common.cpp 8.45 KB
Newer Older
1
2
3
/*
 * The MIT License (MIT)
 *
4
 * Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
24
25
26
27
28
29
#include <migraphx/common.hpp>
#include <migraphx/module.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/algorithm.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/instruction.hpp>
30
#include <migraphx/ranges.hpp>
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
                                                  std::vector<std::size_t> s1)
{
    if(s0 == s1)
        return s0;
    if(s0.size() > s1.size())
        s0.swap(s1);
    std::vector<std::size_t> out_lens(s1);
    auto offset = s1.size() - s0.size();
    std::transform(
        s0.begin(), s0.end(), s1.begin() + offset, out_lens.begin() + offset, [&](auto a, auto b) {
            if(a != b and a != 1 and b != 1)
            {
47
48
                MIGRAPHX_THROW("COMPUTE_BROADCASTLEN: shape {" + migraphx::to_string_range(s0) +
                               "} and {" + migraphx::to_string_range(s1) + "} mismatch!");
49
50
51
52
53
            }
            return std::max(a, b);
        });
    return out_lens;
}
charlie's avatar
initial  
charlie committed
54
55
56
std::vector<shape::dynamic_dimension>
compute_broadcasted_dyn_dims(std::vector<shape::dynamic_dimension> dds0,
                             std::vector<shape::dynamic_dimension> dds1)
57
{
charlie's avatar
initial  
charlie committed
58
    if(dds0.size() > dds1.size())
59
    {
charlie's avatar
initial  
charlie committed
60
        std::swap(dds0, dds1);
61
    }
charlie's avatar
initial  
charlie committed
62
63
64
65
66
    auto offset = dds1.size() - dds0.size();
    std::vector<shape::dynamic_dimension> out_dims(dds1);
    std::transform(dds0.cbegin(),
                   dds0.cend(),
                   dds1.cbegin() + offset,
67
68
69
70
71
72
73
74
75
76
                   out_dims.begin() + offset,
                   [&](auto a, auto b) {
                       if(a == b or b == 1)
                       {
                           return a;
                       }
                       else if(a == 1)
                       {
                           return b;
                       }
charlie's avatar
charlie committed
77
                       else if(a.within_range(b))
charlie's avatar
initial  
charlie committed
78
79
80
                       {
                           return a;
                       }
charlie's avatar
charlie committed
81
                       else if(b.within_range(a))
charlie's avatar
initial  
charlie committed
82
83
84
                       {
                           return b;
                       }
85
86
87
                       else
                       {
                           MIGRAPHX_THROW("COMPUTE_BROADCASTED_DYN_DIMS: dynamic shapes {" +
charlie's avatar
initial  
charlie committed
88
89
                                          migraphx::to_string_range(dds0) + "} and {" +
                                          migraphx::to_string_range(dds1) + "} mismatch!");
90
91
                       }
                   });
92
93
94
    return out_dims;
}

charlie's avatar
initial  
charlie committed
95
96
97
98
99
100
101
102
std::vector<shape::dynamic_dimension> compute_broadcasted_dyn_dims(shape s0, shape s1)
{
    // change both shapes to dynamic_dimension representation
    s0 = s0.to_dynamic();
    s1 = s1.to_dynamic();
    return compute_broadcasted_dyn_dims(s0.dyn_dims(), s1.dyn_dims());
}

103
104
105
106
107
108
109
110
111
std::vector<shape::dynamic_dimension> compute_common_dyn_dims(const std::vector<shape>& shapes)
{
    auto ret_shape = shapes.at(0);
    std::for_each(shapes.cbegin() + 1, shapes.cend(), [&](auto s) {
        ret_shape = shape{ret_shape.type(), compute_broadcasted_dyn_dims(ret_shape, s)};
    });
    return ret_shape.dyn_dims();
}

112
113
114
std::vector<std::size_t> compute_common_lens(const std::vector<shape>& shapes)
{
    assert(not shapes.empty());
115
116
    assert(
        std::none_of(shapes.cbegin(), shapes.cend(), [](auto shape) { return shape.dynamic(); }));
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
    return transform_accumulate(shapes.begin() + 1,
                                shapes.end(),
                                shapes.front().lens(),
                                &compute_broadcasted_lens,
                                [](auto s) { return s.lens(); });
}

shape::type_t compute_common_type(shape::type_t t1, shape::type_t t2)
{
    if(t1 == t2)
        return t1;
    shape::type_t result;
    shape::visit(t1, [&](auto x) {
        shape::visit(t2, [&](auto y) {
            // Workaround broken warning on gcc 5
            (void)x;
            (void)y;
            using type = std::common_type_t<decltype(x()), decltype(y())>;
            result     = shape::get_type<type>{};
        });
    });
    return result;
}

shape::type_t compute_common_types(const std::vector<shape>& shapes)
{
    assert(not shapes.empty());
    return transform_accumulate(
        shapes.begin() + 1, shapes.end(), shapes.front().type(), &compute_common_type, [&](auto s) {
            return s.type();
        });
}

shape common_shape(const std::vector<shape>& shapes)
{
    if(shapes.empty())
        return {};
    return {compute_common_types(shapes), compute_common_lens(shapes)};
}

157
158
std::vector<instruction_ref>
insert_common_args(module& m, instruction_ref ins, std::vector<instruction_ref> inputs)
159
{
160
161
162
    if(std::any_of(
           inputs.cbegin(), inputs.cend(), [](auto input) { return input->get_shape().dynamic(); }))
    {
163
164
165
        auto input_shapes = to_shapes(inputs);
        auto c_type       = compute_common_types(input_shapes);
        auto c_dyn_dims   = compute_common_dyn_dims(input_shapes);
166

167
        auto s0 = inputs[0]->get_shape();
charlie's avatar
fixes  
charlie committed
168
        // always add both multibroadcast instructions for dynamic shapes
charlie's avatar
initial  
charlie committed
169
170
        inputs[0] = m.insert_instruction(
            ins, make_op("multibroadcast", {{"out_dyn_dims", to_value(c_dyn_dims)}}), inputs);
171
        std::transform(inputs.begin() + 1, inputs.end(), inputs.begin() + 1, [&](auto input) {
172
            // uses previous input to avoid recalculating the common shape from the
173
            // full set of input shapes at runtime
174
            auto s = input->get_shape();
charlie's avatar
initial  
charlie committed
175
176
177
178
179
            return m.insert_instruction(
                ins,
                make_op("multibroadcast", {{"out_dyn_dims", to_value(c_dyn_dims)}}),
                input,
                inputs[0]);
180
        });
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
        std::transform(inputs.begin(), inputs.end(), inputs.begin(), [&](auto input) {
            if(input->get_shape().type() != c_type)
            {
                input =
                    m.insert_instruction(ins, make_op("convert", {{"target_type", c_type}}), input);
            }
            return input;
        });
    }
    else
    {
        auto common = common_shape(to_shapes(inputs));
        std::transform(inputs.begin(), inputs.end(), inputs.begin(), [&](auto input) {
            if(input->get_shape().lens() != common.lens())
            {
                input = m.insert_instruction(
                    ins, make_op("multibroadcast", {{"out_lens", common.lens()}}), input);
            }
            if(input->get_shape().type() != common.type())
            {
                input = m.insert_instruction(
                    ins, make_op("convert", {{"target_type", common.type()}}), input);
            }
            return input;
        });
    }
207
208
209
210
211
212
213
214
215
216
217
218
219
220
    return inputs;
}

std::vector<instruction_ref> add_common_args(module& m, std::vector<instruction_ref> inputs)
{
    return insert_common_args(m, m.end(), std::move(inputs));
}

instruction_ref insert_common_op(module& m,
                                 instruction_ref ins,
                                 const operation& op,
                                 std::vector<instruction_ref> inputs)
{
    return m.insert_instruction(ins, op, insert_common_args(m, ins, std::move(inputs)));
221
222
223
224
225
226
227
228
229
}

instruction_ref add_common_op(module& m, const operation& op, std::vector<instruction_ref> inputs)
{
    return insert_common_op(m, m.end(), op, std::move(inputs));
}

} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx