"), x_ins, y_ins);
        m.replace_instruction(ins, make_op("add"), sumxy, sumab);
Paul's avatar
Paul committed
324
325
326
    }
};

Paul's avatar
Paul committed
327
328
struct find_inner_broadcast
{
329
    auto matcher() const { return pointwise(match::all_of[match::inputs()](match::broadcast())); }
Paul's avatar
Paul committed
330

331
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
332
    {
333
334
335
336
337
338
339
340
341
342
343
344
        auto ins        = r.result;
        auto broadcasts = ins->inputs();
        if(broadcasts.empty())
            return;
        std::vector<instruction_ref> inputs;
        std::transform(broadcasts.begin(),
                       broadcasts.end(),
                       std::back_inserter(inputs),
                       [](auto i) { return i->inputs().front(); });
        if(std::any_of(inputs.begin(), inputs.end(), [&](auto i) {
               return i->get_shape() != inputs.front()->get_shape();
           }))
Paul's avatar
Paul committed
345
346
            return;

347
348
        auto op = m.insert_instruction(ins, ins->get_operator(), inputs);
        m.replace_instruction(ins, broadcasts.front()->get_operator(), op);
Paul's avatar
Paul committed
349
350
351
    }
};

352
struct find_concat_op
353
354
355
{
    auto matcher() const
    {
356
        return match::name("concat")(match::any_of[match::inputs()](
357
            match::any_of(match::pointwise(), match::name("broadcast")), match::used_once()));
358
359
    }

360
361
    template <class Iterator>
    static std::vector<std::size_t> get_output_lens(Iterator start, Iterator last, std::size_t axis)
362
    {
363
364
365
        assert(start != last);
        std::size_t dim = 0;
        for(auto ins : range(start, last))
366
        {
367
            dim += ins->get_shape().lens().at(axis);
368
        }
369
370
371
        auto lens  = (*start)->get_shape().lens();
        lens[axis] = dim;
        return lens;
372
373
    }

374
375
376
377
378
    static bool is_valid_op(const operation& op)
    {
        return op.name() == "broadcast" or op.attributes().contains("pointwise");
    }

379
    void apply(module& m, const match::matcher_result& r) const
380
    {
381
382
        auto ins  = r.result;
        auto axis = any_cast<op::concat>(ins->get_operator()).axis;
383

384
385
386
387
388
389
        auto each = [&](auto start, auto last) -> std::vector<instruction_ref> {
            if(std::distance(start, last) < 2)
                return {start, last};
            auto x = *start;
            if(x->inputs().size() > 2 or x->inputs().empty() or x->outputs().size() > 1)
                return {start, last};
390
391
            auto op = x->get_operator();
            if(not is_valid_op(op))
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
                return {start, last};
            auto iaxis = axis;
            // Adjust broadcast lens
            if(op.name() == "broadcast")
            {
                auto b = any_cast<op::broadcast>(op);
                if(b.axis != iaxis)
                    return {start, last};
                b.broadcast_lens = get_output_lens(start, last, iaxis);
                op               = b;
                iaxis            = 0;
            }

            std::vector<instruction_ref> concats;
            for(std::size_t i = 0; i < x->inputs().size(); i++)
            {
                std::vector<instruction_ref> inputs;
                std::transform(start, last, std::back_inserter(inputs), [&](auto j) {
                    return j->inputs().at(i);
                });
412
                auto concat =
413
                    m.insert_instruction(ins, make_op("concat", {{"axis", iaxis}}), inputs);
414
415
                concats.push_back(concat);
            }
416
            auto y = m.insert_instruction(ins, op, concats);
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
            return {y};
        };

        std::vector<instruction_ref> args;
        auto update_args = [&](auto start, auto last) {
            auto x = each(start, last);
            args.insert(args.end(), x.begin(), x.end());
        };
        auto pred = [](auto i, auto j) {
            return i->get_operator() == j->get_operator() and
                   i->inputs().size() == i->inputs().size() and
                   i->outputs().size() == i->outputs().size();
        };
        group_unique(ins->inputs().begin(), ins->inputs().end(), update_args, pred);
        if(args.size() == 1)
432
            m.replace_instruction(ins, args.front());
433
        else
434
            m.replace_instruction(ins, make_op("concat", {{"axis", axis}}), args);
435
436
437
    }
};

438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
std::vector<instruction_ref> get_splits(instruction_ref ins)
{
    std::vector<instruction_ref> result;
    std::copy_if(ins->outputs().begin(),
                 ins->outputs().end(),
                 std::back_inserter(result),
                 [&](auto i) { return i->name() == "slice"; });
    if(result.size() < 2)
        return {};
    auto get_slice = [](auto& i) -> auto& { return any_cast<op::slice>(i->get_operator()); };
    auto&& axes    = get_slice(result.front()).axes;
    if(std::any_of(result.begin(), result.end(), [&](auto i) { return get_slice(i).axes != axes; }))
        return {};
    auto get_start = [&](auto& i) -> auto& { return get_slice(i).starts; };
    auto get_end   = [&](auto& i) -> auto& { return get_slice(i).ends; };
    std::sort(
        result.begin(), result.end(), [&](auto x, auto y) { return get_start(x) < get_start(y); });
    if(std::any_of(get_start(result.front()).begin(), get_start(result.front()).end(), [&](auto i) {
           return i != 0;
       }))
        return {};
    auto it = std::adjacent_find(
        result.begin(), result.end(), [&](auto x, auto y) { return get_end(x) != get_start(y); });
    if(it != result.end())
        return {};
    for(std::size_t i = 0; i < axes.size(); i++)
    {
        auto axis = axes[i];
        if(ins->get_shape().lens()[axis] != get_slice(result.back()).ends[i])
            return {};
    }
    return result;
}

struct find_splits
{
    auto matcher() const
    {
476
477
478
        return match::any(
            match::any_of[match::outputs()](match::name("slice")(match::any_of[match::outputs()](
                match::pointwise(match::any_of(match::nargs(1), match::nargs(2))), reduction()))));
479
480
    }

Shucai Xiao's avatar
Shucai Xiao committed
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
    static bool is_dependent(const module& m, instruction_ref ins1, instruction_ref ins2)
    {

        std::unordered_set<instruction_ref> traversed;
        return fix<bool>([&](auto self, auto ins) -> bool {
            if(ins == ins2)
                return true;

            if(contains(traversed, ins))
                return false;

            traversed.insert(ins);
            const auto& inputs = ins->inputs();
            return std::any_of(inputs.begin(), inputs.end(), [&](auto in) {
                return m.has_instruction(in) and self(in);
            });
        })(ins1);
    }

500
    static std::vector<std::vector<instruction_ref>>
Shucai Xiao's avatar
Shucai Xiao committed
501
    get_split_groups(const module& m, const std::vector<instruction_ref>& splits)
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
    {
        std::vector<std::vector<instruction_ref>> groups;
        for(auto out : splits.front()->outputs())
        {
            if(out->name() == "slice")
                continue;
            std::vector<instruction_ref> group;
            for(auto split : splits)
            {
                auto it =
                    std::find_if(split->outputs().begin(), split->outputs().end(), [&](auto i) {
                        return i->get_operator() == out->get_operator();
                    });
                if(it == split->outputs().end())
                    break;
                assert((*it)->name() != "slice");
Shucai Xiao's avatar
Shucai Xiao committed
518

519
                // If there is a duplicate bail
Shucai Xiao's avatar
Shucai Xiao committed
520
521
522
523
524
                // there are should be no dependency between instructions in the group
                if(std::any_of(group.begin(), group.end(), [&](auto i) {
                       return is_dependent(m, *it, i) or is_dependent(m, i, *it);
                   }))
                {
525
                    return {};
Shucai Xiao's avatar
Shucai Xiao committed
526
527
                }

528
529
530
531
532
533
534
535
536
                group.push_back(*it);
            }
            if(group.size() != splits.size())
                continue;
            groups.push_back(group);
        }
        return groups;
    }

Shucai Xiao's avatar
Shucai Xiao committed
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
    bool is_fusable(instruction_ref start, instruction_ref split_front) const
    {
        auto op = start->get_operator();
        if(contains(op.name(), "reduce"))
        {
            auto slc         = any_cast<op::slice>(split_front->get_operator());
            auto slc_axes    = slc.axes;
            auto reduce_axes = start->get_operator().to_value()["axes"].to_vector<int64_t>();
            // axes of slice and reduce op cannot have overlap
            if(std::any_of(slc_axes.begin(), slc_axes.end(), [&](auto axis) {
                   return (std::find(reduce_axes.begin(), reduce_axes.end(), axis) !=
                           reduce_axes.end());
               }))
            {
                return false;
            }
        }
        else if(not op.attributes().contains("pointwise"))
        {
            return false;
        }

        return true;
    }

Paul's avatar
Paul committed
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
    static std::vector<instruction_ref> split_nary(const std::vector<instruction_ref>& group)
    {
        // All inputs have the same slices
        if (not std::all_of(group.begin(), group.end(), [](auto ins) {
            if (ins->inputs().empty())
                return false;
            auto first = ins->inputs().front();
            if (first->name() != "slice")
                return false;
            return std::all_of(ins->inputs().begin()+1, ins->inputs().end(), [&](auto input) {
                return input->get_operator() == first->get_operator();
            });
        }))
            return {};
        auto start       = group.front();
        std::vector<instruction_ref> inputs;
        std::transform(start->inputs().begin(), start->inputs().end(), std::back_inserter(inputs), [](auto ins) {
            return ins->inputs().front();
        });
        if (not std::all_of(group.begin(), group.end(), [&](auto ins) {
            return std::equal(ins->inputs().begin(), ins->inputs().end(), inputs.begin(), inputs.end(), [](auto slice, auto input) {
                return slice->inputs().front() == input;
            });
        }))
            return {};
        return inputs;
    }

    template<class Range>
    static instruction_ref find_last_instruction(const module& m, const Range& r)
    {
        auto rm = reverse(m);
        auto it = std::find_first_of(rm.begin(), rm.end(), r.begin(), r.end());
        return std::prev(it.base());
    }

598
    void apply(module& m, const match::matcher_result& r) const
599
    {
Shucai Xiao's avatar
Shucai Xiao committed
600
        auto ins    = r.result;
601
602
603
        auto splits = get_splits(ins);
        if(splits.empty())
            return;
Shucai Xiao's avatar
Shucai Xiao committed
604

605
        for(const auto& group : get_split_groups(m, splits))
606
        {
Shucai Xiao's avatar
Shucai Xiao committed
607
608
609
610
611
            auto start       = group.front();
            auto split_front = splits.front();
            auto op          = start->get_operator();
            if(not is_fusable(start, split_front))
            {
612
                continue;
Shucai Xiao's avatar
Shucai Xiao committed
613
            }
614
615
616
617
618
619

            // Make sure there is no duplicates
            assert(std::none_of(
                std::next(group.begin()), group.end(), [&](auto i) { return i == start; }));

            auto split_idx    = 0;
620
            instruction_ref c = m.end();
621
622
            if(start->inputs().size() == 1)
            {
623
                c = m.insert_instruction(std::next(ins), op, ins);
624
625
626
627
628
629
            }
            else if(start->inputs().size() == 2)
            {
                assert(not std::none_of(start->inputs().begin(), start->inputs().end(), [](auto i) {
                    return i->name() == "slice";
                }) && "one argument must be a split");
Paul's avatar
Paul committed
630
631
632

                auto split_inputs = split_nary(group);
                if (not split_inputs.empty())
633
                {
Paul's avatar
Paul committed
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
                    auto last = find_last_instruction(m, split_inputs);
                    c = m.insert_instruction(std::next(last), op, split_inputs);
                }
                else
                {
                    auto data_idx = 1;
                    if(start->inputs().back()->name() == "slice")
                    {
                        split_idx = 1;
                        data_idx  = 0;
                    }

                    std::vector<instruction_ref> data_args;
                    std::transform(group.begin(),
                                   group.end(),
                                   std::back_inserter(data_args),
                                   [&](auto i) { return i->inputs()[data_idx]; });

                    // Data arguments must be a constant
                    if(std::any_of(data_args.begin(), data_args.end(), [](auto i) {
                           return not i->can_eval();
                       }))
                        return;

                    for(auto data : data_args)
                        m.move_instructions(data, ins);

                    auto slice_op = any_cast<op::slice>(splits.front()->get_operator());
                    assert(not slice_op.axes.empty());
                    if(slice_op.axes.size() > 1)
                        return;
                    auto concat_axis = slice_op.axes.front();
                    // TODO: Check if axises match
                    auto concat = m.insert_instruction(
                        ins, make_op("concat", {{"axis", concat_axis}}), data_args);

                    std::vector<instruction_ref> args;
                    args.resize(2);
                    args[split_idx] = ins;
                    args[data_idx]  = concat;
                    c               = m.insert_instruction(std::next(ins), op, args);
675
676
677
                }

            }
678
            if(c != m.end())
679
680
681
682
683
684
            {
                for(auto i : group)
                {
                    auto split = i->inputs()[split_idx];
                    assert(split->name() == "slice");
                    // Insert contiguous for reshapes
685
686
                    auto outputs = i->outputs();
                    for(auto output : outputs)
687
                    {
688
                        if(output->name() != "reshape")
689
                            continue;
690
                        auto x = m.insert_instruction(output, make_op("contiguous"), i);
691
                        m.replace_instruction(output, output->get_operator(), x);
692
693
                    }

694
                    m.replace_instruction(i, split->get_operator(), c);
695
696
697
698
699
700
701
702
703
704
705
706
707
708
                }
            }
        }
    }
};

struct find_split_concat
{
    auto matcher() const
    {
        return match::any(match::any_of[match::outputs()](
            match::name("slice")(match::all_of[match::outputs()](match::name("concat")))));
    }

709
    void apply(module& m, const match::matcher_result& r) const
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
    {
        auto ins = r.result;

        auto splits = get_splits(ins);
        if(splits.empty())
            return;
        if(std::any_of(
               splits.begin(), splits.end(), [](auto i) { return i->outputs().size() != 1; }))
            return;
        // Check for concat operator
        auto concat = splits.front()->outputs().front();
        if(std::any_of(splits.begin(), splits.end(), [&](auto i) {
               return i->outputs().front() != concat;
           }))
            return;
        // Check axis match
        auto concat_op = any_cast<op::concat>(concat->get_operator());
        auto split_op  = any_cast<op::slice>(splits.front()->get_operator());
        if(split_op.axes.size() != 1)
            return;
        if(split_op.axes.front() != concat_op.axis)
            return;
        // Replace args
        auto args = concat->inputs();
        auto it =
            std::find_if(args.begin(), args.end(), [&](auto i) { return i == splits.front(); });
        if(std::distance(it, args.end()) < splits.size())
            return;
738
739
740
741
742
743
744
        // If the slices are not in order then stop
        if(not std::is_sorted(it, it + splits.size(), [](instruction_ref x, instruction_ref y) {
               auto xop = any_cast<op::slice>(x->get_operator());
               auto yop = any_cast<op::slice>(y->get_operator());
               return std::tie(xop.starts, xop.ends) < std::tie(yop.starts, yop.ends);
           }))
            return;
745
746
747
748
        *it = splits.front()->inputs().front();
        args.erase(std::next(it), it + splits.size());

        if(args.size() == 1)
749
            m.replace_instruction(concat, args.front());
750
        else
751
            m.replace_instruction(concat, concat->get_operator(), args);
752
753
754
    }
};

755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
bool axis_equal(const std::vector<std::size_t>& x,
                const std::vector<std::size_t>& y,
                std::size_t axis)
{
    return x.size() == y.size() and x.size() > axis and
           std::equal(x.begin(), x.begin() + axis, y.begin()) and
           std::equal(x.begin() + axis + 1, x.end(), y.begin() + axis + 1);
}

bool axis_shape_equal(const shape& x, const shape& y, std::size_t axis)
{
    // TODO: Check strides
    return axis_equal(x.lens(), y.lens(), axis);
}

struct find_add_convs
{
    auto matcher() const
    {
        return match::name("add")(
            match::args(conv_const_weights().bind("a"), conv_const_weights().bind("b")));
    }

    static bool symmetrical_strides(const op::convolution& op)
    {
        return op.stride[0] == op.stride[1];
    }

    static std::size_t compute_stride_factor(const op::convolution& x, const op::convolution& y)
    {
        if(not symmetrical_strides(x))
            return 0;
        if(not symmetrical_strides(y))
            return 0;
        if((x.stride[0] % y.stride[0]) != 0)
            return 0;
        return x.stride[0] / y.stride[0];
    }

794
    void apply(module& m, const match::matcher_result& r) const
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
    {
        auto ins       = r.result;
        auto a_conv    = r.instructions["a"];
        auto a_input   = a_conv->inputs().at(0);
        auto a_weights = a_conv->inputs().at(1);
        auto b_conv    = r.instructions["b"];
        auto b_input   = b_conv->inputs().at(0);
        auto b_weights = b_conv->inputs().at(1);

        if(not axis_shape_equal(a_weights->get_shape(), b_weights->get_shape(), 1))
            return;

        auto a_op   = any_cast<op::convolution>(a_conv->get_operator());
        auto b_op   = any_cast<op::convolution>(b_conv->get_operator());
        auto new_op = a_op;

        if(a_op != b_op)
        {
            if(std::tie(a_op.padding, a_op.dilation, a_op.group) ==
                   std::tie(b_op.padding, b_op.dilation, b_op.group) and
               a_weights->get_shape().lens()[2] == 1 and a_weights->get_shape().lens()[3] == 1)
            {
                if(a_op.stride < b_op.stride)
                {
                    auto n = compute_stride_factor(b_op, a_op);
                    if(n == 0)
                        return;
                    new_op  = a_op;
823
                    b_input = m.insert_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
824
                        ins, make_op("step", {{"axes", {2, 3}}, {"steps", {n, n}}}), b_input);
825
826
827
828
829
830
831
                }
                else if(b_op.stride < a_op.stride)
                {
                    auto n = compute_stride_factor(a_op, b_op);
                    if(n == 0)
                        return;
                    new_op  = b_op;
832
                    a_input = m.insert_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
833
                        ins, make_op("step", {{"axes", {2, 3}}, {"steps", {n, n}}}), a_input);
834
835
836
837
838
839
840
841
                }
                else
                    return;
            }
            else
                return;
        }

842
        auto concat_input =
843
            m.insert_instruction(ins, make_op("concat", {{"axis", 1}}), a_input, b_input);
844
        auto concat_weights =
845
846
            m.insert_instruction(ins, make_op("concat", {{"axis", 1}}), a_weights, b_weights);
        m.replace_instruction(ins, new_op, concat_input, concat_weights);
847
848
849
    }
};

850
851
852
853
854
855
856
857
858
859
MIGRAPHX_PRED_MATCHER(horiz_conv_dot, instruction_ref ins)
{
    auto pred = [&](auto name) {
        return [=](auto i) {
            return i->name() == name and i->inputs().front() == ins and
                   i->inputs().at(1)->can_eval();
        };
    };
    auto dots  = std::count_if(ins->outputs().begin(), ins->outputs().end(), pred("dot"));
    auto convs = std::count_if(ins->outputs().begin(), ins->outputs().end(), pred("convolution"));
860
    return not(dots < 2 and convs < 2);
861
862
863
864
865
866
}

struct find_conv_dot_horiz_fusion
{
    auto matcher() const { return horiz_conv_dot(); }

867
    void apply(module& m, const match::matcher_result& r) const
868
869
870
871
872
873
874
875
876
877
878
879
    {
        auto ins = r.result;

        auto pred = [](auto i, auto j) {
            if(i->get_operator() != j->get_operator())
                return false;
            if(not contains({"dot", "convolution"}, i->name()))
                return true;
            auto x = i->inputs()[1]->get_shape().lens();
            auto y = j->inputs()[1]->get_shape().lens();
            if(x.size() != y.size())
                return false;
880
            // Check that non-axes match
881
882
883
884
885
886
887
888
889
890
891
892
893
894
            int axis = 1;
            if(i->name() == "dot")
            {
                axis = x.size() - 1;
            }
            return axis_equal(x, y, axis);
        };

        auto each = [&](auto start, auto last) {
            if(std::distance(start, last) < 2)
                return;
            auto&& name = (*start)->name();
            if(not contains({"dot", "convolution"}, name))
                return;
895
896
897
898
899
900
901
            auto op   = (*start)->get_operator();
            int group = 1;
            if(name == "convolution")
                group = any_cast<op::convolution>(op).group;
            // Skip group convolution
            if(group != 1)
                return;
902
903
904
905
906
907
908
909
910
911
912
913
914
            auto input = (*start)->inputs().front();
            std::vector<instruction_ref> args;
            std::transform(
                start, last, std::back_inserter(args), [&](auto x) { return x->inputs().at(1); });
            int axis        = 1;
            int concat_axis = 0;
            if(name == "dot")
            {
                axis        = int(args.front()->get_shape().lens().size() - 1);
                concat_axis = axis;
            }

            for(auto arg : args)
915
                m.move_instructions(arg, input);
916
            // TODO: Check if axes match
917
            auto concat =
918
919
                m.insert_instruction(input, make_op("concat", {{"axis", concat_axis}}), args);
            auto fused     = m.insert_instruction(std::next(input), op, input, concat);
920
921
922
            int64_t offset = 0;
            for(auto arg : range(start, last))
            {
923
924
925
926
927
928
929
930
931
                auto outputs = arg->outputs();
                for(auto output : outputs)
                {
                    if(output->name() != "reshape")
                        continue;
                    auto x = m.insert_instruction(output, make_op("contiguous"), arg);
                    m.replace_instruction(output, output->get_operator(), x);
                }

932
                int64_t len = arg->get_shape().lens()[axis];
933
                m.replace_instruction(
934
935
936
937
                    arg,
                    make_op("slice",
                            {{"axes", {axis}}, {"starts", {offset}}, {"ends", {offset + len}}}),
                    fused);
938
939
940
941
942
943
944
945
946
                offset += len;
            }
        };

        auto outputs = ins->outputs();
        group_by(outputs.begin(), outputs.end(), each, pred);
    }
};

947
948
949
950
951
952
953
struct find_div_const
{
    auto matcher() const
    {
        return match::name("div")(match::arg(1)(match::is_constant().bind("c")));
    }

954
    void apply(module& m, const match::matcher_result& r) const
955
956
957
958
    {
        auto ins   = r.result;
        auto c_ins = r.instructions["c"];

959
        auto recip = m.insert_instruction(std::next(c_ins), make_op("recip"), c_ins);
960
961
962

        auto args = ins->inputs();

963
        m.replace_instruction(ins, make_op("mul"), args.front(), recip);
964
965
966
967
968
969
970
971
972
973
    }
};

struct find_sub_const
{
    auto matcher() const
    {
        return match::name("sub")(match::arg(1)(match::is_constant().bind("c")));
    }

974
    void apply(module& m, const match::matcher_result& r) const
975
976
977
978
    {
        auto ins   = r.result;
        auto c_ins = r.instructions["c"];

979
        auto neg = m.insert_instruction(std::next(c_ins), make_op("neg"), c_ins);
980
981
982

        auto args = ins->inputs();

983
        m.replace_instruction(ins, make_op("add"), args.front(), neg);
984
985
986
    }
};

kahmed10's avatar
kahmed10 committed
987
988
989
990
991
992
993
994
struct find_rsqrt
{
    auto matcher() const
    {
        return match::name("recip")(match::args(
            match::name("sqrt")(match::used_once(), match::args(match::any().bind("x")))));
    }

995
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
996
997
998
999
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];

1000
        m.replace_instruction(ins, make_op("rsqrt"), x_ins);
kahmed10's avatar
kahmed10 committed
1001
1002
1003
    }
};

1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
static bool same_ops(const std::vector<instruction_ref>& vec_ins)
{
    return std::all_of(vec_ins.begin(), vec_ins.end(), [&](auto i) {
        return i->get_operator() == vec_ins.front()->get_operator();
    });
}

struct find_split_reshape
{
    auto matcher() const
    {
        return match::name("reshape")(match::arg(0)(match::name("contiguous")(
                                          match::arg(0)(match::name("slice").bind("slice")))))
            .bind("reshape");
    }

1020
    void apply(module& m, const match::matcher_result& r) const
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
    {
        auto slc = r.instructions["slice"];
        auto rsp = r.instructions["reshape"];

        auto input         = slc->inputs().front();
        auto split_outputs = get_splits(input);
        if(split_outputs.empty())
        {
            return;
        }

        std::vector<instruction_ref> vec_rsp(split_outputs.size());
        std::transform(split_outputs.begin(), split_outputs.end(), vec_rsp.begin(), [](auto i) {
            assert(i->outputs().size() == 1);
            auto cont = i->outputs().front();
            assert(cont->outputs().size() == 1);
            return cont->outputs().front();
        });

        // all outputs are reshape and of the same shape
        auto dims = any_cast<op::reshape>(rsp->get_operator()).dims;
1042
        if(not same_ops(vec_rsp))
1043
1044
1045
1046
1047
        {
            return;
        }

        // ensure reshape happens after the axis dimension
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
        auto axis         = any_cast<op::slice>(slc->get_operator()).axes[0];
        auto slc_lens     = slc->get_shape().lens();
        auto slc_dim_size = std::accumulate(
            slc_lens.begin() + axis, slc_lens.end(), 1, std::multiplies<std::size_t>());

        // search the reshape output (standard shape) to decide which axis are
        // in its output corresponding to the slc_dim_size
        auto rsp_lens    = rsp->get_shape().lens();
        auto rsp_strides = rsp->get_shape().strides();
        rsp_strides.insert(rsp_strides.begin(), rsp_strides[0] * rsp_lens[0]);
1058
1059
1060

        auto ait     = std::find(rsp_strides.begin(), rsp_strides.end(), slc_dim_size);
        int rsp_axis = -1;
1061
        if(ait == rsp_strides.end())
1062
1063
1064
        {
            return;
        }
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
        else if(ait == rsp_strides.end() - 1)
        {
            // edge case
            // slice_dim == 1, in that case it could match with last stride of 1.
            // it should accumulate lengths from last dim in that case. discount 1 to avoid going
            // out of bounds.
            assert(slc_dim_size == 1);
            rsp_axis = std::distance(rsp_strides.begin(), ait) - 1;
        }
        else
        {
            rsp_axis = std::distance(rsp_strides.begin(), ait);
        }
1078
        // calculate reshape output shape
1079
        std::vector<int64_t> vec_dims(vec_rsp.size());
1080

1081
1082
1083
1084
1085
        std::transform(vec_rsp.begin(), vec_rsp.end(), vec_dims.begin(), [&](auto is) {
            return is->get_shape().lens()[rsp_axis];
        });

        std::vector<int64_t> rsp_out_lens(rsp_lens.begin(), rsp_lens.end());
1086

1087
        rsp_out_lens[rsp_axis] = std::accumulate(vec_dims.begin(), vec_dims.end(), std::int64_t{0});
1088

1089
1090
1091
1092
1093
        // insert the reshape instruction and add contiguous if needed
        if(not input->get_shape().standard())
        {
            input = m.insert_instruction(std::next(input), make_op("contiguous"), input);
        }
1094
        auto rsp_ins = m.insert_instruction(
1095
            std::next(input), make_op("reshape", {{"dims", rsp_out_lens}}), input);
1096
1097

        // replace the original reshape with slice
1098
1099
        int64_t start = 0;
        for(std::size_t i = 0; i < vec_rsp.size(); ++i)
1100
        {
1101
            m.replace_instruction(
1102
1103
1104
1105
1106
                vec_rsp[i],
                make_op(
                    "slice",
                    {{"axes", {rsp_axis}}, {"starts", {start}}, {"ends", {start + vec_dims[i]}}}),
                rsp_ins);
1107
            start += vec_dims[i];
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
        }
    }
};

struct find_split_transpose
{
    auto matcher() const
    {
        return match::name("transpose")(match::arg(0)(match::name("slice").bind("slice")))
            .bind("trans");
    }

1120
    void apply(module& m, const match::matcher_result& r) const
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
    {
        auto slc   = r.instructions["slice"];
        auto trans = r.instructions["trans"];

        auto input         = slc->inputs().front();
        auto split_outputs = get_splits(input);
        if(split_outputs.empty())
        {
            return;
        }

        std::vector<instruction_ref> vec_trans(split_outputs.size());
        std::transform(split_outputs.begin(), split_outputs.end(), vec_trans.begin(), [](auto i) {
            assert(i->outputs().size() == 1);
            return i->outputs().front();
        });

        // all transpose are the same
        auto perm = any_cast<op::transpose>(trans->get_operator()).dims;
1140
        if(not same_ops(vec_trans))
1141
1142
1143
1144
1145
        {
            return;
        }

        // insert an transpose instruction
1146
        auto tr = m.insert_instruction(
1147
            std::next(input), make_op("transpose", {{"permutation", perm}}), input);
1148
1149
1150
1151
1152

        // compute the axis in the slice
        auto axis = any_cast<op::slice>(slc->get_operator()).axes.front();
        auto it   = std::find(perm.begin(), perm.end(), axis);
        assert(it != perm.end());
Paul Fultz II's avatar
Paul Fultz II committed
1153
        int64_t axis_new = std::distance(perm.begin(), it);
1154
1155
1156
1157
1158
1159
1160

        for(auto in : split_outputs)
        {
            auto oper    = any_cast<op::slice>(in->get_operator());
            auto starts  = oper.starts;
            auto ends    = oper.ends;
            auto tr_orig = in->outputs().front();
1161
            m.replace_instruction(
1162
1163
1164
                tr_orig,
                make_op("slice", {{"axes", {axis_new}}, {"starts", starts}, {"ends", ends}}),
                tr);
1165
1166
1167
1168
        }
    }
};

1169
void simplify_algebra::apply(module& m) const
Paul's avatar
Paul committed
1170
{
Paul's avatar
Paul committed
1171
    // Run simplifications multiple times
1172
    for(int i = 0; i < 8; i++)
Paul's avatar
Paul committed
1173
    {
1174
        match::find_matches(m,
Paul's avatar
Paul committed
1175
                            find_inner_broadcast{},
Paul's avatar
Paul committed
1176
1177
                            find_double_add_lit_broadcast{},
                            find_add_lit_broadcast{},
1178
                            find_add_convs{},
1179
                            find_conv_dot_horiz_fusion{},
Paul's avatar
Paul committed
1180
                            find_mul_conv{},
1181
                            find_mul_slice_conv{},
1182
                            find_mul_add{},
1183
                            find_dot_add{},
1184
1185
                            find_div_const{},
                            find_sub_const{},
kahmed10's avatar
kahmed10 committed
1186
                            find_rsqrt{},
1187
                            find_concat_op{},
1188
                            find_split_concat{},
1189
1190
1191
                            find_splits{},
                            find_split_reshape{},
                            find_split_transpose{});
1192
        dead_code_elimination{}.apply(m);
Paul's avatar
Paul committed
1193
    }
Paul's avatar
Paul committed
1194
}
Paul's avatar
Paul committed
1195

Paul's avatar
Paul committed
1196
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1197
} // namespace migraphx