"vscode:/vscode.git/clone" did not exist on "d8388957e816117dbe26f15564423ba8a5684f50"
fuse_ops.cpp 32.1 KB
Newer Older
kahmed10's avatar
kahmed10 committed
1
2
#include <migraphx/pass_manager.hpp>
#include <migraphx/dead_code_elimination.hpp>
Paul's avatar
Paul committed
3
4
5
#include <migraphx/gpu/fuse_ops.hpp>
#include <migraphx/matcher.hpp>
#include <migraphx/gpu/miopen.hpp>
kahmed10's avatar
kahmed10 committed
6
#include <migraphx/gpu/clip.hpp>
Paul's avatar
Paul committed
7
#include <migraphx/gpu/convolution.hpp>
8
#include <migraphx/gpu/device_name.hpp>
9
#include <migraphx/gpu/oper.hpp>
kahmed10's avatar
kahmed10 committed
10
11
#include <migraphx/gpu/add.hpp>
#include <migraphx/gpu/mul.hpp>
12
#include <migraphx/gpu/gemm.hpp>
kahmed10's avatar
kahmed10 committed
13
#include <migraphx/gpu/device/layernorm.hpp>
kahmed10's avatar
kahmed10 committed
14
#include <migraphx/gpu/device/gelu.hpp>
Paul's avatar
Paul committed
15
#include <migraphx/gpu/device/mul_add.hpp>
16
17
18
19
20
#include <migraphx/gpu/device/add_clip.hpp>
#include <migraphx/gpu/device/add_relu.hpp>
#include <migraphx/gpu/device/add_sigmoid.hpp>
#include <migraphx/gpu/device/add_tanh.hpp>
#include <migraphx/gpu/device/mul_add_relu.hpp>
Paul's avatar
Paul committed
21
#include <migraphx/gpu/device/add.hpp>
22
23
24
#include <migraphx/match/layernorm.hpp>
#include <migraphx/match/gelu_erf.hpp>
#include <migraphx/match/gelu_tanh.hpp>
Paul's avatar
Paul committed
25
#include <migraphx/instruction.hpp>
26
#include <migraphx/register_op.hpp>
Paul's avatar
Paul committed
27
#include <migraphx/array.hpp>
kahmed10's avatar
kahmed10 committed
28
#include <migraphx/op/clip.hpp>
kahmed10's avatar
kahmed10 committed
29
#include <cmath>
30
#include <set>
Paul's avatar
Paul committed
31
32

namespace migraphx {
Paul's avatar
Paul committed
33
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
34
35
namespace gpu {

36
37
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_DISABLE_MIOPEN_FUSION)

Paul's avatar
Paul committed
38
39
40
41
42
43
44
45
struct fusion
{
    using op_t = miopenFusionOpDescriptor_t;
    shared<fusion_plan_descriptor> fp;

    // Used as a temporary hack to keep descriptor references alive
    std::vector<std::shared_ptr<void>> storage;

Paul's avatar
Paul committed
46
    template <class T>
Paul's avatar
Paul committed
47
48
49
50
51
52
53
    auto keep_alive(T x)
    {
        auto result = share(std::move(x));
        storage.push_back(result);
        return result;
    }

54
55
    fusion() = default;

Paul's avatar
Paul committed
56
57
    fusion(const shape& input)
    {
58
        assert(input.standard());
Paul's avatar
Paul committed
59
        auto t = make_tensor(input);
Paul's avatar
Paul committed
60
        fp     = make_fusion_plan(t);
61
        assert(fp);
Paul's avatar
Paul committed
62
63
64
        keep_alive(std::move(t));
    }

65
66
    bool empty() const { return fp == nullptr; }

Paul's avatar
Paul committed
67
68
    op_t operator[](std::size_t i) const
    {
69
        assert(fp);
Paul's avatar
Paul committed
70
71
72
        op_t result;
        auto status = miopenFusionPlanGetOp(fp.get(), i, &result);
        if(status != miopenStatusSuccess)
Paul's avatar
Paul committed
73
            MIGRAPHX_THROW("Failed retrieving operator at " + std::to_string(i));
Paul's avatar
Paul committed
74
75
76
        return result;
    }

77
78
79
80
81
    auto get() const
    {
        assert(fp);
        return fp.get();
    }
Paul's avatar
Paul committed
82
83
84

    op_t create_bias(const shape& bias)
    {
85
        assert(fp);
Paul's avatar
Paul committed
86
        op_t result;
Paul's avatar
Paul committed
87
88
        auto b      = shape{bias.type(), {1, bias.lens().at(1), 1, 1}};
        auto t      = keep_alive(make_tensor(b));
Paul's avatar
Paul committed
89
90
        auto status = miopenCreateOpBiasForward(fp.get(), &result, t.get());
        if(status != miopenStatusSuccess)
Paul's avatar
Paul committed
91
            MIGRAPHX_THROW("Creating operator failed");
Paul's avatar
Paul committed
92
93
94
95
96
        return result;
    }

    op_t create_relu()
    {
97
        assert(fp);
Paul's avatar
Paul committed
98
99
100
        op_t result;
        auto status = miopenCreateOpActivationForward(fp.get(), &result, miopenActivationRELU);
        if(status != miopenStatusSuccess)
Paul's avatar
Paul committed
101
            MIGRAPHX_THROW("Creating operator failed");
Paul's avatar
Paul committed
102
103
104
105
106
        return result;
    }

    op_t create_conv(const op::convolution& op, const shape& weights)
    {
107
        assert(fp);
Paul's avatar
Paul committed
108
        op_t result;
Paul's avatar
Paul committed
109
110
        auto cd     = keep_alive(make_conv(op));
        auto t      = keep_alive(make_tensor(weights));
Paul's avatar
Paul committed
111
112
        auto status = miopenCreateOpConvForward(fp.get(), &result, cd.get(), t.get());
        if(status != miopenStatusSuccess)
Paul's avatar
Paul committed
113
            MIGRAPHX_THROW("Creating operator failed");
Paul's avatar
Paul committed
114
115
        return result;
    }
Paul's avatar
Paul committed
116
117
118

    shape get_workspace(context&)
    {
119
        // assert(fp);
Paul's avatar
Paul committed
120
121
122
123
124
        // TODO: Use zero workspace for now
        std::size_t ws_size = 0;
        // int algo_count = 1;
        // miopenConvFwdAlgorithm_t algo;
        // miopenFusionPlanConvolutionGetAlgo(fp.get(), 1, &algo_count, &algo);
Paul's avatar
Paul committed
125
126
        // miopenFusionPlanGetWorkSpaceSize(ctx.get_stream().get_miopen(), fp.get(), &ws_size,
        // algo);
Paul's avatar
Paul committed
127
128
129
        return shape{shape::int8_type, {ws_size}};
    }

130
    bool compile(context& ctx)
Paul's avatar
Paul committed
131
    {
132
        assert(fp);
133
134
        return miopenCompileFusionPlan(ctx.get_stream().get_miopen(), fp.get()) ==
               miopenStatusSuccess;
Paul's avatar
Paul committed
135
136
    }

Paul's avatar
Paul committed
137
138
139
140
    argument execute(context& ctx,
                     const fused_operator_args& fargs,
                     const argument& x,
                     const argument& y) const
Paul's avatar
Paul committed
141
    {
142
        assert(fp);
Paul's avatar
Paul committed
143
144
        auto x_td   = make_tensor(x.get_shape());
        auto y_td   = make_tensor(y.get_shape());
Paul's avatar
Paul committed
145
        auto status = miopenExecuteFusionPlan(ctx.get_stream().get_miopen(),
Paul's avatar
Paul committed
146
147
148
149
150
151
                                              fp.get(),
                                              x_td.get(),
                                              x.implicit(),
                                              y_td.get(),
                                              y.implicit(),
                                              fargs.get());
Paul's avatar
Paul committed
152
        if(status != miopenStatusSuccess)
Paul's avatar
Paul committed
153
            MIGRAPHX_THROW("Failed to execute fusion plan");
Paul's avatar
Paul committed
154
155
        return y;
    }
Paul's avatar
Paul committed
156
157
};

158
159
160
161
162
163
const std::unordered_set<std::string>& get_supported_archs()
{
    static std::unordered_set<std::string> supported_archs{"gfx900", "gfx906", "gfx908", "gfx1030"};
    return supported_archs;
}

Paul's avatar
Paul committed
164
MIGRAPHX_PRED_MATCHER(bias_shape, instruction_ref ins)
Paul's avatar
Paul committed
165
166
{
    auto&& s = ins->get_shape();
Paul's avatar
Paul committed
167
168
    return s.broadcasted() and s.strides().size() == 4 and s.strides()[0] == 0 and
           s.strides()[1] != 0 and s.strides()[2] == 0 and s.strides()[3] == 0;
Paul's avatar
Paul committed
169
170
}

Paul's avatar
Paul committed
171
MIGRAPHX_PRED_MATCHER(fusable_conv, instruction_ref ins)
Paul's avatar
Paul committed
172
{
173
    const auto device_name = trim(split_string(get_device_name(), ':').front());
174
175
    if(not contains(get_supported_archs(), device_name))
        return false;
176
177
    if(enabled(MIGRAPHX_DISABLE_MIOPEN_FUSION{}))
        return false;
Paul's avatar
Paul committed
178
179
    if(ins->name() != "gpu::convolution")
        return false;
Paul's avatar
Paul committed
180
181
    if(ins->get_shape().type() != shape::float_type)
        return false;
Paul's avatar
Paul committed
182
183
184
    auto wei = ins->inputs().at(1)->get_shape();
    assert(wei.lens().size() == 4);
    auto conv = any_cast<miopen_convolution>(ins->get_operator());
Khalique's avatar
Khalique committed
185
    if(conv.op.group > 1)
Khalique's avatar
Khalique committed
186
        return false;
Paul's avatar
Paul committed
187
    if(wei.lens()[1] > 512 and conv.algo != miopenConvolutionFwdAlgoWinograd)
Paul's avatar
Paul committed
188
        return false;
189
190
191
192
193
194

    // Do not fuse non-symmetric input
    auto input_lens = ins->inputs().at(0)->get_shape().lens();
    if(input_lens[2] != input_lens[3] or wei.lens()[2] != wei.lens()[3])
        return false;

Paul's avatar
Paul committed
195
    auto op = conv.op;
196
197
    // Dont fuse winograd for non-3x3s since there is no fused windograd for those configs
    if(conv.algo == miopenConvolutionFwdAlgoWinograd and wei.lens()[2] != 3 and
198
       wei.lens()[3] != 3 and contains({{1, 1}}, op.stride))
199
        return false;
kahmed10's avatar
kahmed10 committed
200
    return contains({{0, 0, 0, 0}, {1, 1, 1, 1}, {2, 2, 2, 2}}, op.padding) and
201
           contains({{0, 0}, {1, 1}}, op.stride) and contains({{1, 1}}, op.dilation);
Paul's avatar
Paul committed
202
203
}

204
struct hip_triadd : ternary_device<hip_triadd, &device::add>
Paul's avatar
Paul committed
205
206
{
};
207
MIGRAPHX_REGISTER_OP(hip_triadd)
Paul's avatar
Paul committed
208

209
struct hip_triadd_clip : quinary_device<hip_triadd_clip, &device::add_clip>
kahmed10's avatar
kahmed10 committed
210
211
{
};
212
MIGRAPHX_REGISTER_OP(hip_triadd_clip)
kahmed10's avatar
kahmed10 committed
213

214
struct hip_add_clip : quaternary_device<hip_add_clip, &device::add_clip>
kahmed10's avatar
kahmed10 committed
215
216
{
};
217
MIGRAPHX_REGISTER_OP(hip_add_clip)
kahmed10's avatar
kahmed10 committed
218

219
struct hip_triadd_relu : ternary_device<hip_triadd_relu, &device::add_relu>
Paul's avatar
Paul committed
220
221
{
};
222
MIGRAPHX_REGISTER_OP(hip_triadd_relu)
Paul's avatar
Paul committed
223

224
225
226
struct hip_triadd_sigmoid : ternary_device<hip_triadd_sigmoid, &device::add_sigmoid>
{
};
227
MIGRAPHX_REGISTER_OP(hip_triadd_sigmoid)
228
229
230
231

struct hip_triadd_tanh : ternary_device<hip_triadd_tanh, &device::add_tanh>
{
};
232
MIGRAPHX_REGISTER_OP(hip_triadd_tanh)
233
234
235
236

struct hip_add_relu : binary_device<hip_add_relu, &device::add_relu>
{
};
237
MIGRAPHX_REGISTER_OP(hip_add_relu)
238
239
240
241

struct hip_add_sigmoid : binary_device<hip_add_relu, &device::add_sigmoid>
{
};
242
MIGRAPHX_REGISTER_OP(hip_add_sigmoid)
243
244

struct hip_add_tanh : binary_device<hip_add_tanh, &device::add_tanh>
Paul's avatar
Paul committed
245
246
{
};
247
MIGRAPHX_REGISTER_OP(hip_add_tanh)
Paul's avatar
Paul committed
248

kahmed10's avatar
kahmed10 committed
249
250
struct hip_layernorm : unary_device<hip_layernorm, &device::layernorm>
{
251
252
    // Empty finalize to skip dimension reduction
    void finalize(context&, const shape&, const std::vector<shape>&) {}
kahmed10's avatar
kahmed10 committed
253
};
254
MIGRAPHX_REGISTER_OP(hip_layernorm)
kahmed10's avatar
kahmed10 committed
255

Paul Fultz II's avatar
Paul Fultz II committed
256
257
258
259
260
261
262
struct hip_triadd_layernorm : ternary_device<hip_triadd_layernorm, &device::triadd_layernorm>
{
    // Empty finalize to skip dimension reduction
    void finalize(context&, const shape&, const std::vector<shape>&) {}
};
MIGRAPHX_REGISTER_OP(hip_triadd_layernorm)

kahmed10's avatar
kahmed10 committed
263
264
265
struct hip_gelu : unary_device<hip_gelu, &device::gelu>
{
};
266
MIGRAPHX_REGISTER_OP(hip_gelu)
kahmed10's avatar
kahmed10 committed
267
268
269
270

struct hip_add_gelu : binary_device<hip_add_gelu, &device::add_gelu>
{
};
271
MIGRAPHX_REGISTER_OP(hip_add_gelu)
kahmed10's avatar
kahmed10 committed
272
273
274
275

struct hip_gelu_new : unary_device<hip_gelu_new, &device::gelu_new>
{
};
276
MIGRAPHX_REGISTER_OP(hip_gelu_new)
kahmed10's avatar
kahmed10 committed
277
278
279
280

struct hip_add_gelu_new : binary_device<hip_add_gelu_new, &device::add_gelu_new>
{
};
281
MIGRAPHX_REGISTER_OP(hip_add_gelu_new)
kahmed10's avatar
kahmed10 committed
282

283
struct hip_mul_add : ternary_device<hip_mul_add, &device::mul_add>
Paul's avatar
Paul committed
284
285
{
};
286
MIGRAPHX_REGISTER_OP(hip_mul_add)
Paul's avatar
Paul committed
287

288
struct hip_mul_add_relu : ternary_device<hip_mul_add_relu, &device::mul_add_relu>
Paul's avatar
Paul committed
289
290
{
};
291
MIGRAPHX_REGISTER_OP(hip_mul_add_relu)
Paul's avatar
Paul committed
292

Paul's avatar
Paul committed
293
294
295
void move_broadcasted_back(std::vector<instruction_ref>& args)
{
    // Ensure the last arguments is the broadcasted one
Paul's avatar
Paul committed
296
    auto last = std::prev(args.end());
Paul's avatar
Paul committed
297
298
    auto it =
        std::find_if(args.begin(), last, [](auto arg) { return arg->get_shape().broadcasted(); });
Paul's avatar
Paul committed
299
300
    if(it != last)
        std::swap(*it, *std::prev(last));
Paul's avatar
Paul committed
301
302
303
304
305
}

void move_standard_front(std::vector<instruction_ref>& args)
{
    // Ensure the first arguments is the standard one
Paul's avatar
Paul committed
306
    auto last = std::prev(args.end());
Paul's avatar
Paul committed
307
308
    auto it =
        std::find_if(args.begin(), last, [](auto arg) { return arg->get_shape().standard(); });
Paul's avatar
Paul committed
309
    if(it != last)
Paul's avatar
Paul committed
310
311
312
        std::swap(*it, args.front());
}

313
314
auto gpu_name(const std::string& s) { return match::name("gpu::" + s); }

kahmed10's avatar
kahmed10 committed
315
316
struct find_layernorm
{
317
    auto matcher() const { return match::layernorm(&gpu_name); }
kahmed10's avatar
kahmed10 committed
318

319
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
320
321
322
323
324
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto args  = ins->inputs();

325
326
327
328
329
330
331
332
333
        // We dont fuse for non-standard layouts
        if(not x_ins->get_shape().standard())
            return;

        auto relements = x_ins->get_shape().lens().back();

        if(relements > 1024 or (relements % 4 != 0 and relements > 256))
            return;

334
        m.replace_instruction(ins, hip_layernorm{}, x_ins, args.back());
kahmed10's avatar
kahmed10 committed
335
336
337
    }
};

Paul Fultz II's avatar
Paul Fultz II committed
338
339
340
341
342
343
344
345
struct find_triadd_layernorm
{
    auto matcher() const
    {
        return match::name("gpu::layernorm")(match::arg(0)(match::name("gpu::triadd")(
            match::used_once(), match::all_of[match::inputs()](match::standard_shape()))));
    }

346
    void apply(module& m, const match::matcher_result& r) const
Paul Fultz II's avatar
Paul Fultz II committed
347
348
349
    {
        auto ins    = r.result;
        auto triadd = ins->inputs().front();
350
        m.replace_instruction(ins, hip_triadd_layernorm{}, triadd->inputs());
Paul Fultz II's avatar
Paul Fultz II committed
351
352
353
    }
};

kahmed10's avatar
kahmed10 committed
354
355
struct find_gelu
{
356
    auto matcher() const { return match::gelu_erf(&gpu_name); }
kahmed10's avatar
kahmed10 committed
357

358
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
359
360
361
362
363
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto args  = ins->inputs();

364
        m.replace_instruction(ins, hip_gelu{}, x_ins, args.back());
kahmed10's avatar
kahmed10 committed
365
366
367
368
369
370
371
372
373
374
    }
};

struct find_add_gelu
{
    auto matcher() const
    {
        return match::name("gpu::gelu")(match::arg(0)(match::name("gpu::add").bind("add")));
    }

375
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
376
377
378
379
380
381
382
383
    {
        auto add_ins = r.instructions["add"];
        auto ins     = r.result;
        auto args    = add_ins->inputs();
        move_standard_front(args);
        move_broadcasted_back(args);

        args.back() = ins->inputs().back();
384
        m.replace_instruction(ins, hip_add_gelu{}, args);
kahmed10's avatar
kahmed10 committed
385
386
387
388
389
    }
};

struct find_gelu_new
{
kahmed10's avatar
kahmed10 committed
390
    bool fast_math = true;
kahmed10's avatar
kahmed10 committed
391

392
    auto matcher() const { return match::gelu_tanh(&gpu_name); }
kahmed10's avatar
kahmed10 committed
393

394
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
395
396
397
398
399
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto args  = ins->inputs();

Paul Fultz II's avatar
Paul Fultz II committed
400
        if(fast_math)
401
            m.replace_instruction(ins, hip_gelu{}, x_ins, args.back());
Paul Fultz II's avatar
Paul Fultz II committed
402
        else
403
            m.replace_instruction(ins, hip_gelu_new{}, x_ins, args.back());
kahmed10's avatar
kahmed10 committed
404
405
406
407
408
409
410
411
412
413
    }
};

struct find_add_gelu_new
{
    auto matcher() const
    {
        return match::name("gpu::gelu_new")(match::arg(0)(match::name("gpu::add").bind("add")));
    }

414
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
415
416
417
418
419
420
421
422
    {
        auto add_ins = r.instructions["add"];
        auto ins     = r.result;
        auto args    = add_ins->inputs();
        move_standard_front(args);
        move_broadcasted_back(args);

        args.back() = ins->inputs().back();
423
        m.replace_instruction(ins, hip_add_gelu_new{}, args);
kahmed10's avatar
kahmed10 committed
424
425
426
    }
};

kahmed10's avatar
kahmed10 committed
427
428
429
430
431
432
struct find_add_clip
{
    auto matcher() const
    {
        return match::name(std::unordered_set<std::string>{"gpu::clip", "gpu::clipped_relu"})(
            match::arg(0)(match::any_of(match::name("gpu::add"),
kahmed10's avatar
kahmed10 committed
433
                                        match::name("gpu::triadd"),
kahmed10's avatar
kahmed10 committed
434
435
436
437
                                        match::any_of[match::inputs()](match::standard_shape()))
                              .bind("add")));
    }

438
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
439
    {
kahmed10's avatar
kahmed10 committed
440
441
442
443
444
445
446
447
448
449
        auto add_ins  = r.instructions["add"];
        auto ins      = r.result;
        auto ins_args = ins->inputs();
        auto add_args = add_ins->inputs();
        move_standard_front(add_args);
        move_broadcasted_back(add_args);

        // Use the allocation from the clip operator
        add_args.pop_back();
        add_args.insert(add_args.end(), std::next(ins_args.begin()), ins_args.end());
kahmed10's avatar
kahmed10 committed
450
        if(add_ins->name() == "gpu::add")
451
            m.replace_instruction(ins, hip_add_clip{}, add_args);
kahmed10's avatar
kahmed10 committed
452
        else if(add_ins->name() == "gpu::triadd")
453
            m.replace_instruction(ins, hip_triadd_clip{}, add_args);
kahmed10's avatar
kahmed10 committed
454
455
456
    }
};

457
struct find_add_unary
Paul's avatar
Paul committed
458
{
459
460
461
    std::string op_name;
    operation binary_add_op;
    operation ternary_add_op;
Paul's avatar
Paul committed
462
463
    auto matcher() const
    {
464
        return match::name(op_name)(match::arg(0)(
Paul's avatar
Paul committed
465
            match::used_once(),
Paul's avatar
Paul committed
466
            match::any_of(match::name("gpu::add"),
kahmed10's avatar
kahmed10 committed
467
                          match::name("gpu::triadd"),
Paul's avatar
Paul committed
468
469
470
                          match::any_of(match::name("@literal"),
                                        match::any_of[match::inputs()](match::standard_shape())))
                .bind("add")));
Paul's avatar
Paul committed
471
    }
Paul's avatar
Paul committed
472

473
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
474
    {
Paul's avatar
Paul committed
475
        auto add_ins = r.instructions["add"];
Paul's avatar
Paul committed
476
477
        auto ins     = r.result;
        auto args    = add_ins->inputs();
Paul's avatar
Paul committed
478
479
480
        move_standard_front(args);
        move_broadcasted_back(args);

Paul's avatar
Paul committed
481
        // Use the allocation from the relu operator
Paul's avatar
Paul committed
482
        args.back() = ins->inputs().back();
Paul's avatar
Paul committed
483
        if(add_ins->name() == "gpu::add")
484
            m.replace_instruction(ins, binary_add_op, args);
kahmed10's avatar
kahmed10 committed
485
        else if(add_ins->name() == "gpu::triadd")
486
            m.replace_instruction(ins, ternary_add_op, args);
Paul's avatar
Paul committed
487
488
489
    }
};

Paul's avatar
Paul committed
490
struct find_triadd
Paul's avatar
Paul committed
491
492
493
{
    auto matcher() const
    {
Paul's avatar
Paul committed
494
        return match::name("gpu::add")(match::either_arg(0, 1)(
Paul's avatar
Paul committed
495
            match::name("gpu::add")(match::used_once()).bind("add"),
Paul's avatar
Paul committed
496
497
498
            match::any(match::any_of(match::name("@literal"),
                                     match::any_of[match::inputs()](match::standard_shape())))
                .bind("input")));
Paul's avatar
Paul committed
499
500
    }

501
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
502
    {
Paul's avatar
Paul committed
503
504
505
506
        auto add_ins   = r.instructions["add"];
        auto input_ins = r.instructions["input"];
        auto ins       = r.result;
        auto args      = add_ins->inputs();
507

Paul's avatar
Paul committed
508
        auto is_broadcasted = [](auto arg) { return arg->get_shape().broadcasted(); };
509
        if(std::count_if(args.begin(), args.end(), is_broadcasted) > 2)
Paul's avatar
Paul committed
510
511
            return;
        args.insert(args.begin(), input_ins);
Paul's avatar
Paul committed
512
513
514
        move_standard_front(args);
        move_broadcasted_back(args);

Paul's avatar
Paul committed
515
        args.back() = ins->inputs().back();
516
        m.replace_instruction(ins, hip_triadd{}, args);
Paul's avatar
Paul committed
517
    }
Paul's avatar
Paul committed
518
519
};

Paul's avatar
Paul committed
520
521
522
523
struct find_mul_add
{
    auto matcher() const
    {
Paul's avatar
Paul committed
524
525
        return match::name("gpu::add")(match::either_arg(0, 1)(
            match::name("gpu::mul")(match::used_once()).bind("mul"), match::any().bind("b")));
Paul's avatar
Paul committed
526
527
    }

528
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
529
    {
Paul's avatar
Paul committed
530
531
532
533
        auto mul_ins = r.instructions["mul"];
        auto b_ins   = r.instructions["b"];
        auto ins     = r.result;
        auto args    = mul_ins->inputs();
Paul's avatar
Paul committed
534
535
536
537
538
539
540
        assert(mul_ins != b_ins);

        move_standard_front(args);
        move_broadcasted_back(args);
        args.insert(std::prev(args.end()), b_ins);

        args.back() = ins->inputs().back();
541
        m.replace_instruction(ins, hip_mul_add{}, args);
Paul's avatar
Paul committed
542
543
544
    }
};

Paul's avatar
Paul committed
545
546
547
548
struct find_mul_add_relu
{
    auto matcher() const
    {
Paul's avatar
Paul committed
549
        return match::name("gpu::relu")(
kahmed10's avatar
kahmed10 committed
550
            match::arg(0)(match::name("gpu::mul_add")(match::used_once()).bind("mul_add")));
Paul's avatar
Paul committed
551
552
    }

553
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
554
555
    {
        auto mul_add_ins = r.instructions["mul_add"];
Paul's avatar
Paul committed
556
557
        auto ins         = r.result;
        auto args        = mul_add_ins->inputs();
Paul's avatar
Paul committed
558
559
560

        // Use the allocation from the relu operator
        args.back() = ins->inputs().back();
561
        m.replace_instruction(ins, hip_mul_add_relu{}, args);
Paul's avatar
Paul committed
562
563
564
    }
};

565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
struct miopen_fusion
{
    struct fuse_op_data
    {
        operation op;
        float alpha = 1;
        float beta  = 0;
    };
    struct fuse_op : fuse_op_data, reflect_equality<fuse_op>, reflect_stream<fuse_op>
    {
        template <class Self, class F>
        static auto reflect(Self& self, F f)
        {
            return pack(f(self.op, "op"), f(self.alpha, "alpha"), f(self.beta, "beta"));
        }
    };
    std::vector<fuse_op> ops = {};
    fusion f                 = {};
    std::function<void(context&, const fusion&, const std::vector<argument>&)> execute;
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return pack(f(self.ops, "ops"));
    }

590
591
592
593
594
    std::ptrdiff_t output_alias(const std::vector<shape>& shapes) const
    {
        return shapes.size() - 1;
    }

595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
    value compile(context& ctx, const shape&, std::vector<shape> inputs)
    {
        // Compensate for allocation
        inputs.pop_back();
        std::size_t i = 0;
        f             = fusion(inputs[i]);
        i++;
        std::vector<std::function<void(const fused_operator_args&, const std::vector<argument>&)>>
            invokers;
        for(auto&& fop : ops)
        {
            if(i > inputs.size())
            {
                f = {};
                return {};
            }
            if(fop.op.name() == "convolution")
            {
                auto* mop = f.create_conv(any_cast<op::convolution>(fop.op), inputs[i]);
                invokers.push_back(
                    [=](const fused_operator_args& fargs, const std::vector<argument>& args) {
                        miopenSetOpArgsConvForward(
                            fargs.get(), mop, &fop.alpha, &fop.beta, args[i].implicit());
                    });
                i++;
            }
            else if(fop.op.name() == "add")
            {
                auto* mop = f.create_bias(inputs[i]);
                invokers.push_back(
                    [=](const fused_operator_args& fargs, const std::vector<argument>& args) {
                        miopenSetOpArgsBiasForward(
                            fargs.get(), mop, &fop.alpha, &fop.beta, args[i].implicit());
                    });
                i++;
            }
            else if(fop.op.name() == "relu")
            {
                auto* mop = f.create_relu();
                invokers.push_back([=](const fused_operator_args& fargs,
                                       const std::vector<argument>&) {
                    miopenSetOpArgsActivForward(fargs.get(), mop, &fop.alpha, &fop.beta, 0, 0, 0);
                });
            }
            else
            {
                f = {};
                return {};
            }
        }
        if(not f.compile(ctx))
        {
            f = {};
            return {};
        }
        execute = [invokers](context& c, const fusion& ff, const std::vector<argument>& args) {
            auto fargs = make_fused_args();
            for(auto&& invoker : invokers)
                invoker(fargs, args);
            ff.execute(c, fargs, args.front(), args.back());
        };
        return {{"workspace", f.get_workspace(ctx).bytes()}};
    }
    void finalize(context& ctx, const shape& output_shape, const std::vector<shape>& inputs)
    {
        if(not f.empty())
            return;
        auto v = compile(ctx, output_shape, inputs);
        if(not v.is_object())
            MIGRAPHX_THROW("Failed to compile fusion plan");
    }
    std::string name() const { return "gpu::miopen_fusion"; }
    shape compute_shape(const std::vector<shape>& inputs) const
    {
        if(ops.empty())
            return {};
        // TODO: Check number of arguments
        return ops.front().op.compute_shape({inputs[0], inputs[1]});
    }
    argument compute(context& ctx, const shape&, const std::vector<argument>& args) const
    {
        execute(ctx, f, args);
        return args.back();
    }
};

Paul's avatar
Paul committed
681
682
683
struct miopen_conv_bias
{
    op::convolution op;
684
685
686
    fusion f          = {};
    fusion::op_t conv = {};
    fusion::op_t bias = {};
Paul's avatar
Paul committed
687

Paul's avatar
Paul committed
688
689
690
691
692
693
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return op::convolution::reflect(self.op, f);
    }

Paul's avatar
Paul committed
694
695
696
697
698
    std::string name() const { return "gpu::conv_bias"; }
    shape compute_shape(const std::vector<shape>& inputs) const
    {
        check_shapes{inputs, *this}.has(5);
        // TODO: Check slices
kahmed10's avatar
kahmed10 committed
699
        return op.normalize_compute_shape({inputs.at(0), inputs.at(1)});
Paul's avatar
Paul committed
700
    }
Paul's avatar
Paul committed
701
    argument compute(context& ctx, const shape&, const std::vector<argument>& args) const
Paul's avatar
Paul committed
702
    {
Paul's avatar
Paul committed
703
        auto fargs  = make_fused_args();
Paul's avatar
Paul committed
704
        float alpha = 1;
Paul's avatar
Paul committed
705
        float beta  = 0;
Paul's avatar
Paul committed
706
707
        miopenSetOpArgsConvForward(fargs.get(), conv, &alpha, &beta, args[1].implicit());
        miopenSetOpArgsBiasForward(fargs.get(), bias, &alpha, &beta, args[3].implicit());
Paul's avatar
Paul committed
708
        return f.execute(ctx, fargs, args[0], args[4]);
Paul's avatar
Paul committed
709
710
    }

711
712
713
714
715
    void finalize(context& ctx, const shape&, const std::vector<shape>& inputs)
    {
        f    = fusion(inputs[0]);
        conv = f.create_conv(op, inputs[1]);
        bias = f.create_bias(inputs[3]);
716
717
        if(not f.compile(ctx))
            MIGRAPHX_THROW("Failed to compile fusion plan");
718
719
    }

Paul's avatar
Paul committed
720
    shape get_workspace(context& ctx) { return f.get_workspace(ctx); }
Paul's avatar
Paul committed
721
722
723
724
    std::ptrdiff_t output_alias(const std::vector<shape>& shapes) const
    {
        return shapes.size() - 1;
    }
Paul's avatar
Paul committed
725
};
726
MIGRAPHX_REGISTER_OP(miopen_conv_bias)
Paul's avatar
Paul committed
727

Paul's avatar
Add cbr  
Paul committed
728
729
730
struct miopen_conv_bias_relu
{
    op::convolution op;
731
732
733
734
    fusion f          = {};
    fusion::op_t conv = {};
    fusion::op_t bias = {};
    fusion::op_t relu = {};
Paul's avatar
Add cbr  
Paul committed
735

Paul's avatar
Paul committed
736
737
738
739
740
741
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return op::convolution::reflect(self.op, f);
    }

Paul's avatar
Add cbr  
Paul committed
742
743
744
745
746
    std::string name() const { return "gpu::conv_bias_relu"; }
    shape compute_shape(const std::vector<shape>& inputs) const
    {
        check_shapes{inputs, *this}.has(5);
        // TODO: Check slices
kahmed10's avatar
kahmed10 committed
747
        return op.normalize_compute_shape({inputs.at(0), inputs.at(1)});
Paul's avatar
Add cbr  
Paul committed
748
    }
Paul's avatar
Paul committed
749
    argument compute(context& ctx, const shape&, const std::vector<argument>& args) const
Paul's avatar
Add cbr  
Paul committed
750
751
    {
        auto fargs  = make_fused_args();
Paul's avatar
Paul committed
752
        float alpha = 1;
Paul's avatar
Paul committed
753
        float beta  = 0;
Paul's avatar
Add cbr  
Paul committed
754
755
        miopenSetOpArgsConvForward(fargs.get(), conv, &alpha, &beta, args[1].implicit());
        miopenSetOpArgsBiasForward(fargs.get(), bias, &alpha, &beta, args[3].implicit());
Paul's avatar
Paul committed
756
757
        miopenSetOpArgsActivForward(fargs.get(), relu, &alpha, &beta, 0, 0, 0);
        return f.execute(ctx, fargs, args[0], args[4]);
Paul's avatar
Add cbr  
Paul committed
758
    }
759
760
761
762
763
764
765
766
767
    void finalize(context& ctx, const shape&, const std::vector<shape>& inputs)
    {
        f    = fusion(inputs[0]);
        conv = f.create_conv(op, inputs[1]);
        bias = f.create_bias(inputs[3]);
        relu = f.create_relu();
        f.compile(ctx);
    }

Paul's avatar
Paul committed
768
    shape get_workspace(context& ctx) { return f.get_workspace(ctx); }
Paul's avatar
Paul committed
769
770
771
772
    std::ptrdiff_t output_alias(const std::vector<shape>& shapes) const
    {
        return shapes.size() - 1;
    }
Paul's avatar
Add cbr  
Paul committed
773
};
774
MIGRAPHX_REGISTER_OP(miopen_conv_bias_relu)
Paul's avatar
Add cbr  
Paul committed
775

Paul's avatar
Paul committed
776
template <class... Ms>
Paul's avatar
Add cbr  
Paul committed
777
778
auto conv_bias(Ms... ms)
{
Paul's avatar
Paul committed
779
    return match::name("gpu::add")(
Paul's avatar
Paul committed
780
781
        match::either_arg(0, 1)(bias_shape(match::used_once()).bind("bias"),
                                fusable_conv(match::used_once()).bind("conv")),
Paul's avatar
Paul committed
782
        ms...);
Paul's avatar
Paul committed
783
784
}

Paul's avatar
Paul committed
785
template <class Op>
786
void apply_conv_bias(context& ctx, module& m, const match::matcher_result& r)
Paul's avatar
Paul committed
787
788
789
790
791
792
793
794
795
796
{
    auto conv_ins    = r.instructions["conv"];
    auto bias_ins    = r.instructions["bias"];
    auto ins         = r.result;
    auto input_ins   = conv_ins->inputs().at(0);
    auto weights_ins = conv_ins->inputs().at(1);
    auto conv_op     = any_cast<miopen_convolution>(conv_ins->get_operator()).op;
    auto alloc_ins   = ins->inputs().back();
    auto old_ws_ins  = conv_ins->inputs().at(2);

797
    Op cb{conv_op};
Paul's avatar
Paul committed
798
    // TODO: Insert ws allocation
Paul's avatar
Paul committed
799
    auto ws = cb.get_workspace(ctx);
Paul's avatar
Paul committed
800
    (void)ws;
801
    m.replace_instruction(ins, cb, input_ins, weights_ins, old_ws_ins, bias_ins, alloc_ins);
Paul's avatar
Add cbr  
Paul committed
802
803
}

804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
inline auto precompile_name(std::string s) // NOLINT
{
    return match::make_basic_pred_matcher([=](instruction_ref ins) {
        if(ins->name() != "gpu::precompile_op")
            return false;
        auto op = from_value<operation>(ins->get_operator().to_value().at("op"));
        return (op.name() == s);
    });
}

template <class... Ms>
auto conv_bias_pointwise(Ms... ms)
{
    return precompile_name("pointwise")(
        match::either_arg(0, 1)(bias_shape(match::used_once()).bind("bias"),
                                fusable_conv(match::used_once()).bind("conv")),
        ms...);
}

Paul's avatar
Paul committed
823
struct find_conv_bias
Paul's avatar
Paul committed
824
{
Paul's avatar
Paul committed
825
    context* ctx = nullptr;
Paul's avatar
Paul committed
826
827
    auto matcher() const
    {
kahmed10's avatar
kahmed10 committed
828
829
        return conv_bias(match::none_of(
            match::output(match::name(std::unordered_set<std::string>{"gpu::relu"}))));
Paul's avatar
Paul committed
830
831
    }

832
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
833
    {
834
        apply_conv_bias<miopen_conv_bias>(*ctx, m, r);
Paul's avatar
Paul committed
835
836
837
    }
};

Paul's avatar
Paul committed
838
struct find_conv_bias_relu
Paul's avatar
Add cbr  
Paul committed
839
840
{
    context* ctx = nullptr;
Paul's avatar
Paul committed
841
    auto matcher() const { return match::name("gpu::relu")(match::arg(0)(conv_bias())); }
Paul's avatar
Add cbr  
Paul committed
842

843
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Add cbr  
Paul committed
844
    {
845
        apply_conv_bias<miopen_conv_bias_relu>(*ctx, m, r);
Paul's avatar
Add cbr  
Paul committed
846
847
    }
};
848

849
850
851
852
853
854
855
856
857
858
859
struct find_conv_pointwise
{
    context* ctx = nullptr;
    auto matcher() const
    {
        return precompile_name("pointwise")(
            match::nargs(3),
            match::either_arg(0, 1)(bias_shape(match::used_once()).bind("bias"),
                                    fusable_conv(match::used_once()).bind("conv")));
    }

860
    void apply(module& m, const match::matcher_result& r) const
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
    {
        auto conv_ins    = r.instructions["conv"];
        auto bias_ins    = r.instructions["bias"];
        auto ins         = r.result;
        auto input_ins   = conv_ins->inputs().at(0);
        auto weights_ins = conv_ins->inputs().at(1);
        auto conv_op     = any_cast<miopen_convolution>(conv_ins->get_operator()).op;
        auto alloc_ins   = ins->inputs().back();

        module_ref pm = ins->module_inputs().front();

        miopen_fusion op{};
        op.ops.push_back({{conv_op}});
        for(auto&& i : *pm)
        {
            if(i.name()[0] == '@')
                continue;
            auto inputs = to_shapes(i.inputs());
            op.ops.push_back({{i.get_operator()}});
        }
        std::vector<instruction_ref> inputs = {input_ins, weights_ins, bias_ins, alloc_ins};
        auto v                              = op.compile(*ctx, ins->get_shape(), to_shapes(inputs));
        if(not v.is_object())
            return;
        m.replace_instruction(ins, op, inputs);
    }
};

889
890
891
892
893
894
895
896
897
898
struct find_gemm_add
{
    auto matcher() const
    {
        return match::name("gpu::add")(
            match::all_of[match::inputs()](match::standard_shape()),
            match::either_arg(0, 1)(match::used_once().bind("c"),
                                    match::name("gpu::gemm")(match::nargs(3)).bind("gemm")));
    }

899
    void apply(module& m, const match::matcher_result& r) const
900
901
902
903
904
905
906
907
    {
        auto ins      = r.result;
        auto gemm_ins = r.instructions["gemm"];
        auto c_ins    = r.instructions["c"];

        auto gemm = any_cast<rocblas_gemm<op::dot>>(gemm_ins->get_operator());

        // Already fused gemm
908
        if(not float_equal(gemm.beta, 0))
909
910
911
912
913
914
915
916
917
918
919
920
921
            return;

        if(std::any_of(ins->inputs().begin(), ins->inputs().end(), [](auto i) {
               return not i->get_shape().standard();
           }))
            return;

        auto inputs = gemm_ins->inputs();
        inputs.pop_back();

        auto copy_ins = c_ins;

        // Insert copy
922
        if(ins == m.end() or c_ins->outputs().size() > 1 or c_ins->inputs().empty())
923
        {
924
            copy_ins = m.insert_instruction(ins, hip_copy{}, c_ins, ins->inputs().back());
925
926
927
928
        }
        inputs.push_back(copy_ins);
        inputs.push_back(copy_ins);

929
        gemm.beta = 1;
930
        m.replace_instruction(ins, gemm, inputs);
931
932
933
    }
};

Paul's avatar
Paul committed
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
auto pointwise_name(const std::string& s)
{
    return precompile_name("pointwise")(match::make_basic_pred_matcher([=](auto ins) {
        module_ref pm = ins->module_inputs().front();
        auto n = std::count_if(pm->begin(), pm->end(), [&](auto& i) {
            return i.name() == s;
        });
        if (n != 1)
            return false;
        return std::all_of(pm->begin(), pm->end(), [&](auto& i) {
            return starts_with(i.name(), "@") or i.name() == s;
        });
    }));
}

struct find_gemm_pointwise
{
    auto matcher() const
    {
        return pointwise_name("add")(
            match::nargs(3),
            match::all_of[match::inputs()](match::standard_shape()),
            match::either_arg(0, 1)(match::used_once().bind("c"),
                                    match::name("gpu::gemm")(match::nargs(3)).bind("gemm")));
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins      = r.result;
        auto gemm_ins = r.instructions["gemm"];
        auto c_ins    = r.instructions["c"];

        auto gemm = any_cast<rocblas_gemm<op::dot>>(gemm_ins->get_operator());

        // Already fused gemm
        if(not float_equal(gemm.beta, 0))
            return;

        if(std::any_of(ins->inputs().begin(), ins->inputs().end(), [](auto i) {
               return not i->get_shape().standard();
           }))
            return;

        auto inputs = gemm_ins->inputs();
        inputs.pop_back();

        auto copy_ins = c_ins;

        // Insert copy
        if(ins == m.end() or c_ins->outputs().size() > 1 or c_ins->inputs().empty())
        {
            copy_ins = m.insert_instruction(ins, hip_copy{}, c_ins, ins->inputs().back());
        }
        inputs.push_back(copy_ins);
        inputs.push_back(copy_ins);

        gemm.beta = 1;
        m.replace_instruction(ins, gemm, inputs);
    }
};

995
996
997
998
999
1000
1001
struct find_commutative_broadcast
{
    auto matcher() const
    {
        return match::name("gpu::add", "gpu::mul")(match::arg(1)(match::broadcast_shape()));
    }

1002
    void apply(module& m, const match::matcher_result& r) const
1003
1004
1005
1006
1007
    {
        auto ins  = r.result;
        auto args = ins->inputs();
        move_broadcasted_back(args);

1008
        m.replace_instruction(ins, ins->get_operator(), args);
1009
1010
1011
    }
};

1012
void fuse_ops::apply(module& m) const
Paul's avatar
Paul committed
1013
{
1014
1015
1016
1017
    match::find_matches(m, find_gelu{}, find_gelu_new{fast_math});
    run_passes(m, {dead_code_elimination{}});
    match::find_matches(m, find_triadd{});
    match::find_matches(m,
kahmed10's avatar
kahmed10 committed
1018
                        find_layernorm{},
1019
                        find_conv_pointwise{ctx},
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
                        find_conv_bias_relu{ctx},
                        find_conv_bias{ctx},
                        find_add_gelu{},
                        find_add_gelu_new{},
                        find_mul_add{},
                        find_mul_add_relu{},
                        find_add_unary{"gpu::relu", hip_add_relu{}, hip_triadd_relu{}},
                        find_add_unary{"gpu::sigmoid", hip_add_sigmoid{}, hip_triadd_sigmoid{}},
                        find_add_unary{"gpu::tanh", hip_add_tanh{}, hip_triadd_tanh{}},
                        find_add_clip{});
1030
    run_passes(m, {dead_code_elimination{}});
Paul's avatar
Paul committed
1031
    match::find_matches(m, find_triadd_layernorm{}, find_gemm_add{}, find_gemm_pointwise{}, find_commutative_broadcast{});
Paul's avatar
Paul committed
1032
}
Paul's avatar
Paul committed
1033
1034

} // namespace gpu
Paul's avatar
Paul committed
1035
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1036
} // namespace migraphx