simplify_algebra.cpp 38.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
Paul's avatar
Paul committed
24
#include <migraphx/simplify_algebra.hpp>
Paul's avatar
Paul committed
25
#include <migraphx/dead_code_elimination.hpp>
Paul's avatar
Paul committed
26
#include <migraphx/program.hpp>
27
#include <migraphx/op/concat.hpp>
28
#include <migraphx/op/slice.hpp>
29
#include <migraphx/op/convolution.hpp>
Paul's avatar
Paul committed
30
#include <migraphx/op/broadcast.hpp>
31
32
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/transpose.hpp>
Paul's avatar
Paul committed
33
34
#include <migraphx/matcher.hpp>
#include <migraphx/literal.hpp>
35
36
37
#include <migraphx/make_op.hpp>
#include <migraphx/serialize.hpp>

38
#include <migraphx/algorithm.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
39
#include <unordered_set>
Paul's avatar
Paul committed
40

Paul's avatar
Paul committed
41
namespace migraphx {
Paul's avatar
Paul committed
42
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
43

Paul's avatar
Paul committed
44
auto lit_broadcast() { return match::any_of(match::is_constant(), match::name("broadcast")); }
Paul's avatar
Paul committed
45
auto not_lit_broadcast() { return match::none_of(match::is_constant(), match::name("broadcast")); }
Paul's avatar
Paul committed
46
47
auto op_lit_broadcast(std::string op, std::string x, std::string y)
{
Paul's avatar
Paul committed
48
49
    return match::name(std::move(op))(match::either_arg(0, 1)(
        lit_broadcast().bind(std::move(x)), not_lit_broadcast().bind(std::move(y))));
Paul's avatar
Paul committed
50
51
}

Paul's avatar
Paul committed
52
53
auto conv_const_weights()
{
Paul's avatar
Paul committed
54
    return match::name("convolution")(match::used_once(),
Paul's avatar
Paul committed
55
                                      match::args(match::any(), match::is_constant().bind("w")));
Paul's avatar
Paul committed
56
57
}

Shucai Xiao's avatar
Shucai Xiao committed
58
59
auto reduction() { return match::name_contains("reduce"); }

Paul's avatar
Paul committed
60
61
62
struct find_mul_conv
{
    auto matcher() const
Paul's avatar
Paul committed
63
    {
Paul's avatar
Paul committed
64
65
        return match::name("mul")(match::either_arg(0, 1)(conv_const_weights().bind("conv"),
                                                          match::name("broadcast").bind("a")));
Paul's avatar
Paul committed
66
    }
Paul's avatar
Paul committed
67

68
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
69
    {
Paul's avatar
Paul committed
70
        auto ins      = r.result;
Paul's avatar
Paul committed
71
        auto conv_ins = r.instructions["conv"];
Paul's avatar
Paul committed
72
73
74
        auto a_ins    = r.instructions["a"];
        auto w_ins    = r.instructions["w"];

Paul's avatar
Paul committed
75
        auto broadcast_op = any_cast<op::broadcast>(a_ins->get_operator());
Paul's avatar
Paul committed
76
        if(broadcast_op.axis != 1)
Paul's avatar
Paul committed
77
78
            return;

79
        auto new_a = m.insert_instruction(
80
            ins,
81
            make_op("broadcast", {{"axis", 0}, {"out_lens", w_ins->get_shape().lens()}}),
82
            a_ins->inputs().front());
83
84
        auto new_mul  = m.insert_instruction(ins, make_op("mul"), new_a, w_ins);
        auto new_conv = m.insert_instruction(
Paul's avatar
Paul committed
85
            ins, conv_ins->get_operator(), conv_ins->inputs().front(), new_mul);
86
        m.replace_instruction(ins, new_conv);
Paul's avatar
Paul committed
87
    }
Paul's avatar
Paul committed
88
89
};

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
struct find_mul_slice_conv
{
    static auto conv()
    {
        return match::name("convolution")(
            match::all_of[match::outputs()](match::name("slice")),
            match::args(match::any(), match::is_constant().bind("w")));
    }
    auto matcher() const
    {
        return match::name("mul")(match::either_arg(0, 1)(
            match::name("slice")(match::used_once(), match::arg(0)(conv().bind("conv")))
                .bind("slice"),
            match::name("broadcast")(match::is_constant()).bind("a")));
    }

106
    void apply(module& m, const match::matcher_result& r) const
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
    {
        auto ins       = r.result;
        auto slice_ins = r.instructions["slice"];
        auto conv_ins  = r.instructions["conv"];
        auto a_ins     = r.instructions["a"];
        auto w_ins     = r.instructions["w"];

        auto broadcast_op = any_cast<op::broadcast>(a_ins->get_operator());
        if(broadcast_op.axis != 1)
            return;

        auto slice_op = any_cast<op::slice>(slice_ins->get_operator());
        if(slice_op.axes.size() != 1)
            return;
        if(slice_op.axes.front() != 1)
            return;

        auto slice_idx = std::distance(conv_ins, slice_ins);
        if(std::any_of(conv_ins->outputs().begin(), conv_ins->outputs().end(), [&](auto i) {
               if(i == slice_ins)
                   return false;
               if(std::distance(conv_ins, i) < slice_idx)
                   return true;
               auto sop = any_cast<op::slice>(i->get_operator());
               if(sop.axes != slice_op.axes)
                   return true;
               if(std::max(sop.starts.front(), slice_op.starts.front()) <
                  std::min(sop.ends.front(), slice_op.ends.front()))
                   return true;
               return false;
           }))
            return;

        auto w_slice_op  = slice_op;
        w_slice_op.axes  = {0};
142
        auto slice_w_ins = m.insert_instruction(ins, w_slice_op, w_ins);
143

144
        auto new_a = m.insert_instruction(
145
            ins,
146
            make_op("broadcast", {{"axis", 0}, {"out_lens", slice_w_ins->get_shape().lens()}}),
147
            a_ins->inputs().front());
148
        auto new_mul = m.insert_instruction(ins, make_op("mul"), new_a, slice_w_ins);
149
150
151

        std::vector<instruction_ref> sliced_weights;
        if(slice_op.starts.front() != 0)
152
            sliced_weights.push_back(m.insert_instruction(
153
154
155
                ins,
                make_op("slice", {{"axes", {0}}, {"starts", {0}}, {"ends", slice_op.starts}}),
                w_ins));
156
157
158
        sliced_weights.push_back(new_mul);
        int64_t end_axis = w_ins->get_shape().lens().at(0);
        if(slice_op.ends.front() != end_axis)
159
            sliced_weights.push_back(m.insert_instruction(
160
161
162
                ins,
                make_op("slice", {{"axes", {0}}, {"starts", slice_op.ends}, {"ends", {end_axis}}}),
                w_ins));
163

164
        auto new_weights =
165
            m.insert_instruction(ins, make_op("concat", {{"axis", 0}}), sliced_weights);
166

167
        auto new_conv = m.insert_instruction(
168
169
170
            ins, conv_ins->get_operator(), conv_ins->inputs().front(), new_weights);
        assert(conv_ins->get_shape() == new_conv->get_shape());

171
        auto slice1 = m.insert_instruction(ins, slice_op, new_conv);
172
        assert(ins->get_shape().lens() == slice1->get_shape().lens());
173
        m.replace_instruction(ins, slice1);
174
        // TODO: Check each slice doesn't overlap and that it occurs after slice_ins
175
176
        auto outputs = conv_ins->outputs();
        for(auto output : outputs)
177
178
179
180
181
            if(output != slice_ins)
                instruction::replace_argument(output, conv_ins, new_conv);
    }
};

Paul's avatar
Paul committed
182
// a * (x + b) => a * x + a * b
Paul's avatar
Paul committed
183
184
185
186
187
struct find_mul_add
{
    auto matcher() const
    {
        return match::name("mul")(match::either_arg(0, 1)(
Paul's avatar
Paul committed
188
189
190
            match::name("add")(
                match::either_arg(0, 1)(
                    match::any().bind("x"),
Paul's avatar
Paul committed
191
                    match::any_of(conv_const_weights(), match::is_constant()).bind("b")),
Paul's avatar
Paul committed
192
                match::none_of(match::args(match::is_constant(), match::is_constant())),
Paul's avatar
Paul committed
193
                match::used_once()),
Paul's avatar
Paul committed
194
            match::is_constant().bind("a")));
Paul's avatar
Paul committed
195
196
    }

197
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
198
    {
Paul's avatar
Paul committed
199
        auto ins   = r.result;
Paul's avatar
Paul committed
200
        auto a_ins = r.instructions["a"];
Paul's avatar
Paul committed
201
        auto b_ins = r.instructions["b"];
Paul's avatar
Paul committed
202
        auto x_ins = r.instructions["x"];
Paul's avatar
Paul committed
203
        assert(x_ins != b_ins);
Paul's avatar
Paul committed
204

205
206
207
        auto ax_ins = m.insert_instruction(ins, make_op("mul"), a_ins, x_ins);
        auto ab_ins = m.insert_instruction(ins, make_op("mul"), a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), ax_ins, ab_ins);
Paul's avatar
Paul committed
208
209
210
    }
};

Paul's avatar
Paul committed
211
212
213
214
215
216
struct find_dot_add
{
    auto matcher() const
    {
        return match::name("dot")(match::either_arg(0, 1)(
            match::name("add")(
Paul's avatar
Format  
Paul committed
217
218
                match::either_arg(0, 1)(match::any().bind("x"),
                                        match::any_of(match::is_constant()).bind("b")),
Paul's avatar
Paul committed
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
                match::none_of(match::args(match::is_constant(), match::is_constant())),
                match::used_once()),
            match::is_constant().bind("a")));
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins   = r.result;
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];
        auto x_ins = r.instructions["x"];
        assert(x_ins != b_ins);

        const bool flipped = a_ins == ins->inputs().back();

        auto insert_dot = [&](auto x, auto y) {
Paul's avatar
Format  
Paul committed
235
            if(flipped)
Paul's avatar
Paul committed
236
                return m.insert_instruction(ins, make_op("dot"), y, x);
Paul's avatar
Format  
Paul committed
237
            else
Paul's avatar
Paul committed
238
239
240
241
242
243
244
245
246
                return m.insert_instruction(ins, make_op("dot"), x, y);
        };

        auto ax_ins = insert_dot(a_ins, x_ins);
        auto ab_ins = insert_dot(a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), ax_ins, ab_ins);
    }
};

Paul's avatar
Paul committed
247
struct find_add_lit_broadcast
Paul's avatar
Paul committed
248
249
250
251
252
253
254
{
    auto matcher() const
    {
        return match::name("add")(
            match::either_arg(0, 1)(op_lit_broadcast("add", "a", "x"), lit_broadcast().bind("b")));
    }

255
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
256
257
258
259
260
261
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];

262
263
        auto sumab = m.insert_instruction(ins, make_op("add"), a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), x_ins, sumab);
Paul's avatar
Paul committed
264
265
266
267
    }
};

struct find_double_add_lit_broadcast
Paul's avatar
Paul committed
268
{
Paul's avatar
Paul committed
269
270
    auto matcher() const
    {
Paul's avatar
Paul committed
271
        return match::name("add")(
Paul's avatar
Paul committed
272
            match::args(op_lit_broadcast("add", "a", "x"), op_lit_broadcast("add", "b", "y")));
Paul's avatar
Paul committed
273
274
    }

275
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
276
    {
Paul's avatar
Paul committed
277
278
279
280
281
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto y_ins = r.instructions["y"];
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];
Paul's avatar
Paul committed
282
283
284

        instruction_ref sumab;

Paul's avatar
Paul committed
285
        if(a_ins->name() == "broadcast" and b_ins->name() == "broadcast")
Paul's avatar
Paul committed
286
287
288
        {
            if(a_ins->inputs().at(0)->get_shape() != b_ins->inputs().at(0)->get_shape())
                return;
289
            auto op     = a_ins->get_operator();
290
            auto presum = m.insert_instruction(
291
                ins, make_op("add"), a_ins->inputs().at(0), b_ins->inputs().at(0));
292
            sumab = m.insert_instruction(ins, op, presum);
Paul's avatar
Paul committed
293
294
295
        }
        else
        {
296
            sumab = m.insert_instruction(ins, make_op("add"), a_ins, b_ins);
Paul's avatar
Paul committed
297
298
        }

299
300
        auto sumxy = m.insert_instruction(ins, make_op("add"), x_ins, y_ins);
        m.replace_instruction(ins, make_op("add"), sumxy, sumab);
Paul's avatar
Paul committed
301
302
303
    }
};

Paul's avatar
Paul committed
304
305
306
307
struct find_inner_broadcast
{
    auto matcher() const
    {
Paul's avatar
Format  
Paul committed
308
309
        return pointwise(match::all_of[match::inputs()](
            match::broadcast_shape(), match::name("broadcast", "multibroadcast")));
Paul's avatar
Paul committed
310
311
    }

312
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
313
    {
Paul's avatar
Format  
Paul committed
314
        auto ins    = r.result;
Paul's avatar
Paul committed
315
        auto inputs = ins->inputs();
Paul's avatar
Format  
Paul committed
316
        if(inputs.empty())
Paul's avatar
Paul committed
317
318
            return;
        std::transform(inputs.begin(), inputs.end(), inputs.begin(), [&](auto i) {
Paul's avatar
Format  
Paul committed
319
            if(contains({"broadcast", "multibroadcast"}, i->name()))
Paul's avatar
Paul committed
320
321
322
323
                return i->inputs().front();
            else
                return i;
        });
Paul's avatar
Paul committed
324

Paul's avatar
Format  
Paul committed
325
326
327
        if(not std::all_of(inputs.begin(), inputs.end(), [&](auto& x) {
               return x->get_shape() == inputs.front()->get_shape();
           }))
Paul's avatar
Paul committed
328
329
            return;

Paul's avatar
Format  
Paul committed
330
        auto op  = m.insert_instruction(ins, ins->get_operator(), inputs);
Paul's avatar
Paul committed
331
332
333
334
335
336
        auto bop = std::find_if(ins->inputs().begin(), ins->inputs().end(), [&](auto i) {
            return contains({"broadcast", "multibroadcast"}, i->name());
        });

        assert(bop != ins->inputs().end());
        m.replace_instruction(ins, (*bop)->get_operator(), op);
Paul's avatar
Paul committed
337
338
339
    }
};

340
struct find_concat_op
341
342
343
{
    auto matcher() const
    {
344
        return match::name("concat")(match::any_of[match::inputs()](
345
            match::any_of(match::pointwise(), match::name("broadcast")), match::used_once()));
346
347
    }

348
349
    template <class Iterator>
    static std::vector<std::size_t> get_output_lens(Iterator start, Iterator last, std::size_t axis)
350
    {
351
352
353
        assert(start != last);
        std::size_t dim = 0;
        for(auto ins : range(start, last))
354
        {
355
            dim += ins->get_shape().lens().at(axis);
356
        }
357
358
359
        auto lens  = (*start)->get_shape().lens();
        lens[axis] = dim;
        return lens;
360
361
    }

362
363
364
365
366
    static bool is_valid_op(const operation& op)
    {
        return op.name() == "broadcast" or op.attributes().contains("pointwise");
    }

367
    void apply(module& m, const match::matcher_result& r) const
368
    {
369
370
        auto ins  = r.result;
        auto axis = any_cast<op::concat>(ins->get_operator()).axis;
371

372
373
374
375
376
377
        auto each = [&](auto start, auto last) -> std::vector<instruction_ref> {
            if(std::distance(start, last) < 2)
                return {start, last};
            auto x = *start;
            if(x->inputs().size() > 2 or x->inputs().empty() or x->outputs().size() > 1)
                return {start, last};
378
379
            auto op = x->get_operator();
            if(not is_valid_op(op))
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
                return {start, last};
            auto iaxis = axis;
            // Adjust broadcast lens
            if(op.name() == "broadcast")
            {
                auto b = any_cast<op::broadcast>(op);
                if(b.axis != iaxis)
                    return {start, last};
                b.broadcast_lens = get_output_lens(start, last, iaxis);
                op               = b;
                iaxis            = 0;
            }

            std::vector<instruction_ref> concats;
            for(std::size_t i = 0; i < x->inputs().size(); i++)
            {
                std::vector<instruction_ref> inputs;
                std::transform(start, last, std::back_inserter(inputs), [&](auto j) {
                    return j->inputs().at(i);
                });
400
                auto concat =
401
                    m.insert_instruction(ins, make_op("concat", {{"axis", iaxis}}), inputs);
402
403
                concats.push_back(concat);
            }
404
            auto y = m.insert_instruction(ins, op, concats);
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
            return {y};
        };

        std::vector<instruction_ref> args;
        auto update_args = [&](auto start, auto last) {
            auto x = each(start, last);
            args.insert(args.end(), x.begin(), x.end());
        };
        auto pred = [](auto i, auto j) {
            return i->get_operator() == j->get_operator() and
                   i->inputs().size() == i->inputs().size() and
                   i->outputs().size() == i->outputs().size();
        };
        group_unique(ins->inputs().begin(), ins->inputs().end(), update_args, pred);
        if(args.size() == 1)
420
            m.replace_instruction(ins, args.front());
421
        else
422
            m.replace_instruction(ins, make_op("concat", {{"axis", axis}}), args);
423
424
425
    }
};

426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
std::vector<instruction_ref> get_splits(instruction_ref ins)
{
    std::vector<instruction_ref> result;
    std::copy_if(ins->outputs().begin(),
                 ins->outputs().end(),
                 std::back_inserter(result),
                 [&](auto i) { return i->name() == "slice"; });
    if(result.size() < 2)
        return {};
    auto get_slice = [](auto& i) -> auto& { return any_cast<op::slice>(i->get_operator()); };
    auto&& axes    = get_slice(result.front()).axes;
    if(std::any_of(result.begin(), result.end(), [&](auto i) { return get_slice(i).axes != axes; }))
        return {};
    auto get_start = [&](auto& i) -> auto& { return get_slice(i).starts; };
    auto get_end   = [&](auto& i) -> auto& { return get_slice(i).ends; };
    std::sort(
        result.begin(), result.end(), [&](auto x, auto y) { return get_start(x) < get_start(y); });
    if(std::any_of(get_start(result.front()).begin(), get_start(result.front()).end(), [&](auto i) {
           return i != 0;
       }))
        return {};
    auto it = std::adjacent_find(
        result.begin(), result.end(), [&](auto x, auto y) { return get_end(x) != get_start(y); });
    if(it != result.end())
        return {};
    for(std::size_t i = 0; i < axes.size(); i++)
    {
        auto axis = axes[i];
        if(ins->get_shape().lens()[axis] != get_slice(result.back()).ends[i])
            return {};
    }
    return result;
}

struct find_splits
{
    auto matcher() const
    {
464
465
        return match::any(match::any_of[match::outputs()](match::name("slice")(
            match::any_of[match::outputs()](match::pointwise(), reduction()))));
466
467
    }

Shucai Xiao's avatar
Shucai Xiao committed
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
    static bool is_dependent(const module& m, instruction_ref ins1, instruction_ref ins2)
    {

        std::unordered_set<instruction_ref> traversed;
        return fix<bool>([&](auto self, auto ins) -> bool {
            if(ins == ins2)
                return true;

            if(contains(traversed, ins))
                return false;

            traversed.insert(ins);
            const auto& inputs = ins->inputs();
            return std::any_of(inputs.begin(), inputs.end(), [&](auto in) {
                return m.has_instruction(in) and self(in);
            });
        })(ins1);
    }

487
    static std::vector<std::vector<instruction_ref>>
Shucai Xiao's avatar
Shucai Xiao committed
488
    get_split_groups(const module& m, const std::vector<instruction_ref>& splits)
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
    {
        std::vector<std::vector<instruction_ref>> groups;
        for(auto out : splits.front()->outputs())
        {
            if(out->name() == "slice")
                continue;
            std::vector<instruction_ref> group;
            for(auto split : splits)
            {
                auto it =
                    std::find_if(split->outputs().begin(), split->outputs().end(), [&](auto i) {
                        return i->get_operator() == out->get_operator();
                    });
                if(it == split->outputs().end())
                    break;
                assert((*it)->name() != "slice");
Shucai Xiao's avatar
Shucai Xiao committed
505

506
                // If there is a duplicate bail
Shucai Xiao's avatar
Shucai Xiao committed
507
508
509
510
511
                // there are should be no dependency between instructions in the group
                if(std::any_of(group.begin(), group.end(), [&](auto i) {
                       return is_dependent(m, *it, i) or is_dependent(m, i, *it);
                   }))
                {
512
                    return {};
Shucai Xiao's avatar
Shucai Xiao committed
513
514
                }

515
516
517
518
519
520
521
522
523
                group.push_back(*it);
            }
            if(group.size() != splits.size())
                continue;
            groups.push_back(group);
        }
        return groups;
    }

Shucai Xiao's avatar
Shucai Xiao committed
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
    bool is_fusable(instruction_ref start, instruction_ref split_front) const
    {
        auto op = start->get_operator();
        if(contains(op.name(), "reduce"))
        {
            auto slc         = any_cast<op::slice>(split_front->get_operator());
            auto slc_axes    = slc.axes;
            auto reduce_axes = start->get_operator().to_value()["axes"].to_vector<int64_t>();
            // axes of slice and reduce op cannot have overlap
            if(std::any_of(slc_axes.begin(), slc_axes.end(), [&](auto axis) {
                   return (std::find(reduce_axes.begin(), reduce_axes.end(), axis) !=
                           reduce_axes.end());
               }))
            {
                return false;
            }
        }
        else if(not op.attributes().contains("pointwise"))
        {
            return false;
        }

        return true;
    }

549
    void apply(module& m, const match::matcher_result& r) const
550
    {
Shucai Xiao's avatar
Shucai Xiao committed
551
        auto ins    = r.result;
552
553
554
        auto splits = get_splits(ins);
        if(splits.empty())
            return;
Shucai Xiao's avatar
Shucai Xiao committed
555

556
        for(const auto& group : get_split_groups(m, splits))
557
        {
Shucai Xiao's avatar
Shucai Xiao committed
558
559
560
561
562
            auto start       = group.front();
            auto split_front = splits.front();
            auto op          = start->get_operator();
            if(not is_fusable(start, split_front))
            {
563
                continue;
Shucai Xiao's avatar
Shucai Xiao committed
564
            }
565
566
567
568
569
570

            // Make sure there is no duplicates
            assert(std::none_of(
                std::next(group.begin()), group.end(), [&](auto i) { return i == start; }));

            auto split_idx    = 0;
571
            instruction_ref c = m.end();
572
573
            if(start->inputs().size() == 1)
            {
574
                c = m.insert_instruction(std::next(ins), op, ins);
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
            }
            else if(start->inputs().size() == 2)
            {
                assert(not std::none_of(start->inputs().begin(), start->inputs().end(), [](auto i) {
                    return i->name() == "slice";
                }) && "one argument must be a split");
                auto data_idx = 1;
                if(start->inputs().back()->name() == "slice")
                {
                    split_idx = 1;
                    data_idx  = 0;
                }

                std::vector<instruction_ref> data_args;
                std::transform(group.begin(),
                               group.end(),
                               std::back_inserter(data_args),
                               [&](auto i) { return i->inputs()[data_idx]; });

                // Data arguments must be a constant
                if(std::any_of(data_args.begin(), data_args.end(), [](auto i) {
                       return not i->can_eval();
                   }))
                    return;

                for(auto data : data_args)
601
                    m.move_instructions(data, ins);
602
603
604
605
606
607
608

                auto slice_op = any_cast<op::slice>(splits.front()->get_operator());
                assert(not slice_op.axes.empty());
                if(slice_op.axes.size() > 1)
                    return;
                auto concat_axis = slice_op.axes.front();
                // TODO: Check if axises match
609
                auto concat = m.insert_instruction(
610
                    ins, make_op("concat", {{"axis", concat_axis}}), data_args);
611
612
613
614
615

                std::vector<instruction_ref> args;
                args.resize(2);
                args[split_idx] = ins;
                args[data_idx]  = concat;
616
                c               = m.insert_instruction(std::next(ins), op, args);
617
            }
618
            if(c != m.end())
619
620
621
622
623
624
            {
                for(auto i : group)
                {
                    auto split = i->inputs()[split_idx];
                    assert(split->name() == "slice");
                    // Insert contiguous for reshapes
625
626
                    auto outputs = i->outputs();
                    for(auto output : outputs)
627
628
629
                    {
                        if(not contains({"reshape", "squeeze", "unsqueeze"}, output->name()))
                            continue;
630
                        auto x =
631
632
                            m.insert_instruction(output, make_op("contiguous"), output->inputs());
                        m.replace_instruction(output, output->get_operator(), x);
633
634
                    }

635
                    m.replace_instruction(i, split->get_operator(), c);
636
637
638
639
640
641
642
643
644
645
646
647
648
649
                }
            }
        }
    }
};

struct find_split_concat
{
    auto matcher() const
    {
        return match::any(match::any_of[match::outputs()](
            match::name("slice")(match::all_of[match::outputs()](match::name("concat")))));
    }

650
    void apply(module& m, const match::matcher_result& r) const
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
    {
        auto ins = r.result;

        auto splits = get_splits(ins);
        if(splits.empty())
            return;
        if(std::any_of(
               splits.begin(), splits.end(), [](auto i) { return i->outputs().size() != 1; }))
            return;
        // Check for concat operator
        auto concat = splits.front()->outputs().front();
        if(std::any_of(splits.begin(), splits.end(), [&](auto i) {
               return i->outputs().front() != concat;
           }))
            return;
        // Check axis match
        auto concat_op = any_cast<op::concat>(concat->get_operator());
        auto split_op  = any_cast<op::slice>(splits.front()->get_operator());
        if(split_op.axes.size() != 1)
            return;
        if(split_op.axes.front() != concat_op.axis)
            return;
        // Replace args
        auto args = concat->inputs();
        auto it =
            std::find_if(args.begin(), args.end(), [&](auto i) { return i == splits.front(); });
        if(std::distance(it, args.end()) < splits.size())
            return;
679
680
681
682
683
684
685
        // If the slices are not in order then stop
        if(not std::is_sorted(it, it + splits.size(), [](instruction_ref x, instruction_ref y) {
               auto xop = any_cast<op::slice>(x->get_operator());
               auto yop = any_cast<op::slice>(y->get_operator());
               return std::tie(xop.starts, xop.ends) < std::tie(yop.starts, yop.ends);
           }))
            return;
686
687
688
689
        *it = splits.front()->inputs().front();
        args.erase(std::next(it), it + splits.size());

        if(args.size() == 1)
690
            m.replace_instruction(concat, args.front());
691
        else
692
            m.replace_instruction(concat, concat->get_operator(), args);
693
694
695
    }
};

696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
bool axis_equal(const std::vector<std::size_t>& x,
                const std::vector<std::size_t>& y,
                std::size_t axis)
{
    return x.size() == y.size() and x.size() > axis and
           std::equal(x.begin(), x.begin() + axis, y.begin()) and
           std::equal(x.begin() + axis + 1, x.end(), y.begin() + axis + 1);
}

bool axis_shape_equal(const shape& x, const shape& y, std::size_t axis)
{
    // TODO: Check strides
    return axis_equal(x.lens(), y.lens(), axis);
}

struct find_add_convs
{
    auto matcher() const
    {
        return match::name("add")(
            match::args(conv_const_weights().bind("a"), conv_const_weights().bind("b")));
    }

    static bool symmetrical_strides(const op::convolution& op)
    {
        return op.stride[0] == op.stride[1];
    }

    static std::size_t compute_stride_factor(const op::convolution& x, const op::convolution& y)
    {
        if(not symmetrical_strides(x))
            return 0;
        if(not symmetrical_strides(y))
            return 0;
        if((x.stride[0] % y.stride[0]) != 0)
            return 0;
        return x.stride[0] / y.stride[0];
    }

735
    void apply(module& m, const match::matcher_result& r) const
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
    {
        auto ins       = r.result;
        auto a_conv    = r.instructions["a"];
        auto a_input   = a_conv->inputs().at(0);
        auto a_weights = a_conv->inputs().at(1);
        auto b_conv    = r.instructions["b"];
        auto b_input   = b_conv->inputs().at(0);
        auto b_weights = b_conv->inputs().at(1);

        if(not axis_shape_equal(a_weights->get_shape(), b_weights->get_shape(), 1))
            return;

        auto a_op   = any_cast<op::convolution>(a_conv->get_operator());
        auto b_op   = any_cast<op::convolution>(b_conv->get_operator());
        auto new_op = a_op;

        if(a_op != b_op)
        {
            if(std::tie(a_op.padding, a_op.dilation, a_op.group) ==
                   std::tie(b_op.padding, b_op.dilation, b_op.group) and
               a_weights->get_shape().lens()[2] == 1 and a_weights->get_shape().lens()[3] == 1)
            {
                if(a_op.stride < b_op.stride)
                {
                    auto n = compute_stride_factor(b_op, a_op);
                    if(n == 0)
                        return;
                    new_op  = a_op;
764
                    b_input = m.insert_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
765
                        ins, make_op("step", {{"axes", {2, 3}}, {"steps", {n, n}}}), b_input);
766
767
768
769
770
771
772
                }
                else if(b_op.stride < a_op.stride)
                {
                    auto n = compute_stride_factor(a_op, b_op);
                    if(n == 0)
                        return;
                    new_op  = b_op;
773
                    a_input = m.insert_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
774
                        ins, make_op("step", {{"axes", {2, 3}}, {"steps", {n, n}}}), a_input);
775
776
777
778
779
780
781
782
                }
                else
                    return;
            }
            else
                return;
        }

783
        auto concat_input =
784
            m.insert_instruction(ins, make_op("concat", {{"axis", 1}}), a_input, b_input);
785
        auto concat_weights =
786
787
            m.insert_instruction(ins, make_op("concat", {{"axis", 1}}), a_weights, b_weights);
        m.replace_instruction(ins, new_op, concat_input, concat_weights);
788
789
790
    }
};

791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
MIGRAPHX_PRED_MATCHER(horiz_conv_dot, instruction_ref ins)
{
    auto pred = [&](auto name) {
        return [=](auto i) {
            return i->name() == name and i->inputs().front() == ins and
                   i->inputs().at(1)->can_eval();
        };
    };
    auto dots  = std::count_if(ins->outputs().begin(), ins->outputs().end(), pred("dot"));
    auto convs = std::count_if(ins->outputs().begin(), ins->outputs().end(), pred("convolution"));
    return !(dots < 2 and convs < 2);
}

struct find_conv_dot_horiz_fusion
{
    auto matcher() const { return horiz_conv_dot(); }

808
    void apply(module& m, const match::matcher_result& r) const
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
    {
        auto ins = r.result;

        auto pred = [](auto i, auto j) {
            if(i->get_operator() != j->get_operator())
                return false;
            if(not contains({"dot", "convolution"}, i->name()))
                return true;
            auto x = i->inputs()[1]->get_shape().lens();
            auto y = j->inputs()[1]->get_shape().lens();
            if(x.size() != y.size())
                return false;
            // Check that non-axises match
            int axis = 1;
            if(i->name() == "dot")
            {
                axis = x.size() - 1;
            }
            return axis_equal(x, y, axis);
        };

        auto each = [&](auto start, auto last) {
            if(std::distance(start, last) < 2)
                return;
            auto&& name = (*start)->name();
            if(not contains({"dot", "convolution"}, name))
                return;
836
837
838
839
840
841
842
            auto op   = (*start)->get_operator();
            int group = 1;
            if(name == "convolution")
                group = any_cast<op::convolution>(op).group;
            // Skip group convolution
            if(group != 1)
                return;
843
844
845
846
847
848
849
850
851
852
853
854
855
            auto input = (*start)->inputs().front();
            std::vector<instruction_ref> args;
            std::transform(
                start, last, std::back_inserter(args), [&](auto x) { return x->inputs().at(1); });
            int axis        = 1;
            int concat_axis = 0;
            if(name == "dot")
            {
                axis        = int(args.front()->get_shape().lens().size() - 1);
                concat_axis = axis;
            }

            for(auto arg : args)
856
                m.move_instructions(arg, input);
857
            // TODO: Check if axises match
858
            auto concat =
859
860
                m.insert_instruction(input, make_op("concat", {{"axis", concat_axis}}), args);
            auto fused     = m.insert_instruction(std::next(input), op, input, concat);
861
862
863
864
            int64_t offset = 0;
            for(auto arg : range(start, last))
            {
                int64_t len = arg->get_shape().lens()[axis];
865
                m.replace_instruction(
866
867
868
869
                    arg,
                    make_op("slice",
                            {{"axes", {axis}}, {"starts", {offset}}, {"ends", {offset + len}}}),
                    fused);
870
871
872
873
874
875
876
877
878
                offset += len;
            }
        };

        auto outputs = ins->outputs();
        group_by(outputs.begin(), outputs.end(), each, pred);
    }
};

879
880
881
882
883
884
885
struct find_div_const
{
    auto matcher() const
    {
        return match::name("div")(match::arg(1)(match::is_constant().bind("c")));
    }

886
    void apply(module& m, const match::matcher_result& r) const
887
888
889
890
    {
        auto ins   = r.result;
        auto c_ins = r.instructions["c"];

891
        auto recip = m.insert_instruction(std::next(c_ins), make_op("recip"), c_ins);
892
893
894

        auto args = ins->inputs();

895
        m.replace_instruction(ins, make_op("mul"), args.front(), recip);
896
897
898
899
900
901
902
903
904
905
    }
};

struct find_sub_const
{
    auto matcher() const
    {
        return match::name("sub")(match::arg(1)(match::is_constant().bind("c")));
    }

906
    void apply(module& m, const match::matcher_result& r) const
907
908
909
910
    {
        auto ins   = r.result;
        auto c_ins = r.instructions["c"];

911
        auto neg = m.insert_instruction(std::next(c_ins), make_op("neg"), c_ins);
912
913
914

        auto args = ins->inputs();

915
        m.replace_instruction(ins, make_op("add"), args.front(), neg);
916
917
918
    }
};

kahmed10's avatar
kahmed10 committed
919
920
921
922
923
924
925
926
struct find_rsqrt
{
    auto matcher() const
    {
        return match::name("recip")(match::args(
            match::name("sqrt")(match::used_once(), match::args(match::any().bind("x")))));
    }

927
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
928
929
930
931
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];

932
        m.replace_instruction(ins, make_op("rsqrt"), x_ins);
kahmed10's avatar
kahmed10 committed
933
934
935
    }
};

936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
static bool same_ops(const std::vector<instruction_ref>& vec_ins)
{
    return std::all_of(vec_ins.begin(), vec_ins.end(), [&](auto i) {
        return i->get_operator() == vec_ins.front()->get_operator();
    });
}

struct find_split_reshape
{
    auto matcher() const
    {
        return match::name("reshape")(match::arg(0)(match::name("contiguous")(
                                          match::arg(0)(match::name("slice").bind("slice")))))
            .bind("reshape");
    }

952
    void apply(module& m, const match::matcher_result& r) const
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
    {
        auto slc = r.instructions["slice"];
        auto rsp = r.instructions["reshape"];

        auto input         = slc->inputs().front();
        auto split_outputs = get_splits(input);
        if(split_outputs.empty())
        {
            return;
        }

        std::vector<instruction_ref> vec_rsp(split_outputs.size());
        std::transform(split_outputs.begin(), split_outputs.end(), vec_rsp.begin(), [](auto i) {
            assert(i->outputs().size() == 1);
            auto cont = i->outputs().front();
            assert(cont->outputs().size() == 1);
            return cont->outputs().front();
        });

        // all outputs are reshape and of the same shape
        auto dims = any_cast<op::reshape>(rsp->get_operator()).dims;
        if(!same_ops(vec_rsp))
        {
            return;
        }

        // ensure reshape happens after the axis dimension
980
981
982
983
984
985
986
987
988
989
990
991
        auto axis         = any_cast<op::slice>(slc->get_operator()).axes[0];
        auto slc_lens     = slc->get_shape().lens();
        auto slc_dim_size = std::accumulate(
            slc_lens.begin() + axis, slc_lens.end(), 1, std::multiplies<std::size_t>());

        // search the reshape output (standard shape) to decide which axis are
        // in its output corresponding to the slc_dim_size
        auto rsp_lens    = rsp->get_shape().lens();
        auto rsp_strides = rsp->get_shape().strides();
        rsp_strides.insert(rsp_strides.begin(), rsp_strides[0] * rsp_lens[0]);
        auto ait = std::find(rsp_strides.begin(), rsp_strides.end(), slc_dim_size);
        if(ait == rsp_strides.end())
992
993
994
        {
            return;
        }
995
        int rsp_axis = std::distance(rsp_strides.begin(), ait);
996
997

        // calculate reshape output shape
998
999
1000
1001
1002
1003
1004
        std::vector<int64_t> vec_dims(vec_rsp.size());
        std::transform(vec_rsp.begin(), vec_rsp.end(), vec_dims.begin(), [&](auto is) {
            return is->get_shape().lens()[rsp_axis];
        });

        std::vector<int64_t> rsp_out_lens(rsp_lens.begin(), rsp_lens.end());
        rsp_out_lens[rsp_axis] = std::accumulate(vec_dims.begin(), vec_dims.end(), std::int64_t{0});
1005
1006

        // insert the reshape instruction
1007
        auto rsp_ins = m.insert_instruction(
1008
            std::next(input), make_op("reshape", {{"dims", rsp_out_lens}}), input);
1009
1010

        // replace the original reshape with slice
1011
1012
        int64_t start = 0;
        for(std::size_t i = 0; i < vec_rsp.size(); ++i)
1013
        {
1014
            m.replace_instruction(
1015
1016
1017
1018
1019
                vec_rsp[i],
                make_op(
                    "slice",
                    {{"axes", {rsp_axis}}, {"starts", {start}}, {"ends", {start + vec_dims[i]}}}),
                rsp_ins);
1020
            start += vec_dims[i];
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
        }
    }
};

struct find_split_transpose
{
    auto matcher() const
    {
        return match::name("transpose")(match::arg(0)(match::name("slice").bind("slice")))
            .bind("trans");
    }

1033
    void apply(module& m, const match::matcher_result& r) const
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
    {
        auto slc   = r.instructions["slice"];
        auto trans = r.instructions["trans"];

        auto input         = slc->inputs().front();
        auto split_outputs = get_splits(input);
        if(split_outputs.empty())
        {
            return;
        }

        std::vector<instruction_ref> vec_trans(split_outputs.size());
        std::transform(split_outputs.begin(), split_outputs.end(), vec_trans.begin(), [](auto i) {
            assert(i->outputs().size() == 1);
            return i->outputs().front();
        });

        // all transpose are the same
        auto perm = any_cast<op::transpose>(trans->get_operator()).dims;
        if(!same_ops(vec_trans))
        {
            return;
        }

        // insert an transpose instruction
1059
        auto tr = m.insert_instruction(
1060
            std::next(input), make_op("transpose", {{"permutation", perm}}), input);
1061
1062
1063
1064
1065

        // compute the axis in the slice
        auto axis = any_cast<op::slice>(slc->get_operator()).axes.front();
        auto it   = std::find(perm.begin(), perm.end(), axis);
        assert(it != perm.end());
Paul Fultz II's avatar
Paul Fultz II committed
1066
        int64_t axis_new = std::distance(perm.begin(), it);
1067
1068
1069
1070
1071
1072
1073

        for(auto in : split_outputs)
        {
            auto oper    = any_cast<op::slice>(in->get_operator());
            auto starts  = oper.starts;
            auto ends    = oper.ends;
            auto tr_orig = in->outputs().front();
1074
            m.replace_instruction(
1075
1076
1077
                tr_orig,
                make_op("slice", {{"axes", {axis_new}}, {"starts", starts}, {"ends", ends}}),
                tr);
1078
1079
1080
1081
        }
    }
};

1082
void simplify_algebra::apply(module& m) const
Paul's avatar
Paul committed
1083
{
Paul's avatar
Paul committed
1084
    // Run simplifications multiple times
1085
    for(int i = 0; i < 8; i++)
Paul's avatar
Paul committed
1086
    {
1087
        match::find_matches(m,
Paul's avatar
Paul committed
1088
                            find_inner_broadcast{},
Paul's avatar
Paul committed
1089
1090
                            find_double_add_lit_broadcast{},
                            find_add_lit_broadcast{},
1091
                            find_add_convs{},
1092
                            find_conv_dot_horiz_fusion{},
Paul's avatar
Paul committed
1093
                            find_mul_conv{},
1094
                            find_mul_slice_conv{},
1095
                            find_mul_add{},
Paul's avatar
Paul committed
1096
                            find_dot_add{},
1097
1098
                            find_div_const{},
                            find_sub_const{},
kahmed10's avatar
kahmed10 committed
1099
                            find_rsqrt{},
1100
                            find_concat_op{},
1101
                            find_split_concat{},
1102
1103
1104
                            find_splits{},
                            find_split_reshape{},
                            find_split_transpose{});
1105
        dead_code_elimination{}.apply(m);
Paul's avatar
Paul committed
1106
    }
Paul's avatar
Paul committed
1107
}
Paul's avatar
Paul committed
1108

Paul's avatar
Paul committed
1109
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1110
} // namespace migraphx