fuse_ops.cpp 12 KB
Newer Older
Paul's avatar
Paul committed
1
#include <migraph/gpu/fuse_ops.hpp>
Paul's avatar
Paul committed
2
#include <migraph/matcher.hpp>
Paul's avatar
Paul committed
3
4
#include <migraph/gpu/miopen.hpp>
#include <migraph/gpu/convolution.hpp>
Paul's avatar
Paul committed
5
6
7
8
9
10
11
#include <migraph/gpu/device/add_relu.hpp>
#include <migraph/instruction.hpp>

namespace migraph {

namespace gpu {

Paul's avatar
Paul committed
12
13
14
15
16
17
18
19
struct fusion
{
    using op_t = miopenFusionOpDescriptor_t;
    shared<fusion_plan_descriptor> fp;

    // Used as a temporary hack to keep descriptor references alive
    std::vector<std::shared_ptr<void>> storage;

Paul's avatar
Paul committed
20
    template <class T>
Paul's avatar
Paul committed
21
22
23
24
25
26
27
28
29
30
31
    auto keep_alive(T x)
    {
        auto result = share(std::move(x));
        storage.push_back(result);
        return result;
    }

    fusion(const shape& input)
    // : fp(make_fusion_plan(input))
    {
        auto t = make_tensor(input);
Paul's avatar
Paul committed
32
        fp     = make_fusion_plan(t);
Paul's avatar
Paul committed
33
34
35
36
37
38
39
40
41
42
43
44
        keep_alive(std::move(t));
    }

    op_t operator[](std::size_t i) const
    {
        op_t result;
        auto status = miopenFusionPlanGetOp(fp.get(), i, &result);
        if(status != miopenStatusSuccess)
            MIGRAPH_THROW("Failed retrieving operator at " + std::to_string(i));
        return result;
    }

Paul's avatar
Paul committed
45
    auto get() const { return fp.get(); }
Paul's avatar
Paul committed
46
47
48
49

    op_t create_bias(const shape& bias)
    {
        op_t result;
Paul's avatar
Paul committed
50
51
        auto b      = shape{bias.type(), {1, bias.lens().at(1), 1, 1}};
        auto t      = keep_alive(make_tensor(b));
Paul's avatar
Paul committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
        auto status = miopenCreateOpBiasForward(fp.get(), &result, t.get());
        if(status != miopenStatusSuccess)
            MIGRAPH_THROW("Creating operator failed");
        return result;
    }

    op_t create_relu()
    {
        op_t result;
        auto status = miopenCreateOpActivationForward(fp.get(), &result, miopenActivationRELU);
        if(status != miopenStatusSuccess)
            MIGRAPH_THROW("Creating operator failed");
        return result;
    }

    op_t create_conv(const op::convolution& op, const shape& weights)
    {
        op_t result;
Paul's avatar
Paul committed
70
71
        auto cd     = keep_alive(make_conv(op));
        auto t      = keep_alive(make_tensor(weights));
Paul's avatar
Paul committed
72
73
74
75
76
        auto status = miopenCreateOpConvForward(fp.get(), &result, cd.get(), t.get());
        if(status != miopenStatusSuccess)
            MIGRAPH_THROW("Creating operator failed");
        return result;
    }
Paul's avatar
Paul committed
77
78
79
80
81
82
83
84

    shape get_workspace(context&)
    {
        // TODO: Use zero workspace for now
        std::size_t ws_size = 0;
        // int algo_count = 1;
        // miopenConvFwdAlgorithm_t algo;
        // miopenFusionPlanConvolutionGetAlgo(fp.get(), 1, &algo_count, &algo);
Paul's avatar
Paul committed
85
86
        // miopenFusionPlanGetWorkSpaceSize(ctx.get_stream().get_miopen(), fp.get(), &ws_size,
        // algo);
Paul's avatar
Paul committed
87
88
89
90
91
        return shape{shape::int8_type, {ws_size}};
    }

    void compile(context& ctx)
    {
Paul's avatar
Paul committed
92
        auto status = miopenCompileFusionPlan(ctx.get_stream().get_miopen(), fp.get());
Paul's avatar
Paul committed
93
94
95
96
        if(status != miopenStatusSuccess)
            MIGRAPH_THROW("Compiling fusion plan failed");
    }

Paul's avatar
Paul committed
97
98
99
100
    argument execute(context& ctx,
                     const fused_operator_args& fargs,
                     const argument& x,
                     const argument& y) const
Paul's avatar
Paul committed
101
    {
Paul's avatar
Paul committed
102
103
        auto x_td   = make_tensor(x.get_shape());
        auto y_td   = make_tensor(y.get_shape());
Paul's avatar
Paul committed
104
        auto status = miopenExecuteFusionPlan(ctx.get_stream().get_miopen(),
Paul's avatar
Paul committed
105
106
107
108
109
110
                                              fp.get(),
                                              x_td.get(),
                                              x.implicit(),
                                              y_td.get(),
                                              y.implicit(),
                                              fargs.get());
Paul's avatar
Paul committed
111
112
113
114
        if(status != miopenStatusSuccess)
            MIGRAPH_THROW("Failed to execute fusion plan");
        return y;
    }
Paul's avatar
Paul committed
115
116
};

Paul's avatar
Paul committed
117
118
119
MIGRAPH_PRED_MATCHER(bias_shape, instruction_ref ins)
{
    auto&& s = ins->get_shape();
Paul's avatar
Paul committed
120
121
    return s.broadcasted() and s.strides().size() == 4 and s.strides()[0] == 0 and
           s.strides()[1] != 0 and s.strides()[2] == 0 and s.strides()[3] == 0;
Paul's avatar
Paul committed
122
123
124
}

// TODO: Move to another header
Paul's avatar
Paul committed
125
126
template <class T, class... Ts>
std::array<T, sizeof...(Ts) + 1> make_array(T x, Ts... xs)
Paul's avatar
Paul committed
127
128
{
    return {std::move(x), std::move(static_cast<T>(xs))...};
Paul's avatar
Paul committed
129
}
Paul's avatar
Paul committed
130
131
132
133
134

MIGRAPH_PRED_MATCHER(fusable_conv, instruction_ref ins)
{
    if(ins->name() != "gpu::convolution")
        return false;
Paul's avatar
Paul committed
135
136
137
138
139
140
141
142
143
    auto wei = ins->inputs().at(1)->get_shape();
    assert(wei.lens().size() == 4);
    auto channels = wei.lens()[1] * wei.lens()[0];
    if(wei.lens()[0] > 64 and channels > 32768)
        return false;
    auto conv = any_cast<miopen_convolution>(ins->get_operator());
    if(conv.algo == miopenConvolutionFwdAlgoWinograd)
        return false;
    auto op = conv.op;
Paul's avatar
Paul committed
144
145
    return op.padding == make_array<size_t>(0, 0) and op.stride == make_array<size_t>(1, 1) and
           op.dilation == make_array<size_t>(1, 1);
Paul's avatar
Paul committed
146
147
}

Paul's avatar
Paul committed
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
struct hip_triadd
{
    std::string name() const { return "hip::triadd"; }
    shape compute_shape(const std::vector<shape>& inputs) const
    {
        check_shapes{inputs, *this}.has(4);
        return inputs.front();
    }
    argument compute(context&, const shape&, const std::vector<argument>& args) const
    {
        device::add(args.at(3), args.at(0), args.at(1), args.at(2));
        return args.at(3);
    }
};

struct hip_triadd_relu
{
    std::string name() const { return "hip::triadd_relu"; }
    shape compute_shape(const std::vector<shape>& inputs) const
    {
        check_shapes{inputs, *this}.has(4);
        return inputs.front();
    }
    argument compute(context&, const shape&, const std::vector<argument>& args) const
    {
        device::add_relu(args.at(3), args.at(0), args.at(1), args.at(2));
        return args.at(3);
    }
};

Paul's avatar
Paul committed
178
179
180
181
182
struct hip_add_relu
{
    std::string name() const { return "hip::add_relu"; }
    shape compute_shape(const std::vector<shape>& inputs) const
    {
Paul's avatar
Paul committed
183
        check_shapes{inputs, *this}.has(3);
Paul's avatar
Paul committed
184
185
        return inputs.front();
    }
Paul's avatar
Paul committed
186
    argument compute(context&, const shape&, const std::vector<argument>& args) const
Paul's avatar
Paul committed
187
    {
188
        device::add_relu(args.at(2), args.at(0), args.at(1));
Paul's avatar
Paul committed
189
190
191
192
        return args.at(2);
    }
};

Paul's avatar
Paul committed
193
struct find_add_relu
Paul's avatar
Paul committed
194
{
Paul's avatar
Paul committed
195
196
    auto matcher() const
    {
Paul's avatar
Paul committed
197
198
        return match::name("gpu::relu")(match::arg(0)(
            match::any_of(match::name("gpu::add"), match::name("hip::triadd")).bind("add")));
Paul's avatar
Paul committed
199
    }
Paul's avatar
Paul committed
200

Paul's avatar
Paul committed
201
202
    void apply(program& p, match::matcher_result r) const
    {
Paul's avatar
Paul committed
203
        auto add_ins = r.instructions["add"];
Paul's avatar
Paul committed
204
205
        auto ins     = r.result;
        auto args    = add_ins->inputs();
Paul's avatar
Paul committed
206
        // Use the allocation from the relu operator
Paul's avatar
Paul committed
207
        args.back() = ins->inputs().back();
Paul's avatar
Paul committed
208
209
210
211
212
213
214
        if(add_ins->name() == "gpu::add")
            p.replace_instruction(ins, hip_add_relu{}, args);
        else if(add_ins->name() == "hip::triadd")
            p.replace_instruction(ins, hip_triadd_relu{}, args);
    }
};

Paul's avatar
Paul committed
215
struct find_triadd
Paul's avatar
Paul committed
216
217
218
{
    auto matcher() const
    {
Paul's avatar
Paul committed
219
220
        return match::name("gpu::add")(match::either_arg(0, 1)(match::name("gpu::add").bind("add"),
                                                               match::any().bind("input")));
Paul's avatar
Paul committed
221
222
223
224
    }

    void apply(program& p, match::matcher_result r) const
    {
Paul's avatar
Paul committed
225
226
227
        auto add_ins        = r.instructions["add"];
        auto input_ins      = r.instructions["input"];
        auto ins            = r.result;
Paul's avatar
Paul committed
228
229
230
231
232
233
234
235
236
237
238
        auto args           = add_ins->inputs();
        auto is_broadcasted = [](auto arg) { return arg->get_shape().broadcasted(); };
        if(std::count_if(args.begin(), args.end(), is_broadcasted) > 1)
            return;
        args.insert(args.begin(), input_ins);
        // Ensure the last arguments is the broadcasted one
        auto it = std::find_if(args.begin(), args.end(), is_broadcasted);
        if(it != args.end())
            std::swap(*it, *std::prev(args.end(), 2));
        args.back() = ins->inputs().back();
        p.replace_instruction(ins, hip_triadd{}, args);
Paul's avatar
Paul committed
239
    }
Paul's avatar
Paul committed
240
241
};

Paul's avatar
Paul committed
242
243
244
245
246
247
248
struct miopen_conv_bias
{
    op::convolution op;
    fusion f;
    fusion::op_t conv;
    fusion::op_t bias;

Paul's avatar
Paul committed
249
250
    miopen_conv_bias(op::convolution c, const shape& input, const shape& weights, const shape& b)
        : op(c), f(input)
Paul's avatar
Paul committed
251
    {
Paul's avatar
Paul committed
252
253
        conv = f.create_conv(op, weights);
        bias = f.create_bias(b);
Paul's avatar
Paul committed
254
255
256
257
258
259
260
261
262
    }

    std::string name() const { return "gpu::conv_bias"; }
    shape compute_shape(const std::vector<shape>& inputs) const
    {
        check_shapes{inputs, *this}.has(5);
        // TODO: Check slices
        return op.compute_shape({inputs.at(0), inputs.at(1)});
    }
Paul's avatar
Paul committed
263
    argument compute(context& ctx, const shape&, const std::vector<argument>& args) const
Paul's avatar
Paul committed
264
    {
Paul's avatar
Paul committed
265
        auto fargs  = make_fused_args();
Paul's avatar
Paul committed
266
267
268
        float alpha = 1, beta = 0;
        miopenSetOpArgsConvForward(fargs.get(), conv, &alpha, &beta, args[1].implicit());
        miopenSetOpArgsBiasForward(fargs.get(), bias, &alpha, &beta, args[3].implicit());
Paul's avatar
Paul committed
269
        return f.execute(ctx, fargs, args[0], args[4]);
Paul's avatar
Paul committed
270
271
272
273
    }

    shape compile(context& ctx)
    {
Paul's avatar
Paul committed
274
275
        f.compile(ctx);
        return f.get_workspace(ctx);
Paul's avatar
Paul committed
276
277
278
    }
};

Paul's avatar
Add cbr  
Paul committed
279
280
281
282
283
284
struct miopen_conv_bias_relu
{
    op::convolution op;
    fusion f;
    fusion::op_t conv;
    fusion::op_t bias;
Paul's avatar
Paul committed
285
    fusion::op_t relu;
Paul's avatar
Add cbr  
Paul committed
286

Paul's avatar
Paul committed
287
288
289
290
291
    miopen_conv_bias_relu(op::convolution c,
                          const shape& input,
                          const shape& weights,
                          const shape& b)
        : op(c), f(input)
Paul's avatar
Add cbr  
Paul committed
292
    {
Paul's avatar
Paul committed
293
294
295
        conv = f.create_conv(op, weights);
        bias = f.create_bias(b);
        relu = f.create_relu();
Paul's avatar
Add cbr  
Paul committed
296
297
298
299
300
301
302
303
304
    }

    std::string name() const { return "gpu::conv_bias_relu"; }
    shape compute_shape(const std::vector<shape>& inputs) const
    {
        check_shapes{inputs, *this}.has(5);
        // TODO: Check slices
        return op.compute_shape({inputs.at(0), inputs.at(1)});
    }
Paul's avatar
Paul committed
305
    argument compute(context& ctx, const shape&, const std::vector<argument>& args) const
Paul's avatar
Add cbr  
Paul committed
306
307
308
309
310
    {
        auto fargs  = make_fused_args();
        float alpha = 1, beta = 0;
        miopenSetOpArgsConvForward(fargs.get(), conv, &alpha, &beta, args[1].implicit());
        miopenSetOpArgsBiasForward(fargs.get(), bias, &alpha, &beta, args[3].implicit());
Paul's avatar
Paul committed
311
312
        miopenSetOpArgsActivForward(fargs.get(), relu, &alpha, &beta, 0, 0, 0);
        return f.execute(ctx, fargs, args[0], args[4]);
Paul's avatar
Add cbr  
Paul committed
313
314
315
316
    }

    shape compile(context& ctx)
    {
Paul's avatar
Paul committed
317
318
        f.compile(ctx);
        return f.get_workspace(ctx);
Paul's avatar
Add cbr  
Paul committed
319
320
321
    }
};

Paul's avatar
Paul committed
322
template <class... Ms>
Paul's avatar
Add cbr  
Paul committed
323
324
auto conv_bias(Ms... ms)
{
Paul's avatar
Paul committed
325
    return match::name("gpu::add")(
Paul's avatar
Paul committed
326
327
        match::either_arg(0, 1)(bias_shape(match::used_once()).bind("bias"),
                                fusable_conv(match::used_once()).bind("conv")),
Paul's avatar
Paul committed
328
        ms...);
Paul's avatar
Paul committed
329
330
}

Paul's avatar
Paul committed
331
template <class Op>
Paul's avatar
Paul committed
332
333
334
335
336
337
338
339
340
341
342
void apply_conv_bias(context& ctx, program& p, match::matcher_result r)
{
    auto conv_ins    = r.instructions["conv"];
    auto bias_ins    = r.instructions["bias"];
    auto ins         = r.result;
    auto input_ins   = conv_ins->inputs().at(0);
    auto weights_ins = conv_ins->inputs().at(1);
    auto conv_op     = any_cast<miopen_convolution>(conv_ins->get_operator()).op;
    auto alloc_ins   = ins->inputs().back();
    auto old_ws_ins  = conv_ins->inputs().at(2);

Paul's avatar
Paul committed
343
    Op cb{conv_op, input_ins->get_shape(), weights_ins->get_shape(), bias_ins->get_shape()};
Paul's avatar
Paul committed
344
345
346
347
    // TODO: Insert ws allocation
    auto ws = cb.compile(ctx);

    p.replace_instruction(ins, cb, input_ins, weights_ins, old_ws_ins, bias_ins, alloc_ins);
Paul's avatar
Add cbr  
Paul committed
348
349
}

Paul's avatar
Paul committed
350
struct find_conv_bias
Paul's avatar
Paul committed
351
{
Paul's avatar
Paul committed
352
    context* ctx = nullptr;
Paul's avatar
Paul committed
353
354
    auto matcher() const
    {
Paul's avatar
Add cbr  
Paul committed
355
        return conv_bias(match::none_of(match::output(match::name("gpu::relu"))));
Paul's avatar
Paul committed
356
357
358
359
    }

    void apply(program& p, match::matcher_result r) const
    {
Paul's avatar
Paul committed
360
        apply_conv_bias<miopen_conv_bias>(*ctx, p, std::move(r));
Paul's avatar
Paul committed
361
362
363
    }
};

Paul's avatar
Paul committed
364
struct find_conv_bias_relu
Paul's avatar
Add cbr  
Paul committed
365
366
{
    context* ctx = nullptr;
Paul's avatar
Paul committed
367
    auto matcher() const { return match::name("gpu::relu")(match::arg(0)(conv_bias())); }
Paul's avatar
Add cbr  
Paul committed
368
369
370

    void apply(program& p, match::matcher_result r) const
    {
Paul's avatar
Paul committed
371
        apply_conv_bias<miopen_conv_bias_relu>(*ctx, p, std::move(r));
Paul's avatar
Add cbr  
Paul committed
372
373
374
    }
};

Paul's avatar
Paul committed
375
376
void fuse_ops::apply(program& p) const
{
Paul's avatar
Paul committed
377
    // clang-format off
Paul's avatar
Paul committed
378
    match::find_matches(p, find_triadd{});
Paul's avatar
Paul committed
379
    match::find_matches(p, 
Paul's avatar
Paul committed
380
381
382
        find_conv_bias_relu{ctx},
        find_conv_bias{ctx},
        find_add_relu{}
Paul's avatar
Paul committed
383
384
    );
    // clang-format on
Paul's avatar
Paul committed
385
}
Paul's avatar
Paul committed
386
387
388
389

} // namespace gpu

} // namespace migraph