lowering.cpp 28.5 KB
Newer Older
Paul's avatar
Paul committed
1

Paul's avatar
Paul committed
2
3
4
5
6
7
#include <migraphx/cpu/lowering.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/dfor.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/iterator_for.hpp>
Paul's avatar
Paul committed
8
#include <migraphx/par_dfor.hpp>
Paul's avatar
Paul committed
9
#include <migraphx/cpu/gemm.hpp>
Paul's avatar
Paul committed
10
#include <unordered_map>
Paul's avatar
Paul committed
11
#include <utility>
Paul's avatar
Paul committed
12

Paul's avatar
Paul committed
13
namespace migraphx {
Paul's avatar
Paul committed
14
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
15
16
17
18
19
20
21
22
namespace cpu {

template <typename T>
T zero(const T&)
{
    return T(0);
}

Khalique's avatar
Khalique committed
23
24
25
26
template <class T>
typename std::conditional_t<std::is_integral<T>{}, std::make_signed<T>, std::enable_if<true, T>>::
    type
    make_signed(T x)
Khalique's avatar
Khalique committed
27
28
29
30
{
    return x;
}

31
32
33
34
//
// cpu implemenataion of batch norm for inference
//
// inputs are:
35
36
37
38
// args[0] -> input data buffer
// args[1] -> mini batch mean
// args[2] -> mini batch variance
// args[3] -> gamma
Aditya Atluri's avatar
Aditya Atluri committed
39
// args[4] -> bias
40
41
42
//
// The equation to compute batch norm for inference is:
//
Aditya Atluri's avatar
Aditya Atluri committed
43
// output[i] = bias + gamma * (input[i] + mean) / sqrt(variance + epsilon)
44
45
46
47
48
//
// the input data format should be nchw
//
struct cpu_batch_norm_inference
{
49
    op::batch_norm_inference op;
50

51
52
53
54
55
56
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

57
58
    std::string name() const { return "cpu::batch_norm_inference"; }

Paul's avatar
Paul committed
59
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
60

Paul's avatar
Paul committed
61
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
62
    {
63
64
        argument output{output_shape};

Aditya Atluri's avatar
Aditya Atluri committed
65
66
        double epsilon           = op.epsilon;
        auto input               = args[0];
Paul's avatar
Paul committed
67
68
69
70
        auto arg_gamma           = args[1];
        auto arg_bias            = args[2];
        auto mini_batch_mean     = args[3];
        auto mini_batch_variance = args[4];
71

72
        auto num_batch    = output_shape.lens()[0];
Aditya Atluri's avatar
Aditya Atluri committed
73
74
        auto num_channels = output_shape.lens()[1];
        auto image_height = output_shape.lens()[2];
75
        auto image_width  = output_shape.lens()[3];
Aditya Atluri's avatar
Aditya Atluri committed
76

77
        if(op.bn_mode == op::batch_norm_inference::spatial)
Scott Thornton's avatar
Scott Thornton committed
78
79
80
81
        {
            visit_all(output, input, mini_batch_mean, mini_batch_variance, arg_gamma, arg_bias)(
                [&](auto result, auto buffer, auto mean, auto variance, auto gamma, auto bias) {

Paul's avatar
Paul committed
82
                    par_dfor(num_batch, num_channels, image_height, image_width)(
Scott Thornton's avatar
Scott Thornton committed
83
                        [&](std::size_t n, std::size_t c, std::size_t h, std::size_t w) {
84
85
86
87
                            assert((variance[c] + epsilon) > 0);
                            result(n, c, h, w) = gamma[c] * (buffer(n, c, h, w) - mean[c]) /
                                                     std::sqrt(variance[c] + epsilon) +
                                                 bias[c];
Scott Thornton's avatar
Scott Thornton committed
88
89
                        });
                });
90
91
        }

92
        if(op.bn_mode == op::batch_norm_inference::per_activation)
Scott Thornton's avatar
Scott Thornton committed
93
        {
94
95
96
            visit_all(output, input, mini_batch_mean, mini_batch_mean, arg_gamma, arg_bias)(
                [&](auto result, auto buffer, auto mean, auto variance, auto gamma, auto bias) {

Paul's avatar
Paul committed
97
                    par_dfor(num_batch, num_channels, image_height, image_width)(
98
                        [&](std::size_t n, std::size_t c, std::size_t h, std::size_t w) {
Paul's avatar
Paul committed
99
                            assert((variance(c, h, w) + epsilon) > 0);
Scott Thornton's avatar
Scott Thornton committed
100
101
102
103
104
105
                            result(n, c, h, w) = gamma(c, h, w) *
                                                     (buffer(n, c, h, w) - mean(c, h, w)) /
                                                     std::sqrt(variance(c, h, w) + epsilon) +
                                                 bias(c, h, w);
                        });
                });
106
        }
107
108
109
110
111

        return output;
    }
};

Khalique's avatar
Khalique committed
112
struct cpu_lrn
Khalique's avatar
Khalique committed
113
{
Khalique's avatar
Khalique committed
114
    op::lrn op;
Khalique's avatar
Khalique committed
115

116
117
118
119
120
121
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Khalique's avatar
Khalique committed
122
    std::string name() const { return "cpu::lrn"; }
Khalique's avatar
Khalique committed
123
124
125
126
127
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
Khalique's avatar
Khalique committed
128
129
130
131
            int n_batch         = output_shape.lens()[0];
            int channels        = output_shape.lens()[1];
            int height          = output_shape.lens()[2];
            int width           = output_shape.lens()[3];
Paul's avatar
Paul committed
132
            float alphaoverarea = op.alpha / float(op.size);
Khalique's avatar
Khalique committed
133
            int radius          = (op.size - 1) / 2;
Khalique's avatar
Khalique committed
134

135
            par_dfor(n_batch, height, width)([&](int b, int h, int w) {
Khalique's avatar
Khalique committed
136
                float scale = 0;
Khalique's avatar
Khalique committed
137
138
                dfor(channels)([&](int c) {
                    auto start = (c - radius) < 0 ? 0 : (c - radius);
Khalique's avatar
Khalique committed
139
                    auto end   = (c + radius) > channels ? channels : (c + radius);
Khalique's avatar
Khalique committed
140
141
                    for(auto k = start; k < end; ++k)
                    {
Khalique's avatar
Khalique committed
142
                        scale += std::pow(input(b, k, h, w), 2);
Khalique's avatar
Khalique committed
143
144
145
                    }
                    scale *= alphaoverarea;
                    scale += op.bias;
Khalique's avatar
Khalique committed
146
                    scale              = std::pow(scale, -op.beta);
Khalique's avatar
Khalique committed
147
148
149
150
151
152
153
154
                    output(b, c, h, w) = input(b, c, h, w) * scale;
                });
            });
        });
        return result;
    }
};

Paul's avatar
Paul committed
155
156
struct cpu_convolution
{
157
    op::convolution op;
Paul's avatar
Paul committed
158

159
160
161
162
163
164
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Paul's avatar
Paul committed
165
    std::string name() const { return "cpu::convolution"; }
Paul's avatar
Paul committed
166
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Paul's avatar
Paul committed
167
168
169
170
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        visit_all(result, args[0], args[1])([&](auto output, auto input, auto weights) {
Khalique's avatar
Khalique committed
171
            auto in   = input.get_shape().lens();
Khalique's avatar
Khalique committed
172
173
            auto in_h = in[2];
            auto in_w = in[3];
Paul's avatar
Paul committed
174

Khalique's avatar
Khalique committed
175
            auto wei   = weights.get_shape().lens();
Khalique's avatar
Khalique committed
176
177
178
179
            auto wei_n = wei[0];
            auto wei_c = wei[1];
            auto wei_h = wei[2];
            auto wei_w = wei[3];
Paul's avatar
Paul committed
180

Paul's avatar
Paul committed
181
            par_dfor(output_shape.lens()[0],
Paul's avatar
Paul committed
182
183
184
                     output_shape.lens()[1],
                     output_shape.lens()[2],
                     output_shape.lens()[3])(
Paul's avatar
Paul committed
185
                [&](std::size_t o, std::size_t w, std::size_t i, std::size_t j) {
Paul's avatar
Paul committed
186
187
188
                    const auto start_x  = i * op.stride[0] - op.padding[0];
                    const auto start_y  = j * op.stride[1] - op.padding[1];
                    const auto group_id = w / (wei_n / op.group);
Paul's avatar
Paul committed
189
190
191

                    double acc = 0;
                    dfor(wei_c, wei_h, wei_w)([&](std::size_t k, std::size_t x, std::size_t y) {
Paul's avatar
Paul committed
192
193
194
                        const auto in_x  = start_x + x;
                        const auto in_y  = start_y + y;
                        const auto in_ch = group_id * wei_c + k;
Paul's avatar
Paul committed
195
196
                        if(in_x >= 0 && in_x < in_h && in_y >= 0 && in_y < in_w)
                        {
Khalique's avatar
Khalique committed
197
                            acc += input(o, in_ch, in_x, in_y) * weights(w, k, x, y);
Paul's avatar
Paul committed
198
199
200
201
202
203
204
205
206
                        }
                    });
                    output(o, w, i, j) = acc;
                });
        });
        return result;
    }
};

207
208
209
210
struct cpu_quant_convolution
{
    op::quant_convolution op;

211
212
213
214
215
216
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
    std::string name() const { return "cpu::quant_convolution"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        visit_all(result, args[0], args[1])([&](auto output, auto input, auto weights) {
            auto in   = input.get_shape().lens();
            auto in_h = in[2];
            auto in_w = in[3];

            auto wei   = weights.get_shape().lens();
            auto wei_n = wei[0];
            auto wei_c = wei[1];
            auto wei_h = wei[2];
            auto wei_w = wei[3];

            par_dfor(output_shape.lens()[0],
                     output_shape.lens()[1],
                     output_shape.lens()[2],
                     output_shape.lens()[3])(
                [&](std::size_t o, std::size_t w, std::size_t i, std::size_t j) {
                    const int start_x  = i * op.stride[0] - op.padding[0];
                    const int start_y  = j * op.stride[1] - op.padding[1];
                    const int group_id = w / (wei_n / op.group);

                    double acc = 0;
                    dfor(wei_c, wei_h, wei_w)([&](std::size_t k, std::size_t x, std::size_t y) {
                        const int in_x  = start_x + x;
                        const int in_y  = start_y + y;
                        const int in_ch = group_id * wei_c + k;
                        if(in_x >= 0 && in_x < in_h && in_y >= 0 && in_y < in_w)
                        {
                            acc += input(o, in_ch, in_x, in_y) * weights(w, k, x, y);
                        }
                    });
                    output(o, w, i, j) = acc;
                });
        });
        return result;
    }
};

Scott Thornton's avatar
Scott Thornton committed
259
260
struct cpu_im2col
{
261
    op::im2col op;
Scott Thornton's avatar
Scott Thornton committed
262

263
264
265
266
267
268
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Scott Thornton's avatar
Scott Thornton committed
269
270
    static std::string name() { return "cpu::im2col"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Scott Thornton's avatar
Scott Thornton committed
271

wsttiger's avatar
wsttiger committed
272
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Scott Thornton's avatar
Scott Thornton committed
273
    {
Scott Thornton's avatar
Scott Thornton committed
274
        argument result{output_shape};
Scott Thornton's avatar
Scott Thornton committed
275
        auto input_shape   = args[0].get_shape();
Scott Thornton's avatar
Scott Thornton committed
276
277
        auto weights_shape = args[1].get_shape();
        visit_all(result, args[0])([&](auto col, auto input) {
Scott Thornton's avatar
Scott Thornton committed
278
279
            const std::size_t& height   = input_shape.lens()[2];
            const std::size_t& width    = input_shape.lens()[3];
Scott Thornton's avatar
Scott Thornton committed
280
281
282
            const std::size_t& channels = weights_shape.lens()[1];
            const std::size_t& kernel_h = weights_shape.lens()[2];
            const std::size_t& kernel_w = weights_shape.lens()[3];
Scott Thornton's avatar
Scott Thornton committed
283
284
            const std::size_t& pad_h    = op.padding[0];
            const std::size_t& pad_w    = op.padding[1];
Scott Thornton's avatar
Scott Thornton committed
285
286
287
            const std::size_t& stride_h = op.stride[0];
            const std::size_t& stride_w = op.stride[1];

Paul's avatar
Paul committed
288
289
            auto kdiv2_h = kernel_h / 2;
            auto kdiv2_w = kernel_w / 2;
Scott Thornton's avatar
Scott Thornton committed
290
            // calculate output sizes
Scott Thornton's avatar
Scott Thornton committed
291
292
            const std::size_t col_height = (height - kernel_h + 2 * pad_h) / stride_h + 1;
            const std::size_t col_width  = (width - kernel_w + 2 * pad_w) / stride_w + 1;
wsttiger's avatar
wsttiger committed
293
            // account for padding for the starting position of the input pixels
Scott Thornton's avatar
Scott Thornton committed
294
            std::size_t iinput = kdiv2_h - pad_h;
wsttiger's avatar
wsttiger committed
295
            // loop over output pixels (ioutput, joutput)
Scott Thornton's avatar
Scott Thornton committed
296
297
298
299
300
301
302
303
            for(std::size_t ioutput = 0; ioutput < col_height; ioutput++, iinput += stride_h)
            {
                std::size_t jinput = kdiv2_w - pad_w;
                for(std::size_t joutput = 0; joutput < col_width; joutput++, jinput += stride_w)
                {
                    // compute linear index for output
                    std::size_t ldx = ioutput * col_width + joutput;
                    std::size_t p   = 0;
wsttiger's avatar
wsttiger committed
304
305
306
                    dfor(channels,
                         kernel_h,
                         kernel_w)([&](std::size_t c, std::size_t koffset, std::size_t loffset) {
Paul's avatar
Paul committed
307
308
                        auto idx    = iinput + koffset - kdiv2_h;
                        auto jdx    = jinput + loffset - kdiv2_w;
wsttiger's avatar
wsttiger committed
309
310
311
312
313
                        col(ldx, p) = ((idx >= 0) && (idx < height) && (jdx >= 0) && (jdx < width))
                                          ? input(0, c, idx, jdx)
                                          : 0;
                        p++;
                    });
Scott Thornton's avatar
Scott Thornton committed
314
315
                }
            }
Scott Thornton's avatar
Scott Thornton committed
316
        });
Scott Thornton's avatar
Scott Thornton committed
317
318
319
320
        return result;
    }
};

Paul's avatar
Paul committed
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
struct max_pool
{
    static std::string name() { return "max"; }
    static double start() { return std::numeric_limits<double>::lowest(); }

    static double apply(double x, double y)
    {
        double m = std::max(x, y);
        return (m);
    }

    static double final(double x, double) { return (x); }
};

struct avg_pool
{
    static std::string name() { return "average"; }
    static double start() { return 0.0; }

    static double apply(double x, double y) { return x + y; }

    static double final(double x, double y) { return x / y; }
};

template <class Op>
struct cpu_pooling
{
348
    op::pooling op;
Paul's avatar
Paul committed
349

350
351
352
353
354
355
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Paul's avatar
Paul committed
356
    std::string name() const { return "cpu::pooling_" + Op::name(); }
Paul's avatar
Paul committed
357
358
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
359
360
361
362
363
364
365
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
            using type = typename decltype(output)::value_type;
            auto in_h  = input.get_shape().lens()[2];
            auto in_w  = input.get_shape().lens()[3];

Paul's avatar
Paul committed
366
            par_dfor(output_shape.lens()[0],
Paul's avatar
Paul committed
367
368
369
                     output_shape.lens()[1],
                     output_shape.lens()[2],
                     output_shape.lens()[3])(
Paul's avatar
Paul committed
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
                [&](std::size_t o, std::size_t w, std::size_t i, std::size_t j) {
                    const int start_x0 = i * op.stride[0] - op.padding[0];
                    const int start_y0 = j * op.stride[1] - op.padding[1];

                    const int hend = std::min(start_x0 + op.lengths[0], in_h);
                    const int wend = std::min(start_y0 + op.lengths[1], in_w);

                    const int start_x = std::max(start_x0, 0);
                    const int start_y = std::max(start_y0, 0);

                    const int w_h       = (hend - start_x);
                    const int w_w       = (wend - start_y);
                    const int pool_size = std::max(w_h * w_w, 1);

                    double acc = Op::start();
                    dfor(w_h, w_w)([&](int x, int y) {
                        const int in_x = start_x + x;
                        const int in_y = start_y + y;
                        if(in_x >= 0 && in_x < in_h && in_y >= 0 && in_y < in_w)
                        {
                            acc = Op::apply(acc, input(o, w, in_x, in_y));
                        }
                    });
                    output(o, w, i, j) = type(Op::final(acc, pool_size));
                });
        });
        return result;
    }
};

400
struct cpu_op
Paul's avatar
Paul committed
401
{
402
403
    operation op;
    std::string name() const { return "cpu::" + op.name(); }
Paul's avatar
Paul committed
404
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Paul's avatar
Paul committed
405
    argument compute(context&, const shape& output_shape, const std::vector<argument>& args) const
Paul's avatar
Paul committed
406
    {
Paul's avatar
Paul committed
407
        return op.compute(output_shape, args);
Paul's avatar
Paul committed
408
    }
Paul's avatar
Paul committed
409
    friend bool operator==(const cpu_op& x, const cpu_op& y) { return x.op == y.op; }
410
    friend bool operator==(const cpu_op& x, const operation& y)
Paul's avatar
Paul committed
411
    {
412
413
414
        if(x.name() != y.name())
            return false;
        return x == any_cast<cpu_op>(y);
Paul's avatar
Paul committed
415
    }
Paul's avatar
Paul committed
416
    friend bool operator==(const operation& x, const cpu_op& y) { return y == x; }
Paul's avatar
Paul committed
417
418
};

Khalique's avatar
Khalique committed
419
struct cpu_pad
420
{
Khalique's avatar
Khalique committed
421
    op::pad op;
422
423
424
425
426
427
428

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Khalique's avatar
Khalique committed
429
    std::string name() const { return "cpu::contiguous"; }
430
431
432
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
Khalique's avatar
Khalique committed
433
        assert(output_shape.standard());
434
        argument result{output_shape};
Khalique's avatar
Khalique committed
435
        result.visit([&](auto output) { std::fill(output.begin(), output.end(), op.value); });
Khalique's avatar
Khalique committed
436
437

        visit_all(result, args[0])([&](auto output, auto input) {
438
            shape_for_each(input.get_shape(), [&](const auto& idx) {
Khalique's avatar
Khalique committed
439
                std::vector<std::size_t> new_idx(idx.size());
Khalique's avatar
Khalique committed
440
441
442
443
                std::transform(
                    idx.begin(), idx.end(), op.pads.begin(), new_idx.begin(), [](auto i, auto j) {
                        return i + j;
                    });
Khalique's avatar
Khalique committed
444
                output(new_idx.begin(), new_idx.end()) = input(idx.begin(), idx.end());
445
            });
Khalique's avatar
Khalique committed
446
447
        });

448
449
450
451
        return result;
    }
};

Paul's avatar
Paul committed
452
453
struct cpu_gemm
{
Shucai Xiao's avatar
Shucai Xiao committed
454
    op::dot op;
455
456
457
458
459
460

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }
Shucai Xiao's avatar
Shucai Xiao committed
461
    std::string name() const { return "cpu::dot"; }
Shucai Xiao's avatar
Shucai Xiao committed
462
463
    shape compute_shape(const std::vector<shape>& inputs) const
    {
Shucai Xiao's avatar
Shucai Xiao committed
464
465
466
467
468
        if(inputs.size() == 3)
        {
            auto c_shape = inputs.at(2);
            check_shapes{{c_shape}}.not_broadcasted();
        }
Shucai Xiao's avatar
Shucai Xiao committed
469
        return op.compute_shape(inputs);
Shucai Xiao's avatar
Shucai Xiao committed
470
    }
Paul's avatar
Paul committed
471

Paul's avatar
Paul committed
472
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
473
474
    {
        argument result{output_shape};
Shucai Xiao's avatar
Shucai Xiao committed
475
        // 3 inputs, it is alpha * A * B + beta * C, then
476
        // A and B are matrices, and C is of the same shape as A * B
Shucai Xiao's avatar
Shucai Xiao committed
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
        if(args.size() == 3)
        {
            // no need to consider the value of args[2]
            if(op.beta == 0.0f)
            {
                result.visit([&](auto output) { std::fill(output.begin(), output.end(), 0); });
            }
            else
            {
                visit_all(result, args[2])([&](auto output, auto input) {
                    std::copy(input.begin(), input.end(), output.begin());
                });
            }

            migemm(result, args[0], args[1], op.alpha, op.beta);

            return result;
        }

        // 2 input arguments
        migemm(result, args[0], args[1], op.alpha, 0.0f);

Paul's avatar
Paul committed
499
500
501
502
        return result;
    }
};

503
504
505
struct cpu_quant_gemm
{
    op::quant_dot op;
506
507
508
509
510
511
512

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
    std::string name() const { return "cpu::quant_dot"; }
    shape compute_shape(const std::vector<shape>& inputs) const
    {
        if(inputs.size() == 3)
        {
            auto c_shape = inputs.at(2);
            check_shapes{{c_shape}}.not_broadcasted();
        }
        return op.compute_shape(inputs);
    }

    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        // 3 inputs, it is alpha * A * B + beta * C, then
        // A and B are matrices, and C is of the same shape to A * B

        // first, convert the args[0] and args[1] from int8_t to int32_t
        argument arg_0{{shape::int32_type, {args.at(0).get_shape().lens()}}};
        argument arg_1{{shape::int32_type, {args.at(1).get_shape().lens()}}};
        arg_0.visit([&](auto output) {
Shucai Xiao's avatar
Shucai Xiao committed
534
535
            args.at(0).visit(
                [&](auto input) { std::copy(input.begin(), input.end(), output.begin()); });
536
537
538
        });

        arg_1.visit([&](auto output) {
Shucai Xiao's avatar
Shucai Xiao committed
539
540
            args.at(1).visit(
                [&](auto input) { std::copy(input.begin(), input.end(), output.begin()); });
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
        });

        if(args.size() == 3)
        {
            // no need to consider the value of args[2]
            if(op.beta == 0)
            {
                result.visit([&](auto output) { std::fill(output.begin(), output.end(), 0); });
            }
            else
            {
                visit_all(result, args[2])([&](auto output, auto input) {
                    std::copy(input.begin(), input.end(), output.begin());
                });
            }

            migemm(result, arg_0, arg_1, op.alpha, op.beta);

            return result;
        }

        // 2 input arguments
        int8_t beta = 0;
        migemm(result, arg_0, arg_1, op.alpha, beta);

        return result;
    }
};

Khalique's avatar
Khalique committed
570
571
572
573
574
575
576
577
578
579
580
struct leaky_relu_op
{
    op::leaky_relu op;
    std::string name() const { return "cpu::leaky_relu"; }
    auto fcn() const
    {
        auto& a = op.alpha;
        return [a](auto x) { return x > 0 ? x : x * a; };
    }
};

Khalique's avatar
Khalique committed
581
582
583
584
585
586
587
588
589
590
591
struct elu_op
{
    op::elu op;
    std::string name() const { return "cpu::elu"; }
    auto fcn() const
    {
        auto& a = op.alpha;
        return [a](auto x) { return x > 0 ? x : a * std::expm1(x); };
    }
};

Paul's avatar
Paul committed
592
593
594
595
template <typename Op>
struct cpu_unary
{
    Op op;
596
597
598
599
600
601

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op.op, f);
    }
Paul's avatar
Paul committed
602
    std::string name() const { return op.name(); }
Shucai Xiao's avatar
Shucai Xiao committed
603
    shape compute_shape(const std::vector<shape>& inputs) const
604
    {
Shucai Xiao's avatar
Shucai Xiao committed
605
606
607
        check_shapes{inputs}.has(1);
        auto s = inputs.at(0);
        if(s.packed())
608
        {
Shucai Xiao's avatar
Shucai Xiao committed
609
            return s;
610
611
612
        }
        else
        {
Shucai Xiao's avatar
Shucai Xiao committed
613
            return {s.type(), s.lens()};
614
615
616
        }
    }

Paul's avatar
Paul committed
617
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
618
619
620
621
    {
        argument result{output_shape};
        result.visit([&](auto output) {
            args[0].visit([&](auto input) {
Shucai Xiao's avatar
Shucai Xiao committed
622
                if(input.get_shape().standard())
623
624
625
626
627
628
629
630
631
                {
                    std::transform(input.begin(), input.end(), output.begin(), op.fcn());
                }
                else
                {
                    shape_for_each(output.get_shape(), [&](const auto& idx) {
                        output(idx.begin(), idx.end()) = op.fcn()(input(idx.begin(), idx.end()));
                    });
                }
Paul's avatar
Paul committed
632
633
            });
        });
634

Paul's avatar
Paul committed
635
636
637
638
639
640
641
        return result;
    }
};

struct softmax2d
{
    std::string name() const { return "cpu::softmax2d"; }
Paul's avatar
Paul committed
642
643
    shape compute_shape(const std::vector<shape>& inputs) const { return inputs.front(); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
644
645
646
647
648
649
650
651
652
653
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
            using value_type = typename decltype(input)::value_type;
            auto nb          = input.get_shape().lens()[0];
            auto nc          = input.get_shape().lens()[1];
            auto nh          = input.get_shape().lens()[2];
            auto nw          = input.get_shape().lens()[3];
            dfor(nb, nh, nw)([&](std::size_t b, std::size_t i, std::size_t j) {
                value_type cmax = std::numeric_limits<value_type>::lowest();
Paul's avatar
Paul committed
654
                for(std::size_t c = 0; c < nc; c++)
Paul's avatar
Paul committed
655
656
657
                {
                    cmax = std::max(cmax, input(b, c, i, j));
                }
Paul's avatar
Paul committed
658
                for(std::size_t c = 0; c < nc; c++)
Paul's avatar
Paul committed
659
660
661
662
                {
                    output(b, c, i, j) = std::exp(input(b, c, i, j) - cmax);
                }
                value_type sum = value_type(0);
Paul's avatar
Paul committed
663
                for(std::size_t c = 0; c < nc; c++)
Paul's avatar
Paul committed
664
665
666
                {
                    sum += output(b, c, i, j);
                }
Paul's avatar
Paul committed
667
                for(std::size_t c = 0; c < nc; c++)
Paul's avatar
Paul committed
668
669
670
671
672
673
674
675
676
                {
                    output(b, c, i, j) = output(b, c, i, j) / sum;
                }
            });
        });
        return result;
    }
};

Shucai Xiao's avatar
Shucai Xiao committed
677
678
679
struct cpu_logsoftmax
{
    op::logsoftmax op;
680
681
682
683
684
685
686

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return migraphx::reflect(self.op, f);
    }

Shucai Xiao's avatar
Shucai Xiao committed
687
688
689
    std::string name() const { return "cpu::logsoftmax"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }

Shucai Xiao's avatar
Shucai Xiao committed
690
    template <typename T>
Shucai Xiao's avatar
Shucai Xiao committed
691
692
    std::size_t compute_batch_index(const T& idx, shape& batch_shape, int axis) const
    {
Shucai Xiao's avatar
Shucai Xiao committed
693
        if(axis == 0)
694
695
696
697
698
699
        {
            return 0;
        }
        else
        {
            std::vector<std::size_t> batch_idx(idx.begin(), idx.begin() + axis);
Shucai Xiao's avatar
Shucai Xiao committed
700
            return batch_shape.index(batch_idx.begin(), batch_idx.end());
701
        }
Shucai Xiao's avatar
Shucai Xiao committed
702
703
704
705
706
707
    }

    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        auto lens = output_shape.lens();
708
        std::vector<std::size_t> batch_lens{};
Shucai Xiao's avatar
Shucai Xiao committed
709
        if(op.axis == 0)
710
711
712
        {
            batch_lens.push_back(1);
        }
Shucai Xiao's avatar
Shucai Xiao committed
713
        else
714
715
716
        {
            batch_lens.insert(batch_lens.begin(), lens.begin(), lens.begin() + op.axis);
        }
Shucai Xiao's avatar
Shucai Xiao committed
717
718
719
        shape batch_shape{migraphx::shape::uint32_type, batch_lens};
        visit_all(result, args[0])([&](auto output, auto input) {
            using value_type = typename decltype(input)::value_type;
Shucai Xiao's avatar
Shucai Xiao committed
720
721
            std::vector<value_type> batch_max(batch_shape.elements(),
                                              std::numeric_limits<value_type>::lowest());
Shucai Xiao's avatar
Shucai Xiao committed
722
            shape_for_each(output_shape, [&](auto idx) {
723
                auto index       = this->compute_batch_index(idx, batch_shape, op.axis);
Shucai Xiao's avatar
Shucai Xiao committed
724
725
726
727
                batch_max[index] = std::max(batch_max[index], input(idx.begin(), idx.end()));
            });

            shape_for_each(output_shape, [&](auto idx) {
Shucai Xiao's avatar
Shucai Xiao committed
728
                auto index = this->compute_batch_index(idx, batch_shape, op.axis);
Shucai Xiao's avatar
Shucai Xiao committed
729
730
731
732
733
                output(idx.begin(), idx.end()) = input(idx.begin(), idx.end()) - batch_max[index];
            });

            std::vector<value_type> batch_sum(batch_shape.elements(), value_type(0));
            shape_for_each(output_shape, [&](auto idx) {
734
                auto index = this->compute_batch_index(idx, batch_shape, op.axis);
Shucai Xiao's avatar
Shucai Xiao committed
735
736
737
                batch_sum[index] += std::exp(output(idx.begin(), idx.end()));
            });

Shucai Xiao's avatar
Shucai Xiao committed
738
            for(std::size_t i = 0; i < batch_sum.size(); ++i)
Shucai Xiao's avatar
Shucai Xiao committed
739
740
741
742
743
            {
                batch_sum[i] = std::log(batch_sum[i]);
            }

            shape_for_each(output_shape, [&](auto idx) {
744
                auto index = this->compute_batch_index(idx, batch_shape, op.axis);
745
                output(idx.begin(), idx.end()) -= batch_sum[index];
Shucai Xiao's avatar
Shucai Xiao committed
746
747
748
749
750
751
752
            });
        });

        return result;
    }
};

Paul's avatar
Paul committed
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
struct cpu_apply
{
    program* prog;
    std::unordered_map<std::string, std::function<void(instruction_ref)>> apply_map{};

    template <class T>
    auto simple_op()
    {
        return [this](instruction_ref ins) { apply_simple_op<T>(ins); };
    }

    template <class T, class Op>
    auto extend_op()
    {
        return [this](instruction_ref ins) { apply_extend_op<T, Op>(ins); };
    }

    void init()
    {
Aditya Atluri's avatar
Aditya Atluri committed
772
        apply_map["batch_norm_inference"] =
773
            extend_op<cpu_batch_norm_inference, op::batch_norm_inference>();
Shucai Xiao's avatar
Shucai Xiao committed
774
775
        apply_map["convolution"]       = extend_op<cpu_convolution, op::convolution>();
        apply_map["dot"]               = extend_op<cpu_gemm, op::dot>();
776
777
        apply_map["quant_dot"]         = extend_op<cpu_quant_gemm, op::quant_dot>();
        apply_map["quant_convolution"] = extend_op<cpu_quant_convolution, op::quant_convolution>();
Shucai Xiao's avatar
Shucai Xiao committed
778
779
780
781
782
783
784
        apply_map["elu"]               = extend_op<cpu_unary<elu_op>, op::elu>();
        apply_map["im2col"]            = extend_op<cpu_im2col, op::im2col>();
        apply_map["leaky_relu"]        = extend_op<cpu_unary<leaky_relu_op>, op::leaky_relu>();
        apply_map["logsoftmax"]        = extend_op<cpu_logsoftmax, op::logsoftmax>();
        apply_map["lrn"]               = extend_op<cpu_lrn, op::lrn>();
        apply_map["pad"]               = extend_op<cpu_pad, op::pad>();
        apply_map["softmax"]           = simple_op<softmax2d>();
Paul's avatar
Paul committed
785
786
787
788
789
790
791
    }

    void apply()
    {
        init();
        for(auto it : iterator_for(*prog))
        {
Khalique's avatar
Khalique committed
792
            if(it->name() == "pooling")
Paul's avatar
Paul committed
793
794
795
            {
                apply_pooling(it);
            }
Paul's avatar
Paul committed
796
            else if(apply_map.count(it->name()) > 0)
Paul's avatar
Paul committed
797
            {
Paul's avatar
Paul committed
798
                apply_map.at(it->name())(it);
Paul's avatar
Paul committed
799
            }
Paul's avatar
Paul committed
800
            else if(is_context_free(it->get_operator()))
801
802
803
            {
                apply_cpu_op(it);
            }
Paul's avatar
Paul committed
804
805
806
        }
    }

807
808
809
810
811
    void apply_cpu_op(instruction_ref ins)
    {
        prog->replace_instruction(ins, cpu_op{ins->get_operator()}, ins->inputs());
    }

Paul's avatar
Paul committed
812
813
814
    template <class T>
    void apply_simple_op(instruction_ref ins)
    {
Paul's avatar
Paul committed
815
        prog->replace_instruction(ins, T{}, ins->inputs());
Paul's avatar
Paul committed
816
817
818
819
820
    }

    template <class T, class Op>
    void apply_extend_op(instruction_ref ins)
    {
821
        auto&& op = any_cast<Op>(ins->get_operator());
Paul's avatar
Paul committed
822
        prog->replace_instruction(ins, T{op}, ins->inputs());
Paul's avatar
Paul committed
823
824
825
826
    }

    void apply_pooling(instruction_ref ins)
    {
827
        auto&& op = any_cast<op::pooling>(ins->get_operator());
Paul's avatar
Paul committed
828
        if(op.mode == "max")
Paul's avatar
Paul committed
829
            prog->replace_instruction(ins, cpu_pooling<max_pool>{op}, ins->inputs());
Paul's avatar
Paul committed
830
        else if(op.mode == "average")
Paul's avatar
Paul committed
831
            prog->replace_instruction(ins, cpu_pooling<avg_pool>{op}, ins->inputs());
Paul's avatar
Paul committed
832
833
834
    }
};

Shucai Xiao's avatar
Shucai Xiao committed
835
void lowering::apply(program& p) const { cpu_apply{&p}.apply(); }
Paul's avatar
Paul committed
836
837

} // namespace cpu
Paul's avatar
Paul committed
838
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
839
} // namespace migraphx