"magic_pdf/vscode:/vscode.git/clone" did not exist on "6b2b6132132a876e3c0edc66641d53ac1eb337b5"
simplify_algebra.cpp 37.8 KB
Newer Older
Paul's avatar
Paul committed
1
#include <migraphx/simplify_algebra.hpp>
Paul's avatar
Paul committed
2
#include <migraphx/dead_code_elimination.hpp>
Paul's avatar
Paul committed
3
#include <migraphx/program.hpp>
4
#include <migraphx/op/concat.hpp>
5
#include <migraphx/op/slice.hpp>
6
#include <migraphx/op/convolution.hpp>
Paul's avatar
Paul committed
7
#include <migraphx/op/broadcast.hpp>
8
9
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/transpose.hpp>
Paul's avatar
Paul committed
10
11
#include <migraphx/matcher.hpp>
#include <migraphx/literal.hpp>
12
13
14
#include <migraphx/make_op.hpp>
#include <migraphx/serialize.hpp>

15
#include <migraphx/algorithm.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
16
#include <unordered_set>
Paul's avatar
Paul committed
17

Paul's avatar
Paul committed
18
namespace migraphx {
Paul's avatar
Paul committed
19
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
20

Paul's avatar
Paul committed
21
auto lit_broadcast() { return match::any_of(match::is_constant(), match::name("broadcast")); }
Paul's avatar
Paul committed
22
auto not_lit_broadcast() { return match::none_of(match::is_constant(), match::name("broadcast")); }
Paul's avatar
Paul committed
23
24
auto op_lit_broadcast(std::string op, std::string x, std::string y)
{
Paul's avatar
Paul committed
25
26
    return match::name(std::move(op))(match::either_arg(0, 1)(
        lit_broadcast().bind(std::move(x)), not_lit_broadcast().bind(std::move(y))));
Paul's avatar
Paul committed
27
28
}

Paul's avatar
Paul committed
29
30
auto conv_const_weights()
{
Paul's avatar
Paul committed
31
    return match::name("convolution")(match::used_once(),
Paul's avatar
Paul committed
32
                                      match::args(match::any(), match::is_constant().bind("w")));
Paul's avatar
Paul committed
33
34
}

Shucai Xiao's avatar
Shucai Xiao committed
35
36
auto reduction() { return match::name_contains("reduce"); }

Paul's avatar
Paul committed
37
38
39
struct find_mul_conv
{
    auto matcher() const
Paul's avatar
Paul committed
40
    {
Paul's avatar
Paul committed
41
42
        return match::name("mul")(match::either_arg(0, 1)(conv_const_weights().bind("conv"),
                                                          match::name("broadcast").bind("a")));
Paul's avatar
Paul committed
43
    }
Paul's avatar
Paul committed
44

45
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
46
    {
Paul's avatar
Paul committed
47
        auto ins      = r.result;
Paul's avatar
Paul committed
48
        auto conv_ins = r.instructions["conv"];
Paul's avatar
Paul committed
49
50
51
        auto a_ins    = r.instructions["a"];
        auto w_ins    = r.instructions["w"];

Paul's avatar
Paul committed
52
        auto broadcast_op = any_cast<op::broadcast>(a_ins->get_operator());
Paul's avatar
Paul committed
53
        if(broadcast_op.axis != 1)
Paul's avatar
Paul committed
54
55
            return;

56
        auto new_a = m.insert_instruction(
57
            ins,
58
            make_op("broadcast", {{"axis", 0}, {"out_lens", w_ins->get_shape().lens()}}),
59
            a_ins->inputs().front());
60
61
        auto new_mul  = m.insert_instruction(ins, make_op("mul"), new_a, w_ins);
        auto new_conv = m.insert_instruction(
Paul's avatar
Paul committed
62
            ins, conv_ins->get_operator(), conv_ins->inputs().front(), new_mul);
63
        m.replace_instruction(ins, new_conv);
Paul's avatar
Paul committed
64
    }
Paul's avatar
Paul committed
65
66
};

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
struct find_mul_slice_conv
{
    static auto conv()
    {
        return match::name("convolution")(
            match::all_of[match::outputs()](match::name("slice")),
            match::args(match::any(), match::is_constant().bind("w")));
    }
    auto matcher() const
    {
        return match::name("mul")(match::either_arg(0, 1)(
            match::name("slice")(match::used_once(), match::arg(0)(conv().bind("conv")))
                .bind("slice"),
            match::name("broadcast")(match::is_constant()).bind("a")));
    }

83
    void apply(module& m, const match::matcher_result& r) const
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
    {
        auto ins       = r.result;
        auto slice_ins = r.instructions["slice"];
        auto conv_ins  = r.instructions["conv"];
        auto a_ins     = r.instructions["a"];
        auto w_ins     = r.instructions["w"];

        auto broadcast_op = any_cast<op::broadcast>(a_ins->get_operator());
        if(broadcast_op.axis != 1)
            return;

        auto slice_op = any_cast<op::slice>(slice_ins->get_operator());
        if(slice_op.axes.size() != 1)
            return;
        if(slice_op.axes.front() != 1)
            return;

        auto slice_idx = std::distance(conv_ins, slice_ins);
        if(std::any_of(conv_ins->outputs().begin(), conv_ins->outputs().end(), [&](auto i) {
               if(i == slice_ins)
                   return false;
               if(std::distance(conv_ins, i) < slice_idx)
                   return true;
               auto sop = any_cast<op::slice>(i->get_operator());
               if(sop.axes != slice_op.axes)
                   return true;
               if(std::max(sop.starts.front(), slice_op.starts.front()) <
                  std::min(sop.ends.front(), slice_op.ends.front()))
                   return true;
               return false;
           }))
            return;

        auto w_slice_op  = slice_op;
        w_slice_op.axes  = {0};
119
        auto slice_w_ins = m.insert_instruction(ins, w_slice_op, w_ins);
120

121
        auto new_a = m.insert_instruction(
122
            ins,
123
            make_op("broadcast", {{"axis", 0}, {"out_lens", slice_w_ins->get_shape().lens()}}),
124
            a_ins->inputs().front());
125
        auto new_mul = m.insert_instruction(ins, make_op("mul"), new_a, slice_w_ins);
126
127
128

        std::vector<instruction_ref> sliced_weights;
        if(slice_op.starts.front() != 0)
129
            sliced_weights.push_back(m.insert_instruction(
130
131
132
                ins,
                make_op("slice", {{"axes", {0}}, {"starts", {0}}, {"ends", slice_op.starts}}),
                w_ins));
133
134
135
        sliced_weights.push_back(new_mul);
        int64_t end_axis = w_ins->get_shape().lens().at(0);
        if(slice_op.ends.front() != end_axis)
136
            sliced_weights.push_back(m.insert_instruction(
137
138
139
                ins,
                make_op("slice", {{"axes", {0}}, {"starts", slice_op.ends}, {"ends", {end_axis}}}),
                w_ins));
140

141
        auto new_weights =
142
            m.insert_instruction(ins, make_op("concat", {{"axis", 0}}), sliced_weights);
143

144
        auto new_conv = m.insert_instruction(
145
146
147
            ins, conv_ins->get_operator(), conv_ins->inputs().front(), new_weights);
        assert(conv_ins->get_shape() == new_conv->get_shape());

148
        auto slice1 = m.insert_instruction(ins, slice_op, new_conv);
149
        assert(ins->get_shape().lens() == slice1->get_shape().lens());
150
        m.replace_instruction(ins, slice1);
151
        // TODO: Check each slice doesn't overlap and that it occurs after slice_ins
152
153
        auto outputs = conv_ins->outputs();
        for(auto output : outputs)
154
155
156
157
158
            if(output != slice_ins)
                instruction::replace_argument(output, conv_ins, new_conv);
    }
};

Paul's avatar
Paul committed
159
// a * (x + b) => a * x + a * b
Paul's avatar
Paul committed
160
161
162
163
164
struct find_mul_add
{
    auto matcher() const
    {
        return match::name("mul")(match::either_arg(0, 1)(
Paul's avatar
Paul committed
165
166
167
            match::name("add")(
                match::either_arg(0, 1)(
                    match::any().bind("x"),
Paul's avatar
Paul committed
168
                    match::any_of(conv_const_weights(), match::is_constant()).bind("b")),
Paul's avatar
Paul committed
169
                match::none_of(match::args(match::is_constant(), match::is_constant())),
Paul's avatar
Paul committed
170
                match::used_once()),
Paul's avatar
Paul committed
171
            match::is_constant().bind("a")));
Paul's avatar
Paul committed
172
173
    }

174
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
175
    {
Paul's avatar
Paul committed
176
        auto ins   = r.result;
Paul's avatar
Paul committed
177
        auto a_ins = r.instructions["a"];
Paul's avatar
Paul committed
178
        auto b_ins = r.instructions["b"];
Paul's avatar
Paul committed
179
        auto x_ins = r.instructions["x"];
Paul's avatar
Paul committed
180
        assert(x_ins != b_ins);
Paul's avatar
Paul committed
181

182
183
184
        auto ax_ins = m.insert_instruction(ins, make_op("mul"), a_ins, x_ins);
        auto ab_ins = m.insert_instruction(ins, make_op("mul"), a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), ax_ins, ab_ins);
Paul's avatar
Paul committed
185
186
187
    }
};

Paul's avatar
Paul committed
188
189
190
191
192
193
struct find_dot_add
{
    auto matcher() const
    {
        return match::name("dot")(match::either_arg(0, 1)(
            match::name("add")(
Paul's avatar
Format  
Paul committed
194
195
                match::either_arg(0, 1)(match::any().bind("x"),
                                        match::any_of(match::is_constant()).bind("b")),
Paul's avatar
Paul committed
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
                match::none_of(match::args(match::is_constant(), match::is_constant())),
                match::used_once()),
            match::is_constant().bind("a")));
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins   = r.result;
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];
        auto x_ins = r.instructions["x"];
        assert(x_ins != b_ins);

        const bool flipped = a_ins == ins->inputs().back();

        auto insert_dot = [&](auto x, auto y) {
Paul's avatar
Format  
Paul committed
212
            if(flipped)
Paul's avatar
Paul committed
213
                return m.insert_instruction(ins, make_op("dot"), y, x);
Paul's avatar
Format  
Paul committed
214
            else
Paul's avatar
Paul committed
215
216
217
218
219
220
221
222
223
                return m.insert_instruction(ins, make_op("dot"), x, y);
        };

        auto ax_ins = insert_dot(a_ins, x_ins);
        auto ab_ins = insert_dot(a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), ax_ins, ab_ins);
    }
};

Paul's avatar
Paul committed
224
struct find_add_lit_broadcast
Paul's avatar
Paul committed
225
226
227
228
229
230
231
{
    auto matcher() const
    {
        return match::name("add")(
            match::either_arg(0, 1)(op_lit_broadcast("add", "a", "x"), lit_broadcast().bind("b")));
    }

232
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
233
234
235
236
237
238
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];

239
240
        auto sumab = m.insert_instruction(ins, make_op("add"), a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), x_ins, sumab);
Paul's avatar
Paul committed
241
242
243
244
    }
};

struct find_double_add_lit_broadcast
Paul's avatar
Paul committed
245
{
Paul's avatar
Paul committed
246
247
    auto matcher() const
    {
Paul's avatar
Paul committed
248
        return match::name("add")(
Paul's avatar
Paul committed
249
            match::args(op_lit_broadcast("add", "a", "x"), op_lit_broadcast("add", "b", "y")));
Paul's avatar
Paul committed
250
251
    }

252
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
253
    {
Paul's avatar
Paul committed
254
255
256
257
258
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto y_ins = r.instructions["y"];
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];
Paul's avatar
Paul committed
259
260
261

        instruction_ref sumab;

Paul's avatar
Paul committed
262
        if(a_ins->name() == "broadcast" and b_ins->name() == "broadcast")
Paul's avatar
Paul committed
263
264
265
        {
            if(a_ins->inputs().at(0)->get_shape() != b_ins->inputs().at(0)->get_shape())
                return;
266
            auto op     = a_ins->get_operator();
267
            auto presum = m.insert_instruction(
268
                ins, make_op("add"), a_ins->inputs().at(0), b_ins->inputs().at(0));
269
            sumab = m.insert_instruction(ins, op, presum);
Paul's avatar
Paul committed
270
271
272
        }
        else
        {
273
            sumab = m.insert_instruction(ins, make_op("add"), a_ins, b_ins);
Paul's avatar
Paul committed
274
275
        }

276
277
        auto sumxy = m.insert_instruction(ins, make_op("add"), x_ins, y_ins);
        m.replace_instruction(ins, make_op("add"), sumxy, sumab);
Paul's avatar
Paul committed
278
279
280
    }
};

Paul's avatar
Paul committed
281
282
283
284
struct find_inner_broadcast
{
    auto matcher() const
    {
Paul's avatar
Format  
Paul committed
285
286
        return pointwise(match::all_of[match::inputs()](
            match::broadcast_shape(), match::name("broadcast", "multibroadcast")));
Paul's avatar
Paul committed
287
288
    }

289
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
290
    {
Paul's avatar
Format  
Paul committed
291
        auto ins    = r.result;
Paul's avatar
Paul committed
292
        auto inputs = ins->inputs();
Paul's avatar
Format  
Paul committed
293
        if(inputs.empty())
Paul's avatar
Paul committed
294
295
            return;
        std::transform(inputs.begin(), inputs.end(), inputs.begin(), [&](auto i) {
Paul's avatar
Format  
Paul committed
296
            if(contains({"broadcast", "multibroadcast"}, i->name()))
Paul's avatar
Paul committed
297
298
299
300
                return i->inputs().front();
            else
                return i;
        });
Paul's avatar
Paul committed
301

Paul's avatar
Format  
Paul committed
302
303
304
        if(not std::all_of(inputs.begin(), inputs.end(), [&](auto& x) {
               return x->get_shape() == inputs.front()->get_shape();
           }))
Paul's avatar
Paul committed
305
306
            return;

Paul's avatar
Format  
Paul committed
307
        auto op  = m.insert_instruction(ins, ins->get_operator(), inputs);
Paul's avatar
Paul committed
308
309
310
311
312
313
        auto bop = std::find_if(ins->inputs().begin(), ins->inputs().end(), [&](auto i) {
            return contains({"broadcast", "multibroadcast"}, i->name());
        });

        assert(bop != ins->inputs().end());
        m.replace_instruction(ins, (*bop)->get_operator(), op);
Paul's avatar
Paul committed
314
315
316
    }
};

317
struct find_concat_op
318
319
320
{
    auto matcher() const
    {
321
        return match::name("concat")(match::any_of[match::inputs()](
322
            match::any_of(match::pointwise(), match::name("broadcast")), match::used_once()));
323
324
    }

325
326
    template <class Iterator>
    static std::vector<std::size_t> get_output_lens(Iterator start, Iterator last, std::size_t axis)
327
    {
328
329
330
        assert(start != last);
        std::size_t dim = 0;
        for(auto ins : range(start, last))
331
        {
332
            dim += ins->get_shape().lens().at(axis);
333
        }
334
335
336
        auto lens  = (*start)->get_shape().lens();
        lens[axis] = dim;
        return lens;
337
338
    }

339
340
341
342
343
    static bool is_valid_op(const operation& op)
    {
        return op.name() == "broadcast" or op.attributes().contains("pointwise");
    }

344
    void apply(module& m, const match::matcher_result& r) const
345
    {
346
347
        auto ins  = r.result;
        auto axis = any_cast<op::concat>(ins->get_operator()).axis;
348

349
350
351
352
353
354
        auto each = [&](auto start, auto last) -> std::vector<instruction_ref> {
            if(std::distance(start, last) < 2)
                return {start, last};
            auto x = *start;
            if(x->inputs().size() > 2 or x->inputs().empty() or x->outputs().size() > 1)
                return {start, last};
355
356
            auto op = x->get_operator();
            if(not is_valid_op(op))
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
                return {start, last};
            auto iaxis = axis;
            // Adjust broadcast lens
            if(op.name() == "broadcast")
            {
                auto b = any_cast<op::broadcast>(op);
                if(b.axis != iaxis)
                    return {start, last};
                b.broadcast_lens = get_output_lens(start, last, iaxis);
                op               = b;
                iaxis            = 0;
            }

            std::vector<instruction_ref> concats;
            for(std::size_t i = 0; i < x->inputs().size(); i++)
            {
                std::vector<instruction_ref> inputs;
                std::transform(start, last, std::back_inserter(inputs), [&](auto j) {
                    return j->inputs().at(i);
                });
377
                auto concat =
378
                    m.insert_instruction(ins, make_op("concat", {{"axis", iaxis}}), inputs);
379
380
                concats.push_back(concat);
            }
381
            auto y = m.insert_instruction(ins, op, concats);
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
            return {y};
        };

        std::vector<instruction_ref> args;
        auto update_args = [&](auto start, auto last) {
            auto x = each(start, last);
            args.insert(args.end(), x.begin(), x.end());
        };
        auto pred = [](auto i, auto j) {
            return i->get_operator() == j->get_operator() and
                   i->inputs().size() == i->inputs().size() and
                   i->outputs().size() == i->outputs().size();
        };
        group_unique(ins->inputs().begin(), ins->inputs().end(), update_args, pred);
        if(args.size() == 1)
397
            m.replace_instruction(ins, args.front());
398
        else
399
            m.replace_instruction(ins, make_op("concat", {{"axis", axis}}), args);
400
401
402
    }
};

403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
std::vector<instruction_ref> get_splits(instruction_ref ins)
{
    std::vector<instruction_ref> result;
    std::copy_if(ins->outputs().begin(),
                 ins->outputs().end(),
                 std::back_inserter(result),
                 [&](auto i) { return i->name() == "slice"; });
    if(result.size() < 2)
        return {};
    auto get_slice = [](auto& i) -> auto& { return any_cast<op::slice>(i->get_operator()); };
    auto&& axes    = get_slice(result.front()).axes;
    if(std::any_of(result.begin(), result.end(), [&](auto i) { return get_slice(i).axes != axes; }))
        return {};
    auto get_start = [&](auto& i) -> auto& { return get_slice(i).starts; };
    auto get_end   = [&](auto& i) -> auto& { return get_slice(i).ends; };
    std::sort(
        result.begin(), result.end(), [&](auto x, auto y) { return get_start(x) < get_start(y); });
    if(std::any_of(get_start(result.front()).begin(), get_start(result.front()).end(), [&](auto i) {
           return i != 0;
       }))
        return {};
    auto it = std::adjacent_find(
        result.begin(), result.end(), [&](auto x, auto y) { return get_end(x) != get_start(y); });
    if(it != result.end())
        return {};
    for(std::size_t i = 0; i < axes.size(); i++)
    {
        auto axis = axes[i];
        if(ins->get_shape().lens()[axis] != get_slice(result.back()).ends[i])
            return {};
    }
    return result;
}

struct find_splits
{
    auto matcher() const
    {
441
442
        return match::any(match::any_of[match::outputs()](match::name("slice")(
            match::any_of[match::outputs()](match::pointwise(), reduction()))));
443
444
    }

Shucai Xiao's avatar
Shucai Xiao committed
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
    static bool is_dependent(const module& m, instruction_ref ins1, instruction_ref ins2)
    {

        std::unordered_set<instruction_ref> traversed;
        return fix<bool>([&](auto self, auto ins) -> bool {
            if(ins == ins2)
                return true;

            if(contains(traversed, ins))
                return false;

            traversed.insert(ins);
            const auto& inputs = ins->inputs();
            return std::any_of(inputs.begin(), inputs.end(), [&](auto in) {
                return m.has_instruction(in) and self(in);
            });
        })(ins1);
    }

464
    static std::vector<std::vector<instruction_ref>>
Shucai Xiao's avatar
Shucai Xiao committed
465
    get_split_groups(const module& m, const std::vector<instruction_ref>& splits)
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
    {
        std::vector<std::vector<instruction_ref>> groups;
        for(auto out : splits.front()->outputs())
        {
            if(out->name() == "slice")
                continue;
            std::vector<instruction_ref> group;
            for(auto split : splits)
            {
                auto it =
                    std::find_if(split->outputs().begin(), split->outputs().end(), [&](auto i) {
                        return i->get_operator() == out->get_operator();
                    });
                if(it == split->outputs().end())
                    break;
                assert((*it)->name() != "slice");
Shucai Xiao's avatar
Shucai Xiao committed
482

483
                // If there is a duplicate bail
Shucai Xiao's avatar
Shucai Xiao committed
484
485
486
487
488
                // there are should be no dependency between instructions in the group
                if(std::any_of(group.begin(), group.end(), [&](auto i) {
                       return is_dependent(m, *it, i) or is_dependent(m, i, *it);
                   }))
                {
489
                    return {};
Shucai Xiao's avatar
Shucai Xiao committed
490
491
                }

492
493
494
495
496
497
498
499
500
                group.push_back(*it);
            }
            if(group.size() != splits.size())
                continue;
            groups.push_back(group);
        }
        return groups;
    }

Shucai Xiao's avatar
Shucai Xiao committed
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
    bool is_fusable(instruction_ref start, instruction_ref split_front) const
    {
        auto op = start->get_operator();
        if(contains(op.name(), "reduce"))
        {
            auto slc         = any_cast<op::slice>(split_front->get_operator());
            auto slc_axes    = slc.axes;
            auto reduce_axes = start->get_operator().to_value()["axes"].to_vector<int64_t>();
            // axes of slice and reduce op cannot have overlap
            if(std::any_of(slc_axes.begin(), slc_axes.end(), [&](auto axis) {
                   return (std::find(reduce_axes.begin(), reduce_axes.end(), axis) !=
                           reduce_axes.end());
               }))
            {
                return false;
            }
        }
        else if(not op.attributes().contains("pointwise"))
        {
            return false;
        }

        return true;
    }

526
    void apply(module& m, const match::matcher_result& r) const
527
    {
Shucai Xiao's avatar
Shucai Xiao committed
528
        auto ins    = r.result;
529
530
531
        auto splits = get_splits(ins);
        if(splits.empty())
            return;
Shucai Xiao's avatar
Shucai Xiao committed
532

533
        for(const auto& group : get_split_groups(m, splits))
534
        {
Shucai Xiao's avatar
Shucai Xiao committed
535
536
537
538
539
            auto start       = group.front();
            auto split_front = splits.front();
            auto op          = start->get_operator();
            if(not is_fusable(start, split_front))
            {
540
                continue;
Shucai Xiao's avatar
Shucai Xiao committed
541
            }
542
543
544
545
546
547

            // Make sure there is no duplicates
            assert(std::none_of(
                std::next(group.begin()), group.end(), [&](auto i) { return i == start; }));

            auto split_idx    = 0;
548
            instruction_ref c = m.end();
549
550
            if(start->inputs().size() == 1)
            {
551
                c = m.insert_instruction(std::next(ins), op, ins);
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
            }
            else if(start->inputs().size() == 2)
            {
                assert(not std::none_of(start->inputs().begin(), start->inputs().end(), [](auto i) {
                    return i->name() == "slice";
                }) && "one argument must be a split");
                auto data_idx = 1;
                if(start->inputs().back()->name() == "slice")
                {
                    split_idx = 1;
                    data_idx  = 0;
                }

                std::vector<instruction_ref> data_args;
                std::transform(group.begin(),
                               group.end(),
                               std::back_inserter(data_args),
                               [&](auto i) { return i->inputs()[data_idx]; });

                // Data arguments must be a constant
                if(std::any_of(data_args.begin(), data_args.end(), [](auto i) {
                       return not i->can_eval();
                   }))
                    return;

                for(auto data : data_args)
578
                    m.move_instructions(data, ins);
579
580
581
582
583
584
585

                auto slice_op = any_cast<op::slice>(splits.front()->get_operator());
                assert(not slice_op.axes.empty());
                if(slice_op.axes.size() > 1)
                    return;
                auto concat_axis = slice_op.axes.front();
                // TODO: Check if axises match
586
                auto concat = m.insert_instruction(
587
                    ins, make_op("concat", {{"axis", concat_axis}}), data_args);
588
589
590
591
592

                std::vector<instruction_ref> args;
                args.resize(2);
                args[split_idx] = ins;
                args[data_idx]  = concat;
593
                c               = m.insert_instruction(std::next(ins), op, args);
594
            }
595
            if(c != m.end())
596
597
598
599
600
601
            {
                for(auto i : group)
                {
                    auto split = i->inputs()[split_idx];
                    assert(split->name() == "slice");
                    // Insert contiguous for reshapes
602
603
                    auto outputs = i->outputs();
                    for(auto output : outputs)
604
605
606
                    {
                        if(not contains({"reshape", "squeeze", "unsqueeze"}, output->name()))
                            continue;
607
                        auto x =
608
609
                            m.insert_instruction(output, make_op("contiguous"), output->inputs());
                        m.replace_instruction(output, output->get_operator(), x);
610
611
                    }

612
                    m.replace_instruction(i, split->get_operator(), c);
613
614
615
616
617
618
619
620
621
622
623
624
625
626
                }
            }
        }
    }
};

struct find_split_concat
{
    auto matcher() const
    {
        return match::any(match::any_of[match::outputs()](
            match::name("slice")(match::all_of[match::outputs()](match::name("concat")))));
    }

627
    void apply(module& m, const match::matcher_result& r) const
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
    {
        auto ins = r.result;

        auto splits = get_splits(ins);
        if(splits.empty())
            return;
        if(std::any_of(
               splits.begin(), splits.end(), [](auto i) { return i->outputs().size() != 1; }))
            return;
        // Check for concat operator
        auto concat = splits.front()->outputs().front();
        if(std::any_of(splits.begin(), splits.end(), [&](auto i) {
               return i->outputs().front() != concat;
           }))
            return;
        // Check axis match
        auto concat_op = any_cast<op::concat>(concat->get_operator());
        auto split_op  = any_cast<op::slice>(splits.front()->get_operator());
        if(split_op.axes.size() != 1)
            return;
        if(split_op.axes.front() != concat_op.axis)
            return;
        // Replace args
        auto args = concat->inputs();
        auto it =
            std::find_if(args.begin(), args.end(), [&](auto i) { return i == splits.front(); });
        if(std::distance(it, args.end()) < splits.size())
            return;
656
657
658
659
660
661
662
        // If the slices are not in order then stop
        if(not std::is_sorted(it, it + splits.size(), [](instruction_ref x, instruction_ref y) {
               auto xop = any_cast<op::slice>(x->get_operator());
               auto yop = any_cast<op::slice>(y->get_operator());
               return std::tie(xop.starts, xop.ends) < std::tie(yop.starts, yop.ends);
           }))
            return;
663
664
665
666
        *it = splits.front()->inputs().front();
        args.erase(std::next(it), it + splits.size());

        if(args.size() == 1)
667
            m.replace_instruction(concat, args.front());
668
        else
669
            m.replace_instruction(concat, concat->get_operator(), args);
670
671
672
    }
};

673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
bool axis_equal(const std::vector<std::size_t>& x,
                const std::vector<std::size_t>& y,
                std::size_t axis)
{
    return x.size() == y.size() and x.size() > axis and
           std::equal(x.begin(), x.begin() + axis, y.begin()) and
           std::equal(x.begin() + axis + 1, x.end(), y.begin() + axis + 1);
}

bool axis_shape_equal(const shape& x, const shape& y, std::size_t axis)
{
    // TODO: Check strides
    return axis_equal(x.lens(), y.lens(), axis);
}

struct find_add_convs
{
    auto matcher() const
    {
        return match::name("add")(
            match::args(conv_const_weights().bind("a"), conv_const_weights().bind("b")));
    }

    static bool symmetrical_strides(const op::convolution& op)
    {
        return op.stride[0] == op.stride[1];
    }

    static std::size_t compute_stride_factor(const op::convolution& x, const op::convolution& y)
    {
        if(not symmetrical_strides(x))
            return 0;
        if(not symmetrical_strides(y))
            return 0;
        if((x.stride[0] % y.stride[0]) != 0)
            return 0;
        return x.stride[0] / y.stride[0];
    }

712
    void apply(module& m, const match::matcher_result& r) const
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
    {
        auto ins       = r.result;
        auto a_conv    = r.instructions["a"];
        auto a_input   = a_conv->inputs().at(0);
        auto a_weights = a_conv->inputs().at(1);
        auto b_conv    = r.instructions["b"];
        auto b_input   = b_conv->inputs().at(0);
        auto b_weights = b_conv->inputs().at(1);

        if(not axis_shape_equal(a_weights->get_shape(), b_weights->get_shape(), 1))
            return;

        auto a_op   = any_cast<op::convolution>(a_conv->get_operator());
        auto b_op   = any_cast<op::convolution>(b_conv->get_operator());
        auto new_op = a_op;

        if(a_op != b_op)
        {
            if(std::tie(a_op.padding, a_op.dilation, a_op.group) ==
                   std::tie(b_op.padding, b_op.dilation, b_op.group) and
               a_weights->get_shape().lens()[2] == 1 and a_weights->get_shape().lens()[3] == 1)
            {
                if(a_op.stride < b_op.stride)
                {
                    auto n = compute_stride_factor(b_op, a_op);
                    if(n == 0)
                        return;
                    new_op  = a_op;
741
                    b_input = m.insert_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
742
                        ins, make_op("step", {{"axes", {2, 3}}, {"steps", {n, n}}}), b_input);
743
744
745
746
747
748
749
                }
                else if(b_op.stride < a_op.stride)
                {
                    auto n = compute_stride_factor(a_op, b_op);
                    if(n == 0)
                        return;
                    new_op  = b_op;
750
                    a_input = m.insert_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
751
                        ins, make_op("step", {{"axes", {2, 3}}, {"steps", {n, n}}}), a_input);
752
753
754
755
756
757
758
759
                }
                else
                    return;
            }
            else
                return;
        }

760
        auto concat_input =
761
            m.insert_instruction(ins, make_op("concat", {{"axis", 1}}), a_input, b_input);
762
        auto concat_weights =
763
764
            m.insert_instruction(ins, make_op("concat", {{"axis", 1}}), a_weights, b_weights);
        m.replace_instruction(ins, new_op, concat_input, concat_weights);
765
766
767
    }
};

768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
MIGRAPHX_PRED_MATCHER(horiz_conv_dot, instruction_ref ins)
{
    auto pred = [&](auto name) {
        return [=](auto i) {
            return i->name() == name and i->inputs().front() == ins and
                   i->inputs().at(1)->can_eval();
        };
    };
    auto dots  = std::count_if(ins->outputs().begin(), ins->outputs().end(), pred("dot"));
    auto convs = std::count_if(ins->outputs().begin(), ins->outputs().end(), pred("convolution"));
    return !(dots < 2 and convs < 2);
}

struct find_conv_dot_horiz_fusion
{
    auto matcher() const { return horiz_conv_dot(); }

785
    void apply(module& m, const match::matcher_result& r) const
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
    {
        auto ins = r.result;

        auto pred = [](auto i, auto j) {
            if(i->get_operator() != j->get_operator())
                return false;
            if(not contains({"dot", "convolution"}, i->name()))
                return true;
            auto x = i->inputs()[1]->get_shape().lens();
            auto y = j->inputs()[1]->get_shape().lens();
            if(x.size() != y.size())
                return false;
            // Check that non-axises match
            int axis = 1;
            if(i->name() == "dot")
            {
                axis = x.size() - 1;
            }
            return axis_equal(x, y, axis);
        };

        auto each = [&](auto start, auto last) {
            if(std::distance(start, last) < 2)
                return;
            auto&& name = (*start)->name();
            if(not contains({"dot", "convolution"}, name))
                return;
813
814
815
816
817
818
819
            auto op   = (*start)->get_operator();
            int group = 1;
            if(name == "convolution")
                group = any_cast<op::convolution>(op).group;
            // Skip group convolution
            if(group != 1)
                return;
820
821
822
823
824
825
826
827
828
829
830
831
832
            auto input = (*start)->inputs().front();
            std::vector<instruction_ref> args;
            std::transform(
                start, last, std::back_inserter(args), [&](auto x) { return x->inputs().at(1); });
            int axis        = 1;
            int concat_axis = 0;
            if(name == "dot")
            {
                axis        = int(args.front()->get_shape().lens().size() - 1);
                concat_axis = axis;
            }

            for(auto arg : args)
833
                m.move_instructions(arg, input);
834
            // TODO: Check if axises match
835
            auto concat =
836
837
                m.insert_instruction(input, make_op("concat", {{"axis", concat_axis}}), args);
            auto fused     = m.insert_instruction(std::next(input), op, input, concat);
838
839
840
841
            int64_t offset = 0;
            for(auto arg : range(start, last))
            {
                int64_t len = arg->get_shape().lens()[axis];
842
                m.replace_instruction(
843
844
845
846
                    arg,
                    make_op("slice",
                            {{"axes", {axis}}, {"starts", {offset}}, {"ends", {offset + len}}}),
                    fused);
847
848
849
850
851
852
853
854
855
                offset += len;
            }
        };

        auto outputs = ins->outputs();
        group_by(outputs.begin(), outputs.end(), each, pred);
    }
};

856
857
858
859
860
861
862
struct find_div_const
{
    auto matcher() const
    {
        return match::name("div")(match::arg(1)(match::is_constant().bind("c")));
    }

863
    void apply(module& m, const match::matcher_result& r) const
864
865
866
867
    {
        auto ins   = r.result;
        auto c_ins = r.instructions["c"];

868
        auto recip = m.insert_instruction(std::next(c_ins), make_op("recip"), c_ins);
869
870
871

        auto args = ins->inputs();

872
        m.replace_instruction(ins, make_op("mul"), args.front(), recip);
873
874
875
876
877
878
879
880
881
882
    }
};

struct find_sub_const
{
    auto matcher() const
    {
        return match::name("sub")(match::arg(1)(match::is_constant().bind("c")));
    }

883
    void apply(module& m, const match::matcher_result& r) const
884
885
886
887
    {
        auto ins   = r.result;
        auto c_ins = r.instructions["c"];

888
        auto neg = m.insert_instruction(std::next(c_ins), make_op("neg"), c_ins);
889
890
891

        auto args = ins->inputs();

892
        m.replace_instruction(ins, make_op("add"), args.front(), neg);
893
894
895
    }
};

kahmed10's avatar
kahmed10 committed
896
897
898
899
900
901
902
903
struct find_rsqrt
{
    auto matcher() const
    {
        return match::name("recip")(match::args(
            match::name("sqrt")(match::used_once(), match::args(match::any().bind("x")))));
    }

904
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
905
906
907
908
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];

909
        m.replace_instruction(ins, make_op("rsqrt"), x_ins);
kahmed10's avatar
kahmed10 committed
910
911
912
    }
};

913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
static bool same_ops(const std::vector<instruction_ref>& vec_ins)
{
    return std::all_of(vec_ins.begin(), vec_ins.end(), [&](auto i) {
        return i->get_operator() == vec_ins.front()->get_operator();
    });
}

struct find_split_reshape
{
    auto matcher() const
    {
        return match::name("reshape")(match::arg(0)(match::name("contiguous")(
                                          match::arg(0)(match::name("slice").bind("slice")))))
            .bind("reshape");
    }

929
    void apply(module& m, const match::matcher_result& r) const
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
    {
        auto slc = r.instructions["slice"];
        auto rsp = r.instructions["reshape"];

        auto input         = slc->inputs().front();
        auto split_outputs = get_splits(input);
        if(split_outputs.empty())
        {
            return;
        }

        std::vector<instruction_ref> vec_rsp(split_outputs.size());
        std::transform(split_outputs.begin(), split_outputs.end(), vec_rsp.begin(), [](auto i) {
            assert(i->outputs().size() == 1);
            auto cont = i->outputs().front();
            assert(cont->outputs().size() == 1);
            return cont->outputs().front();
        });

        // all outputs are reshape and of the same shape
        auto dims = any_cast<op::reshape>(rsp->get_operator()).dims;
        if(!same_ops(vec_rsp))
        {
            return;
        }

        // ensure reshape happens after the axis dimension
957
958
959
960
961
962
963
964
965
966
967
968
        auto axis         = any_cast<op::slice>(slc->get_operator()).axes[0];
        auto slc_lens     = slc->get_shape().lens();
        auto slc_dim_size = std::accumulate(
            slc_lens.begin() + axis, slc_lens.end(), 1, std::multiplies<std::size_t>());

        // search the reshape output (standard shape) to decide which axis are
        // in its output corresponding to the slc_dim_size
        auto rsp_lens    = rsp->get_shape().lens();
        auto rsp_strides = rsp->get_shape().strides();
        rsp_strides.insert(rsp_strides.begin(), rsp_strides[0] * rsp_lens[0]);
        auto ait = std::find(rsp_strides.begin(), rsp_strides.end(), slc_dim_size);
        if(ait == rsp_strides.end())
969
970
971
        {
            return;
        }
972
        int rsp_axis = std::distance(rsp_strides.begin(), ait);
973
974

        // calculate reshape output shape
975
976
977
978
979
980
981
        std::vector<int64_t> vec_dims(vec_rsp.size());
        std::transform(vec_rsp.begin(), vec_rsp.end(), vec_dims.begin(), [&](auto is) {
            return is->get_shape().lens()[rsp_axis];
        });

        std::vector<int64_t> rsp_out_lens(rsp_lens.begin(), rsp_lens.end());
        rsp_out_lens[rsp_axis] = std::accumulate(vec_dims.begin(), vec_dims.end(), std::int64_t{0});
982
983

        // insert the reshape instruction
984
        auto rsp_ins = m.insert_instruction(
985
            std::next(input), make_op("reshape", {{"dims", rsp_out_lens}}), input);
986
987

        // replace the original reshape with slice
988
989
        int64_t start = 0;
        for(std::size_t i = 0; i < vec_rsp.size(); ++i)
990
        {
991
            m.replace_instruction(
992
993
994
995
996
                vec_rsp[i],
                make_op(
                    "slice",
                    {{"axes", {rsp_axis}}, {"starts", {start}}, {"ends", {start + vec_dims[i]}}}),
                rsp_ins);
997
            start += vec_dims[i];
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
        }
    }
};

struct find_split_transpose
{
    auto matcher() const
    {
        return match::name("transpose")(match::arg(0)(match::name("slice").bind("slice")))
            .bind("trans");
    }

1010
    void apply(module& m, const match::matcher_result& r) const
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
    {
        auto slc   = r.instructions["slice"];
        auto trans = r.instructions["trans"];

        auto input         = slc->inputs().front();
        auto split_outputs = get_splits(input);
        if(split_outputs.empty())
        {
            return;
        }

        std::vector<instruction_ref> vec_trans(split_outputs.size());
        std::transform(split_outputs.begin(), split_outputs.end(), vec_trans.begin(), [](auto i) {
            assert(i->outputs().size() == 1);
            return i->outputs().front();
        });

        // all transpose are the same
        auto perm = any_cast<op::transpose>(trans->get_operator()).dims;
        if(!same_ops(vec_trans))
        {
            return;
        }

        // insert an transpose instruction
1036
        auto tr = m.insert_instruction(
1037
            std::next(input), make_op("transpose", {{"permutation", perm}}), input);
1038
1039
1040
1041
1042

        // compute the axis in the slice
        auto axis = any_cast<op::slice>(slc->get_operator()).axes.front();
        auto it   = std::find(perm.begin(), perm.end(), axis);
        assert(it != perm.end());
Paul Fultz II's avatar
Paul Fultz II committed
1043
        int64_t axis_new = std::distance(perm.begin(), it);
1044
1045
1046
1047
1048
1049
1050

        for(auto in : split_outputs)
        {
            auto oper    = any_cast<op::slice>(in->get_operator());
            auto starts  = oper.starts;
            auto ends    = oper.ends;
            auto tr_orig = in->outputs().front();
1051
            m.replace_instruction(
1052
1053
1054
                tr_orig,
                make_op("slice", {{"axes", {axis_new}}, {"starts", starts}, {"ends", ends}}),
                tr);
1055
1056
1057
1058
        }
    }
};

1059
void simplify_algebra::apply(module& m) const
Paul's avatar
Paul committed
1060
{
Paul's avatar
Paul committed
1061
    // Run simplifications multiple times
1062
    for(int i = 0; i < 8; i++)
Paul's avatar
Paul committed
1063
    {
1064
        match::find_matches(m,
Paul's avatar
Paul committed
1065
                            find_inner_broadcast{},
Paul's avatar
Paul committed
1066
1067
                            find_double_add_lit_broadcast{},
                            find_add_lit_broadcast{},
1068
                            find_add_convs{},
1069
                            find_conv_dot_horiz_fusion{},
Paul's avatar
Paul committed
1070
                            find_mul_conv{},
1071
                            find_mul_slice_conv{},
1072
                            find_mul_add{},
Paul's avatar
Paul committed
1073
                            find_dot_add{},
1074
1075
                            find_div_const{},
                            find_sub_const{},
kahmed10's avatar
kahmed10 committed
1076
                            find_rsqrt{},
1077
                            find_concat_op{},
1078
                            find_split_concat{},
1079
1080
1081
                            find_splits{},
                            find_split_reshape{},
                            find_split_transpose{});
1082
        dead_code_elimination{}.apply(m);
Paul's avatar
Paul committed
1083
    }
Paul's avatar
Paul committed
1084
}
Paul's avatar
Paul committed
1085

Paul's avatar
Paul committed
1086
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1087
} // namespace migraphx