"git@developer.sourcefind.cn:gaoqiong/migraphx.git" did not exist on "219916976f8b26fa51d73f397767f77fed9f5c2e"
common.cpp 8.96 KB
Newer Older
1
2
3
/*
 * The MIT License (MIT)
 *
4
 * Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
24
25
26
27
28
29
#include <migraphx/common.hpp>
#include <migraphx/module.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/algorithm.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/instruction.hpp>
30
#include <migraphx/ranges.hpp>
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

// Example:
// s0 = (3,2,4,5) and s1 = (2,1,1)
//
// In this case we need to broadcast (:,1,1) portion of
// s1 plus broadcast the 1st dimension of s1
// giving output_lens = (3,2,4,5)
//
// Another example:
// s0 = (3,2,1,5) and s1 = (2,7,5)
// In this case we need to broadcast the (:,:,1:,:) axis
// of s0 plus the 1st dimension of s1 giving
// output_lens = (3,2,7,5)
47
//
48
49
50
51
52
53
54
55
56
57
58
59
60
std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
                                                  std::vector<std::size_t> s1)
{
    if(s0 == s1)
        return s0;
    if(s0.size() > s1.size())
        s0.swap(s1);
    std::vector<std::size_t> out_lens(s1);
    auto offset = s1.size() - s0.size();
    std::transform(
        s0.begin(), s0.end(), s1.begin() + offset, out_lens.begin() + offset, [&](auto a, auto b) {
            if(a != b and a != 1 and b != 1)
            {
61
62
                MIGRAPHX_THROW("COMPUTE_BROADCASTLEN: shape {" + migraphx::to_string_range(s0) +
                               "} and {" + migraphx::to_string_range(s1) + "} mismatch!");
63
64
65
66
67
68
            }
            return std::max(a, b);
        });
    return out_lens;
}

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
std::vector<shape::dynamic_dimension> compute_broadcasted_dyn_dims(shape s0, shape s1)
{
    // change both shapes to dynamic_dimension representation
    s0 = s0.to_dynamic();
    s1 = s1.to_dynamic();
    if(s0.ndim() > s1.ndim())
    {
        std::swap(s0, s1);
    }
    auto offset = s1.ndim() - s0.ndim();
    std::vector<shape::dynamic_dimension> out_dims(s1.dyn_dims());
    std::transform(
        s0.dyn_dims().cbegin(),
        s0.dyn_dims().cend(),
        s1.dyn_dims().cbegin() + offset,
        out_dims.begin() + offset,
        [&](auto a, auto b) {
            if(a == b)
            {
                return a;
            }
90
            else if(a == 1 or b == 1)
91
            {
92
93
                // setting optimals to empty, may need to be changed
                return shape::dynamic_dimension{std::max(a.min, b.min), std::max(a.max, b.max)};
94
95
96
97
98
99
100
101
102
103
104
105
            }
            else
            {
                MIGRAPHX_THROW("COMPUTE_BROADCASTED_DYN_DIMS: dynamic shapes {" +
                               migraphx::to_string_range(s0.dyn_dims()) + "} and {" +
                               migraphx::to_string_range(s1.dyn_dims()) + "} mismatch!");
            }
        });
    return out_dims;
}

// Compute the common (broadcasted) dimensions of a list of fixed shapes
106
107
108
std::vector<std::size_t> compute_common_lens(const std::vector<shape>& shapes)
{
    assert(not shapes.empty());
109
110
    assert(
        std::none_of(shapes.cbegin(), shapes.cend(), [](auto shape) { return shape.dynamic(); }));
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
    return transform_accumulate(shapes.begin() + 1,
                                shapes.end(),
                                shapes.front().lens(),
                                &compute_broadcasted_lens,
                                [](auto s) { return s.lens(); });
}

shape::type_t compute_common_type(shape::type_t t1, shape::type_t t2)
{
    if(t1 == t2)
        return t1;
    shape::type_t result;
    shape::visit(t1, [&](auto x) {
        shape::visit(t2, [&](auto y) {
            // Workaround broken warning on gcc 5
            (void)x;
            (void)y;
            using type = std::common_type_t<decltype(x()), decltype(y())>;
            result     = shape::get_type<type>{};
        });
    });
    return result;
}

shape::type_t compute_common_types(const std::vector<shape>& shapes)
{
    assert(not shapes.empty());
    return transform_accumulate(
        shapes.begin() + 1, shapes.end(), shapes.front().type(), &compute_common_type, [&](auto s) {
            return s.type();
        });
}

shape common_shape(const std::vector<shape>& shapes)
{
    if(shapes.empty())
        return {};
    return {compute_common_types(shapes), compute_common_lens(shapes)};
}

151
152
153
154
155
156
157
158
159
160
161
162
/**
 * @brief  Creates and adds instructions to convert input arguments to common shapes and types
 * by adding multi-broadcast and type convert operations. This is a utility function for creating
 * operations where the shape and type of inputs need to match. It supports both dynamic and
 * static-shaped arguments.
 *
 * @param m         containing module for instruction
 * @param ins       insertion location in instruction list
 * @param inputs    instructions to use as argument list; also, the shapes
 *                  attached to each instruction_ref are considered for broadcasting
 * @return std::vector<instruction_ref>   a modified argument list
 */
163
164
std::vector<instruction_ref>
insert_common_args(module& m, instruction_ref ins, std::vector<instruction_ref> inputs)
165
{
166
167
168
169
170
    if(std::any_of(
           inputs.cbegin(), inputs.cend(), [](auto input) { return input->get_shape().dynamic(); }))
    {
        // currently only handles the binary case
        if(inputs.size() != 2)
171
        {
172
            MIGRAPHX_THROW("INSERT_COMMON_OP: not handled; " + migraphx::to_string(inputs.size()) +
173
                           " inputs.  Requires exactly two inputs if any are dynamic shape");
174
        }
175
176
177
178
179
180
181

        auto c_type = compute_common_types(to_shapes(inputs));
        auto c_dyn_dims =
            compute_broadcasted_dyn_dims(inputs[0]->get_shape(), inputs[1]->get_shape());

        // following should work for a static or dynamic shape
        if(inputs[0]->get_shape().dyn_dims() != c_dyn_dims)
182
        {
183
184
185
186
187
            inputs[0] = m.insert_instruction(
                ins,
                make_op("multibroadcast", {{"out_dyn_dims", to_value(c_dyn_dims)}}),
                inputs[0],
                inputs[1]);
188
        }
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
        if(inputs[1]->get_shape().dyn_dims() != c_dyn_dims)
        {
            inputs[1] = m.insert_instruction(
                ins,
                make_op("multibroadcast", {{"out_dyn_dims", to_value(c_dyn_dims)}}),
                inputs[1],
                inputs[0]);
        }
        std::transform(inputs.begin(), inputs.end(), inputs.begin(), [&](auto input) {
            if(input->get_shape().type() != c_type)
            {
                input =
                    m.insert_instruction(ins, make_op("convert", {{"target_type", c_type}}), input);
            }
            return input;
        });
    }
    else
    {
        auto common = common_shape(to_shapes(inputs));
        std::transform(inputs.begin(), inputs.end(), inputs.begin(), [&](auto input) {
            if(input->get_shape().lens() != common.lens())
            {
                input = m.insert_instruction(
                    ins, make_op("multibroadcast", {{"out_lens", common.lens()}}), input);
            }
            if(input->get_shape().type() != common.type())
            {
                input = m.insert_instruction(
                    ins, make_op("convert", {{"target_type", common.type()}}), input);
            }
            return input;
        });
    }
223
224
225
226
227
228
229
230
231
232
233
234
235
236
    return inputs;
}

std::vector<instruction_ref> add_common_args(module& m, std::vector<instruction_ref> inputs)
{
    return insert_common_args(m, m.end(), std::move(inputs));
}

instruction_ref insert_common_op(module& m,
                                 instruction_ref ins,
                                 const operation& op,
                                 std::vector<instruction_ref> inputs)
{
    return m.insert_instruction(ins, op, insert_common_args(m, ins, std::move(inputs)));
237
238
}

239
240
241
/**
 * Wrapper for insert_common_args() which inserts operation at the end of the module.
 */
242
243
244
245
246
247
248
instruction_ref add_common_op(module& m, const operation& op, std::vector<instruction_ref> inputs)
{
    return insert_common_op(m, m.end(), op, std::move(inputs));
}

} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx