common.cpp 8.67 KB
Newer Older
1
2
3
/*
 * The MIT License (MIT)
 *
4
 * Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
24
25
26
27
28
29
#include <migraphx/common.hpp>
#include <migraphx/module.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/algorithm.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/instruction.hpp>
30
#include <migraphx/ranges.hpp>
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
                                                  std::vector<std::size_t> s1)
{
    if(s0 == s1)
        return s0;
    if(s0.size() > s1.size())
        s0.swap(s1);
    std::vector<std::size_t> out_lens(s1);
    auto offset = s1.size() - s0.size();
    std::transform(
        s0.begin(), s0.end(), s1.begin() + offset, out_lens.begin() + offset, [&](auto a, auto b) {
            if(a != b and a != 1 and b != 1)
            {
47
48
                MIGRAPHX_THROW("COMPUTE_BROADCASTLEN: shape {" + migraphx::to_string_range(s0) +
                               "} and {" + migraphx::to_string_range(s1) + "} mismatch!");
49
50
51
52
53
            }
            return std::max(a, b);
        });
    return out_lens;
}
charlie's avatar
initial  
charlie committed
54
55
56
std::vector<shape::dynamic_dimension>
compute_broadcasted_dyn_dims(std::vector<shape::dynamic_dimension> dds0,
                             std::vector<shape::dynamic_dimension> dds1)
57
{
charlie's avatar
initial  
charlie committed
58
    if(dds0.size() > dds1.size())
59
    {
charlie's avatar
initial  
charlie committed
60
        std::swap(dds0, dds1);
61
    }
charlie's avatar
initial  
charlie committed
62
63
64
65
66
67
68
69
70
    auto offset = dds1.size() - dds0.size();
    std::vector<shape::dynamic_dimension> out_dims(dds1);
    // If one within the range of the other
    auto dd_within_range = [&](shape::dynamic_dimension x, shape::dynamic_dimension y) {
        return (x.min >= y.min and x.max <= y.max);
    };
    std::transform(dds0.cbegin(),
                   dds0.cend(),
                   dds1.cbegin() + offset,
71
72
73
74
75
76
77
78
79
80
                   out_dims.begin() + offset,
                   [&](auto a, auto b) {
                       if(a == b or b == 1)
                       {
                           return a;
                       }
                       else if(a == 1)
                       {
                           return b;
                       }
charlie's avatar
initial  
charlie committed
81
82
83
84
85
86
87
88
                       else if(dd_within_range(a, b))
                       {
                           return a;
                       }
                       else if(dd_within_range(b, a))
                       {
                           return b;
                       }
89
90
91
                       else
                       {
                           MIGRAPHX_THROW("COMPUTE_BROADCASTED_DYN_DIMS: dynamic shapes {" +
charlie's avatar
initial  
charlie committed
92
93
                                          migraphx::to_string_range(dds0) + "} and {" +
                                          migraphx::to_string_range(dds1) + "} mismatch!");
94
95
                       }
                   });
96
97
98
    return out_dims;
}

charlie's avatar
initial  
charlie committed
99
100
101
102
103
104
105
106
std::vector<shape::dynamic_dimension> compute_broadcasted_dyn_dims(shape s0, shape s1)
{
    // change both shapes to dynamic_dimension representation
    s0 = s0.to_dynamic();
    s1 = s1.to_dynamic();
    return compute_broadcasted_dyn_dims(s0.dyn_dims(), s1.dyn_dims());
}

107
108
109
110
111
112
113
114
115
std::vector<shape::dynamic_dimension> compute_common_dyn_dims(const std::vector<shape>& shapes)
{
    auto ret_shape = shapes.at(0);
    std::for_each(shapes.cbegin() + 1, shapes.cend(), [&](auto s) {
        ret_shape = shape{ret_shape.type(), compute_broadcasted_dyn_dims(ret_shape, s)};
    });
    return ret_shape.dyn_dims();
}

116
117
118
std::vector<std::size_t> compute_common_lens(const std::vector<shape>& shapes)
{
    assert(not shapes.empty());
119
120
    assert(
        std::none_of(shapes.cbegin(), shapes.cend(), [](auto shape) { return shape.dynamic(); }));
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
    return transform_accumulate(shapes.begin() + 1,
                                shapes.end(),
                                shapes.front().lens(),
                                &compute_broadcasted_lens,
                                [](auto s) { return s.lens(); });
}

shape::type_t compute_common_type(shape::type_t t1, shape::type_t t2)
{
    if(t1 == t2)
        return t1;
    shape::type_t result;
    shape::visit(t1, [&](auto x) {
        shape::visit(t2, [&](auto y) {
            // Workaround broken warning on gcc 5
            (void)x;
            (void)y;
            using type = std::common_type_t<decltype(x()), decltype(y())>;
            result     = shape::get_type<type>{};
        });
    });
    return result;
}

shape::type_t compute_common_types(const std::vector<shape>& shapes)
{
    assert(not shapes.empty());
    return transform_accumulate(
        shapes.begin() + 1, shapes.end(), shapes.front().type(), &compute_common_type, [&](auto s) {
            return s.type();
        });
}

shape common_shape(const std::vector<shape>& shapes)
{
    if(shapes.empty())
        return {};
    return {compute_common_types(shapes), compute_common_lens(shapes)};
}

161
162
std::vector<instruction_ref>
insert_common_args(module& m, instruction_ref ins, std::vector<instruction_ref> inputs)
163
{
164
165
166
    if(std::any_of(
           inputs.cbegin(), inputs.cend(), [](auto input) { return input->get_shape().dynamic(); }))
    {
167
168
169
        auto input_shapes = to_shapes(inputs);
        auto c_type       = compute_common_types(input_shapes);
        auto c_dyn_dims   = compute_common_dyn_dims(input_shapes);
170

171
        auto s0 = inputs[0]->get_shape();
charlie's avatar
initial  
charlie committed
172
173
174
        // changed to always add the multibroadcast to handle the cases from split_single_dyn_dim
        inputs[0] = m.insert_instruction(
            ins, make_op("multibroadcast", {{"out_dyn_dims", to_value(c_dyn_dims)}}), inputs);
175
        std::transform(inputs.begin() + 1, inputs.end(), inputs.begin() + 1, [&](auto input) {
176
            // uses previous input to avoid recalculating the common shape from the
177
            // full set of input shapes at runtime
178
            auto s = input->get_shape();
charlie's avatar
initial  
charlie committed
179
180
181
182
183
            return m.insert_instruction(
                ins,
                make_op("multibroadcast", {{"out_dyn_dims", to_value(c_dyn_dims)}}),
                input,
                inputs[0]);
184
        });
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
        std::transform(inputs.begin(), inputs.end(), inputs.begin(), [&](auto input) {
            if(input->get_shape().type() != c_type)
            {
                input =
                    m.insert_instruction(ins, make_op("convert", {{"target_type", c_type}}), input);
            }
            return input;
        });
    }
    else
    {
        auto common = common_shape(to_shapes(inputs));
        std::transform(inputs.begin(), inputs.end(), inputs.begin(), [&](auto input) {
            if(input->get_shape().lens() != common.lens())
            {
                input = m.insert_instruction(
                    ins, make_op("multibroadcast", {{"out_lens", common.lens()}}), input);
            }
            if(input->get_shape().type() != common.type())
            {
                input = m.insert_instruction(
                    ins, make_op("convert", {{"target_type", common.type()}}), input);
            }
            return input;
        });
    }
211
212
213
214
215
216
217
218
219
220
221
222
223
224
    return inputs;
}

std::vector<instruction_ref> add_common_args(module& m, std::vector<instruction_ref> inputs)
{
    return insert_common_args(m, m.end(), std::move(inputs));
}

instruction_ref insert_common_op(module& m,
                                 instruction_ref ins,
                                 const operation& op,
                                 std::vector<instruction_ref> inputs)
{
    return m.insert_instruction(ins, op, insert_common_args(m, ins, std::move(inputs)));
225
226
227
228
229
230
231
232
233
}

instruction_ref add_common_op(module& m, const operation& op, std::vector<instruction_ref> inputs)
{
    return insert_common_op(m, m.end(), op, std::move(inputs));
}

} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx