onnx.cpp 19.5 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
#include <migraph/fallthrough.hpp>
#include <migraph/program.hpp>
#include <migraph/operators.hpp>
#include <migraph/ranges.hpp>
16
#include <migraph/instruction.hpp>
Paul's avatar
Paul committed
17

Paul's avatar
Paul committed
18
namespace migraph {
Paul's avatar
Paul committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

struct unknown
{
    std::string op;
    std::string name() const { return "unknown:" + op; }
    shape compute_shape(std::vector<shape> input) const
    {
        if(input.empty())
            return {};
        else
            return input.front();
    }
    friend std::ostream& operator<<(std::ostream& os, const unknown& x)
    {
        os << x.name();
        return os;
    }
};

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
42
    using op_func = std::function<instruction_ref(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
43
44
45
46
47
48
49
50
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
    program prog = program();

    std::unordered_map<std::string, op_func> ops;

    onnx_parser()
    {
51
52
53
54
55
56
57
        add_generic_op("Add", op::add{});
        add_generic_op("Div", op::div{});
        add_generic_op("MatMul", op::gemm{});
        add_generic_op("Mul", op::mul{});
        add_generic_op("Relu", op::activation{"relu"});
        add_generic_op("Sub", op::sub{});
        add_generic_op("Sum", op::add{});
Paul's avatar
Paul committed
58

Paul's avatar
Paul committed
59
60
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
61
62
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
63
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
64
65
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
66
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
67
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
Paul's avatar
Paul committed
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
    }

    template <class F>
    void add_op(std::string name, F f)
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }

Paul's avatar
Paul committed
84
    template <class T>
Paul's avatar
Paul committed
85
86
87
88
89
90
91
92
93
94
95
    void add_generic_op(std::string name, T x)
    {
        ops.emplace(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
            if(args.size() == 2 and contains(attributes, "broadcast"))
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
                    uint64_t axis = (contains(attributes, "axis"))
                                        ? parse_value(attributes.at("axis")).at<uint64_t>()
                                        : 0;
Scott Thornton's avatar
Scott Thornton committed
96
97
                    auto l =
                        prog.add_instruction(op::broadcast{axis, args[0]->get_shape()}, args[1]);
Paul's avatar
Paul committed
98
99
100
101
102
103
104
                    return prog.add_instruction(x, args[0], l);
                }
            }
            return prog.add_instruction(x, args);
        });
    }

Paul's avatar
Paul committed
105
    instruction_ref
Paul's avatar
Paul committed
106
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
107
108
    {
        auto dims = args.front()->get_shape().lens();
Scott Thornton's avatar
Scott Thornton committed
109
110
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
111
112
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
Paul's avatar
Paul committed
113
114
    }

Paul's avatar
Paul committed
115
    instruction_ref
Paul's avatar
Paul committed
116
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
117
    {
118
        op::convolution op;
Paul's avatar
Paul committed
119
120
121
        if(contains(attributes, "pads"))
        {
            copy(attributes["pads"].ints(), op.padding.begin());
Paul's avatar
Paul committed
122
        }
Paul's avatar
Paul committed
123
124
125
126
127
128
129
130
131
132
133
134
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Scott Thornton's avatar
Scott Thornton committed
135
            auto l2       = prog.add_instruction(op::broadcast{axis, l1->get_shape()}, args[2]);
136
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
137
        }
Paul's avatar
Paul committed
138
139
        return prog.add_instruction(op, args);
    }
Paul's avatar
Paul committed
140

Paul's avatar
Paul committed
141
142
143
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
144
    {
145
        op::pooling op{name == "MaxPool" ? "max" : "average"};
Paul's avatar
Paul committed
146
147
148
149
150
151
152
153
154
155
156
157
        if(contains(attributes, "pads"))
        {
            copy(attributes["pads"].ints(), op.padding.begin());
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Paul's avatar
Paul committed
158
        return prog.add_instruction(op, std::move(args));
Paul's avatar
Paul committed
159
160
    }

Paul's avatar
Paul committed
161
    instruction_ref
Paul's avatar
Paul committed
162
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
163
    {
164
        op::reshape op;
Paul's avatar
Paul committed
165
166
167
168
169
170
171
        if(args.size() == 1)
        {
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
172
            literal s = args[1]->get_literal();
Paul's avatar
Paul committed
173
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
174
        }
Paul's avatar
Paul committed
175
176
177
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
178
    instruction_ref
Paul's avatar
Paul committed
179
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
180
181
    {
        uint64_t axis = 0;
Paul's avatar
Paul committed
182
183
184
185
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
186
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
187
188
    }

Paul's avatar
Paul committed
189
190
191
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
192
193
194
195
    {
        literal v = parse_value(attributes.at("value"));
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
196

Paul's avatar
Paul committed
197
    instruction_ref
Paul's avatar
Paul committed
198
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
    {
        float alpha = 1.0f;
        float beta  = 0.0f;
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
            alpha = parse_value(attributes.at("beta")).at<float>();
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
        std::vector<int64_t> perm = {1, 0};
221
222
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
223
224
225
        if(args.size() == 3)
        {
            uint64_t axis = 1;
226
            auto l3       = prog.add_instruction(op::gemm{alpha, beta}, l1, l2);
Scott Thornton's avatar
Scott Thornton committed
227
            auto l4       = prog.add_instruction(op::broadcast{axis, l3->get_shape()}, args[2]);
228
            return prog.add_instruction(op::add{}, l3, l4);
Paul's avatar
Paul committed
229
        }
230
        return prog.add_instruction(op::gemm{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
231
232
    }

233
    instruction_ref
Paul's avatar
Paul committed
234
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
235
    {
Scott Thornton's avatar
Scott Thornton committed
236
237
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
238
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
239
        bool is_test                                      = false;
240
241
242
243
244
245
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
246
            momentum = parse_value(attributes.at("momentum")).at<float>();
247
248
249
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
250
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
251
252
253
        }
        if(contains(attributes, "spatial"))
        {
254
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
255
256
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
257
        }
Paul's avatar
Paul committed
258
        (void)is_test;
Paul's avatar
Paul committed
259
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
260
        return prog.add_instruction(op, std::move(args));
261
262
    }

Paul's avatar
Paul committed
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
            throw std::runtime_error("Failed reading");
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
282
283
284
285
286
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
287
288
289
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
290
291
292
293
294
295
296
297
298
299
300
301
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
302
303
304
        }
        for(auto&& p : nodes)
        {
305
            this->parse_node(get_name(p.second));
Paul's avatar
Paul committed
306
307
308
        }
    }

Paul's avatar
Paul committed
309
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
310
    {
Paul's avatar
Paul committed
311
        if(name.empty())
Paul's avatar
Paul committed
312
            MIGRAPH_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
313
314
315
316
317
318
319
320
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
321
                    auto&& iname = get_name(nodes.at(input));
Paul's avatar
Paul committed
322
                    assert(name != iname);
Paul's avatar
Paul committed
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
                    this->parse_node(iname);
                    args.push_back(instructions.at(iname));
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
            if(ops.count(node.op_type()) == 0)
            {
                instructions[name] = prog.add_instruction(unknown{node.op_type()}, args);
            }
            else
            {
                instructions[name] = ops[node.op_type()](get_attributes(node), args);
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

352
353
354
355
356
    static std::string get_name(const onnx::NodeProto& node)
    {
        if(node.name().empty())
        {
            std::string generated = "migraph_unnamed_node";
Paul's avatar
Paul committed
357
358
359
360
            return std::accumulate(node.output().begin(),
                                   node.output().end(),
                                   generated,
                                   [](auto x, auto y) { return x + "_" + y; });
361
362
363
364
        }
        return node.name();
    }

Paul's avatar
Paul committed
365
366
367
368
369
    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
        for(auto&& node : graph.node())
        {
370
            result[get_name(node)] = node;
Paul's avatar
Paul committed
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
396
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
397
398
399
400
401
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
402
        MIGRAPH_THROW("Invalid attribute type");
Paul's avatar
Paul committed
403
404
405
406
407
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
408
409
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
410
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
            case onnx::TensorProto::FLOAT: return literal{{shape::float_type, dims}, s.data()};
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
            case onnx::TensorProto::INT8: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::UINT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT32: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT64: return literal{{shape::int64_type, dims}, s.data()};
            case onnx::TensorProto::STRING: throw std::runtime_error("");
            case onnx::TensorProto::BOOL: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::FLOAT16: throw std::runtime_error("");
            case onnx::TensorProto::DOUBLE: return literal{{shape::double_type, dims}, s.data()};
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
            MIGRAPH_THROW("Invalid tensor type");
431
        }
Paul's avatar
Paul committed
432
433
434
435
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Paul's avatar
Paul committed
436
            return literal{{shape::float_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
437
438
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Paul's avatar
Paul committed
439
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
440
        case onnx::TensorProto::UINT16:
Paul's avatar
Paul committed
441
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
442
        case onnx::TensorProto::INT16:
Paul's avatar
Paul committed
443
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
444
        case onnx::TensorProto::INT32:
Paul's avatar
Paul committed
445
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
446
        case onnx::TensorProto::INT64:
Paul's avatar
Paul committed
447
            return literal{{shape::int64_type, dims}, t.int64_data().begin(), t.int64_data().end()};
Paul's avatar
Paul committed
448
449
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Paul's avatar
Paul committed
450
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
451
452
453
454
455
456
457
458
459
        case onnx::TensorProto::FLOAT16: throw std::runtime_error("");
        case onnx::TensorProto::DOUBLE:
            return literal{
                {shape::double_type, dims}, t.double_data().begin(), t.double_data().end()};
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
460
        MIGRAPH_THROW("Invalid tensor type");
Paul's avatar
Paul committed
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
    }

    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
        case onnx::TensorProto::FLOAT16:
            break; // throw std::runtime_error("Unsupported type FLOAT16");
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
493
        auto&& tensor_dims = t.tensor_type().shape().dim();
Paul's avatar
Paul committed
494
495
496
497
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) { return d.dim_value(); });
Paul's avatar
Paul committed
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
        return {shape_type, dims};
    }
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
523
} // namespace migraph