fuse_ops.cpp 38.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
kahmed10's avatar
kahmed10 committed
24
25
#include <migraphx/pass_manager.hpp>
#include <migraphx/dead_code_elimination.hpp>
Paul's avatar
Paul committed
26
27
28
29
#include <migraphx/gpu/fuse_ops.hpp>
#include <migraphx/matcher.hpp>
#include <migraphx/gpu/miopen.hpp>
#include <migraphx/gpu/convolution.hpp>
30
#include <migraphx/gpu/device_name.hpp>
31
#include <migraphx/gpu/oper.hpp>
kahmed10's avatar
kahmed10 committed
32
33
#include <migraphx/gpu/add.hpp>
#include <migraphx/gpu/mul.hpp>
34
#include <migraphx/gpu/gemm.hpp>
kahmed10's avatar
kahmed10 committed
35
#include <migraphx/gpu/device/layernorm.hpp>
kahmed10's avatar
kahmed10 committed
36
#include <migraphx/gpu/device/gelu.hpp>
Paul's avatar
Paul committed
37
#include <migraphx/gpu/device/mul_add.hpp>
38
39
40
41
42
#include <migraphx/gpu/device/add_clip.hpp>
#include <migraphx/gpu/device/add_relu.hpp>
#include <migraphx/gpu/device/add_sigmoid.hpp>
#include <migraphx/gpu/device/add_tanh.hpp>
#include <migraphx/gpu/device/mul_add_relu.hpp>
Paul's avatar
Paul committed
43
#include <migraphx/gpu/device/add.hpp>
44
45
46
#include <migraphx/match/layernorm.hpp>
#include <migraphx/match/gelu_erf.hpp>
#include <migraphx/match/gelu_tanh.hpp>
Paul's avatar
Paul committed
47
#include <migraphx/instruction.hpp>
48
#include <migraphx/register_op.hpp>
Paul's avatar
Paul committed
49
#include <migraphx/array.hpp>
50
#include <migraphx/permutation.hpp>
51
#include <migraphx/make_op.hpp>
kahmed10's avatar
kahmed10 committed
52
#include <cmath>
53
#include <set>
Paul's avatar
Paul committed
54
55

namespace migraphx {
Paul's avatar
Paul committed
56
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
57
58
namespace gpu {

59
60
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_DISABLE_MIOPEN_FUSION)

Paul's avatar
Paul committed
61
62
63
64
65
66
67
68
struct fusion
{
    using op_t = miopenFusionOpDescriptor_t;
    shared<fusion_plan_descriptor> fp;

    // Used as a temporary hack to keep descriptor references alive
    std::vector<std::shared_ptr<void>> storage;

Paul's avatar
Paul committed
69
    template <class T>
Paul's avatar
Paul committed
70
71
72
73
74
75
76
    auto keep_alive(T x)
    {
        auto result = share(std::move(x));
        storage.push_back(result);
        return result;
    }

77
78
    fusion() = default;

Paul's avatar
Paul committed
79
80
    fusion(const shape& input)
    {
81
        assert(input.standard());
Paul's avatar
Paul committed
82
        auto t = make_tensor(input);
Paul's avatar
Paul committed
83
        fp     = make_fusion_plan(t);
84
        assert(fp);
Paul's avatar
Paul committed
85
86
87
        keep_alive(std::move(t));
    }

88
89
    bool empty() const { return fp == nullptr; }

Paul's avatar
Paul committed
90
91
    op_t operator[](std::size_t i) const
    {
92
        assert(fp);
Paul's avatar
Paul committed
93
94
95
        op_t result;
        auto status = miopenFusionPlanGetOp(fp.get(), i, &result);
        if(status != miopenStatusSuccess)
Paul's avatar
Paul committed
96
            MIGRAPHX_THROW("Failed retrieving operator at " + std::to_string(i));
Paul's avatar
Paul committed
97
98
99
        return result;
    }

100
101
102
103
104
    auto get() const
    {
        assert(fp);
        return fp.get();
    }
Paul's avatar
Paul committed
105
106
107

    op_t create_bias(const shape& bias)
    {
108
        assert(fp);
Paul's avatar
Paul committed
109
        op_t result;
Paul's avatar
Paul committed
110
111
        auto b      = shape{bias.type(), {1, bias.lens().at(1), 1, 1}};
        auto t      = keep_alive(make_tensor(b));
Paul's avatar
Paul committed
112
113
        auto status = miopenCreateOpBiasForward(fp.get(), &result, t.get());
        if(status != miopenStatusSuccess)
Paul's avatar
Paul committed
114
            MIGRAPHX_THROW("Creating operator failed");
Paul's avatar
Paul committed
115
116
117
118
119
        return result;
    }

    op_t create_relu()
    {
120
        assert(fp);
Paul's avatar
Paul committed
121
122
123
        op_t result;
        auto status = miopenCreateOpActivationForward(fp.get(), &result, miopenActivationRELU);
        if(status != miopenStatusSuccess)
Paul's avatar
Paul committed
124
            MIGRAPHX_THROW("Creating operator failed");
Paul's avatar
Paul committed
125
126
127
128
129
        return result;
    }

    op_t create_conv(const op::convolution& op, const shape& weights)
    {
130
        assert(fp);
Paul's avatar
Paul committed
131
        op_t result;
Paul's avatar
Paul committed
132
133
        auto cd     = keep_alive(make_conv(op));
        auto t      = keep_alive(make_tensor(weights));
Paul's avatar
Paul committed
134
135
        auto status = miopenCreateOpConvForward(fp.get(), &result, cd.get(), t.get());
        if(status != miopenStatusSuccess)
Paul's avatar
Paul committed
136
            MIGRAPHX_THROW("Creating operator failed");
Paul's avatar
Paul committed
137
138
        return result;
    }
Paul's avatar
Paul committed
139
140
141

    shape get_workspace(context&)
    {
142
        // assert(fp);
Paul's avatar
Paul committed
143
144
145
146
147
        // TODO: Use zero workspace for now
        std::size_t ws_size = 0;
        // int algo_count = 1;
        // miopenConvFwdAlgorithm_t algo;
        // miopenFusionPlanConvolutionGetAlgo(fp.get(), 1, &algo_count, &algo);
Paul's avatar
Paul committed
148
149
        // miopenFusionPlanGetWorkSpaceSize(ctx.get_stream().get_miopen(), fp.get(), &ws_size,
        // algo);
Paul's avatar
Paul committed
150
151
152
        return shape{shape::int8_type, {ws_size}};
    }

153
    bool compile(context& ctx)
Paul's avatar
Paul committed
154
    {
155
        assert(fp);
156
157
        return miopenCompileFusionPlan(ctx.get_stream().get_miopen(), fp.get()) ==
               miopenStatusSuccess;
Paul's avatar
Paul committed
158
159
    }

Paul's avatar
Paul committed
160
161
162
163
    argument execute(context& ctx,
                     const fused_operator_args& fargs,
                     const argument& x,
                     const argument& y) const
Paul's avatar
Paul committed
164
    {
165
        assert(fp);
Paul's avatar
Paul committed
166
167
        auto x_td   = make_tensor(x.get_shape());
        auto y_td   = make_tensor(y.get_shape());
Paul's avatar
Paul committed
168
        auto status = miopenExecuteFusionPlan(ctx.get_stream().get_miopen(),
Paul's avatar
Paul committed
169
170
171
172
173
174
                                              fp.get(),
                                              x_td.get(),
                                              x.implicit(),
                                              y_td.get(),
                                              y.implicit(),
                                              fargs.get());
Paul's avatar
Paul committed
175
        if(status != miopenStatusSuccess)
Paul's avatar
Paul committed
176
            MIGRAPHX_THROW("Failed to execute fusion plan");
Paul's avatar
Paul committed
177
178
        return y;
    }
Paul's avatar
Paul committed
179
180
};

181
182
183
184
185
186
const std::unordered_set<std::string>& get_supported_archs()
{
    static std::unordered_set<std::string> supported_archs{"gfx900", "gfx906", "gfx908", "gfx1030"};
    return supported_archs;
}

Paul's avatar
Paul committed
187
MIGRAPHX_PRED_MATCHER(bias_shape, instruction_ref ins)
Paul's avatar
Paul committed
188
189
{
    auto&& s = ins->get_shape();
Paul's avatar
Paul committed
190
191
    return s.broadcasted() and s.strides().size() == 4 and s.strides()[0] == 0 and
           s.strides()[1] != 0 and s.strides()[2] == 0 and s.strides()[3] == 0;
Paul's avatar
Paul committed
192
193
}

Paul's avatar
Paul committed
194
MIGRAPHX_PRED_MATCHER(fusable_conv, instruction_ref ins)
Paul's avatar
Paul committed
195
{
196
    const auto device_name = trim(split_string(get_device_name(), ':').front());
197
198
    if(not contains(get_supported_archs(), device_name))
        return false;
199
200
    if(enabled(MIGRAPHX_DISABLE_MIOPEN_FUSION{}))
        return false;
Paul's avatar
Paul committed
201
202
    if(ins->name() != "gpu::convolution")
        return false;
Paul's avatar
Paul committed
203
204
    if(ins->get_shape().type() != shape::float_type)
        return false;
Paul's avatar
Paul committed
205
206
207
    auto wei = ins->inputs().at(1)->get_shape();
    assert(wei.lens().size() == 4);
    auto conv = any_cast<miopen_convolution>(ins->get_operator());
Khalique's avatar
Khalique committed
208
    if(conv.op.group > 1)
Khalique's avatar
Khalique committed
209
        return false;
Paul's avatar
Paul committed
210
    if(wei.lens()[1] > 512 and conv.algo != miopenConvolutionFwdAlgoWinograd)
Paul's avatar
Paul committed
211
        return false;
212
213
214
215
216
217

    // Do not fuse non-symmetric input
    auto input_lens = ins->inputs().at(0)->get_shape().lens();
    if(input_lens[2] != input_lens[3] or wei.lens()[2] != wei.lens()[3])
        return false;

Paul's avatar
Paul committed
218
    auto op = conv.op;
219
220
    // Dont fuse winograd for non-3x3s since there is no fused windograd for those configs
    if(conv.algo == miopenConvolutionFwdAlgoWinograd and wei.lens()[2] != 3 and
221
       wei.lens()[3] != 3 and contains({{1, 1}}, op.stride))
222
        return false;
kahmed10's avatar
kahmed10 committed
223
    return contains({{0, 0, 0, 0}, {1, 1, 1, 1}, {2, 2, 2, 2}}, op.padding) and
224
           contains({{0, 0}, {1, 1}}, op.stride) and contains({{1, 1}}, op.dilation);
Paul's avatar
Paul committed
225
226
}

227
struct hip_triadd : ternary_device<hip_triadd, &device::add>
Paul's avatar
Paul committed
228
229
{
};
230
MIGRAPHX_REGISTER_OP(hip_triadd)
Paul's avatar
Paul committed
231

232
struct hip_triadd_clip : quinary_device<hip_triadd_clip, &device::add_clip>
kahmed10's avatar
kahmed10 committed
233
234
{
};
235
MIGRAPHX_REGISTER_OP(hip_triadd_clip)
kahmed10's avatar
kahmed10 committed
236

237
struct hip_add_clip : quaternary_device<hip_add_clip, &device::add_clip>
kahmed10's avatar
kahmed10 committed
238
239
{
};
240
MIGRAPHX_REGISTER_OP(hip_add_clip)
kahmed10's avatar
kahmed10 committed
241

242
struct hip_triadd_relu : ternary_device<hip_triadd_relu, &device::add_relu>
Paul's avatar
Paul committed
243
244
{
};
245
MIGRAPHX_REGISTER_OP(hip_triadd_relu)
Paul's avatar
Paul committed
246

247
248
249
struct hip_triadd_sigmoid : ternary_device<hip_triadd_sigmoid, &device::add_sigmoid>
{
};
250
MIGRAPHX_REGISTER_OP(hip_triadd_sigmoid)
251
252
253
254

struct hip_triadd_tanh : ternary_device<hip_triadd_tanh, &device::add_tanh>
{
};
255
MIGRAPHX_REGISTER_OP(hip_triadd_tanh)
256
257
258
259

struct hip_add_relu : binary_device<hip_add_relu, &device::add_relu>
{
};
260
MIGRAPHX_REGISTER_OP(hip_add_relu)
261
262
263
264

struct hip_add_sigmoid : binary_device<hip_add_relu, &device::add_sigmoid>
{
};
265
MIGRAPHX_REGISTER_OP(hip_add_sigmoid)
266
267

struct hip_add_tanh : binary_device<hip_add_tanh, &device::add_tanh>
Paul's avatar
Paul committed
268
269
{
};
270
MIGRAPHX_REGISTER_OP(hip_add_tanh)
Paul's avatar
Paul committed
271

kahmed10's avatar
kahmed10 committed
272
273
struct hip_layernorm : unary_device<hip_layernorm, &device::layernorm>
{
274
275
    // Empty finalize to skip dimension reduction
    void finalize(context&, const shape&, const std::vector<shape>&) {}
kahmed10's avatar
kahmed10 committed
276
};
277
MIGRAPHX_REGISTER_OP(hip_layernorm)
kahmed10's avatar
kahmed10 committed
278

Paul Fultz II's avatar
Paul Fultz II committed
279
280
struct hip_triadd_layernorm : ternary_device<hip_triadd_layernorm, &device::triadd_layernorm>
{
281
282
283
284
285
    shape compute_shape(const std::vector<shape>& inputs) const
    {
        check_shapes{inputs, *this}.has(4).standard();
        return inputs[0];
    }
Paul Fultz II's avatar
Paul Fultz II committed
286
287
288
289
290
    // Empty finalize to skip dimension reduction
    void finalize(context&, const shape&, const std::vector<shape>&) {}
};
MIGRAPHX_REGISTER_OP(hip_triadd_layernorm)

kahmed10's avatar
kahmed10 committed
291
292
293
struct hip_gelu : unary_device<hip_gelu, &device::gelu>
{
};
294
MIGRAPHX_REGISTER_OP(hip_gelu)
kahmed10's avatar
kahmed10 committed
295
296
297
298

struct hip_add_gelu : binary_device<hip_add_gelu, &device::add_gelu>
{
};
299
MIGRAPHX_REGISTER_OP(hip_add_gelu)
kahmed10's avatar
kahmed10 committed
300
301
302
303

struct hip_gelu_new : unary_device<hip_gelu_new, &device::gelu_new>
{
};
304
MIGRAPHX_REGISTER_OP(hip_gelu_new)
kahmed10's avatar
kahmed10 committed
305
306
307
308

struct hip_add_gelu_new : binary_device<hip_add_gelu_new, &device::add_gelu_new>
{
};
309
MIGRAPHX_REGISTER_OP(hip_add_gelu_new)
kahmed10's avatar
kahmed10 committed
310

311
struct hip_mul_add : ternary_device<hip_mul_add, &device::mul_add>
Paul's avatar
Paul committed
312
313
{
};
314
MIGRAPHX_REGISTER_OP(hip_mul_add)
Paul's avatar
Paul committed
315

316
struct hip_mul_add_relu : ternary_device<hip_mul_add_relu, &device::mul_add_relu>
Paul's avatar
Paul committed
317
318
{
};
319
MIGRAPHX_REGISTER_OP(hip_mul_add_relu)
Paul's avatar
Paul committed
320

Paul's avatar
Paul committed
321
322
323
void move_broadcasted_back(std::vector<instruction_ref>& args)
{
    // Ensure the last arguments is the broadcasted one
Paul's avatar
Paul committed
324
    auto last = std::prev(args.end());
Paul's avatar
Paul committed
325
326
    auto it =
        std::find_if(args.begin(), last, [](auto arg) { return arg->get_shape().broadcasted(); });
Paul's avatar
Paul committed
327
328
    if(it != last)
        std::swap(*it, *std::prev(last));
Paul's avatar
Paul committed
329
330
331
332
333
}

void move_standard_front(std::vector<instruction_ref>& args)
{
    // Ensure the first arguments is the standard one
Paul's avatar
Paul committed
334
    auto last = std::prev(args.end());
Paul's avatar
Paul committed
335
336
    auto it =
        std::find_if(args.begin(), last, [](auto arg) { return arg->get_shape().standard(); });
Paul's avatar
Paul committed
337
    if(it != last)
Paul's avatar
Paul committed
338
339
340
        std::swap(*it, args.front());
}

341
342
auto gpu_name(const std::string& s) { return match::name("gpu::" + s); }

Paul Fultz II's avatar
Paul Fultz II committed
343
namespace {
kahmed10's avatar
kahmed10 committed
344
345
struct find_layernorm
{
346
    auto matcher() const { return match::layernorm(&gpu_name); }
kahmed10's avatar
kahmed10 committed
347

348
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
349
350
351
352
353
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto args  = ins->inputs();

354
355
356
357
358
359
360
361
362
        // We dont fuse for non-standard layouts
        if(not x_ins->get_shape().standard())
            return;

        auto relements = x_ins->get_shape().lens().back();

        if(relements > 1024 or (relements % 4 != 0 and relements > 256))
            return;

363
        m.replace_instruction(ins, hip_layernorm{}, x_ins, args.back());
kahmed10's avatar
kahmed10 committed
364
365
366
    }
};

Paul Fultz II's avatar
Paul Fultz II committed
367
368
369
370
371
372
373
374
struct find_triadd_layernorm
{
    auto matcher() const
    {
        return match::name("gpu::layernorm")(match::arg(0)(match::name("gpu::triadd")(
            match::used_once(), match::all_of[match::inputs()](match::standard_shape()))));
    }

375
    void apply(module& m, const match::matcher_result& r) const
Paul Fultz II's avatar
Paul Fultz II committed
376
377
378
    {
        auto ins    = r.result;
        auto triadd = ins->inputs().front();
379
        m.replace_instruction(ins, hip_triadd_layernorm{}, triadd->inputs());
Paul Fultz II's avatar
Paul Fultz II committed
380
381
382
    }
};

kahmed10's avatar
kahmed10 committed
383
384
struct find_gelu
{
385
    auto matcher() const { return match::gelu_erf(&gpu_name); }
kahmed10's avatar
kahmed10 committed
386

387
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
388
389
390
391
392
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto args  = ins->inputs();

393
        m.replace_instruction(ins, hip_gelu{}, x_ins, args.back());
kahmed10's avatar
kahmed10 committed
394
395
396
397
398
399
400
401
402
403
    }
};

struct find_add_gelu
{
    auto matcher() const
    {
        return match::name("gpu::gelu")(match::arg(0)(match::name("gpu::add").bind("add")));
    }

404
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
405
406
407
408
409
410
411
412
    {
        auto add_ins = r.instructions["add"];
        auto ins     = r.result;
        auto args    = add_ins->inputs();
        move_standard_front(args);
        move_broadcasted_back(args);

        args.back() = ins->inputs().back();
413
        m.replace_instruction(ins, hip_add_gelu{}, args);
kahmed10's avatar
kahmed10 committed
414
415
416
417
418
    }
};

struct find_gelu_new
{
kahmed10's avatar
kahmed10 committed
419
    bool fast_math = true;
kahmed10's avatar
kahmed10 committed
420

421
    auto matcher() const { return match::gelu_tanh(&gpu_name); }
kahmed10's avatar
kahmed10 committed
422

423
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
424
425
426
427
428
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto args  = ins->inputs();

Paul Fultz II's avatar
Paul Fultz II committed
429
        if(fast_math)
430
            m.replace_instruction(ins, hip_gelu{}, x_ins, args.back());
Paul Fultz II's avatar
Paul Fultz II committed
431
        else
432
            m.replace_instruction(ins, hip_gelu_new{}, x_ins, args.back());
kahmed10's avatar
kahmed10 committed
433
434
435
436
437
438
439
440
441
442
    }
};

struct find_add_gelu_new
{
    auto matcher() const
    {
        return match::name("gpu::gelu_new")(match::arg(0)(match::name("gpu::add").bind("add")));
    }

443
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
444
445
446
447
448
449
450
451
    {
        auto add_ins = r.instructions["add"];
        auto ins     = r.result;
        auto args    = add_ins->inputs();
        move_standard_front(args);
        move_broadcasted_back(args);

        args.back() = ins->inputs().back();
452
        m.replace_instruction(ins, hip_add_gelu_new{}, args);
kahmed10's avatar
kahmed10 committed
453
454
455
    }
};

kahmed10's avatar
kahmed10 committed
456
457
458
459
460
461
struct find_add_clip
{
    auto matcher() const
    {
        return match::name(std::unordered_set<std::string>{"gpu::clip", "gpu::clipped_relu"})(
            match::arg(0)(match::any_of(match::name("gpu::add"),
kahmed10's avatar
kahmed10 committed
462
                                        match::name("gpu::triadd"),
kahmed10's avatar
kahmed10 committed
463
464
465
466
                                        match::any_of[match::inputs()](match::standard_shape()))
                              .bind("add")));
    }

467
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
468
    {
kahmed10's avatar
kahmed10 committed
469
470
471
472
473
474
475
476
477
478
        auto add_ins  = r.instructions["add"];
        auto ins      = r.result;
        auto ins_args = ins->inputs();
        auto add_args = add_ins->inputs();
        move_standard_front(add_args);
        move_broadcasted_back(add_args);

        // Use the allocation from the clip operator
        add_args.pop_back();
        add_args.insert(add_args.end(), std::next(ins_args.begin()), ins_args.end());
kahmed10's avatar
kahmed10 committed
479
        if(add_ins->name() == "gpu::add")
480
            m.replace_instruction(ins, hip_add_clip{}, add_args);
kahmed10's avatar
kahmed10 committed
481
        else if(add_ins->name() == "gpu::triadd")
482
            m.replace_instruction(ins, hip_triadd_clip{}, add_args);
kahmed10's avatar
kahmed10 committed
483
484
485
    }
};

486
struct find_add_unary
Paul's avatar
Paul committed
487
{
488
489
490
    std::string op_name;
    operation binary_add_op;
    operation ternary_add_op;
Paul's avatar
Paul committed
491
492
    auto matcher() const
    {
493
        return match::name(op_name)(match::arg(0)(
Paul's avatar
Paul committed
494
            match::used_once(),
Paul's avatar
Paul committed
495
            match::any_of(match::name("gpu::add"),
kahmed10's avatar
kahmed10 committed
496
                          match::name("gpu::triadd"),
Paul's avatar
Paul committed
497
498
499
                          match::any_of(match::name("@literal"),
                                        match::any_of[match::inputs()](match::standard_shape())))
                .bind("add")));
Paul's avatar
Paul committed
500
    }
Paul's avatar
Paul committed
501

502
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
503
    {
Paul's avatar
Paul committed
504
        auto add_ins = r.instructions["add"];
Paul's avatar
Paul committed
505
506
        auto ins     = r.result;
        auto args    = add_ins->inputs();
Paul's avatar
Paul committed
507
508
509
        move_standard_front(args);
        move_broadcasted_back(args);

Paul's avatar
Paul committed
510
        // Use the allocation from the relu operator
Paul's avatar
Paul committed
511
        args.back() = ins->inputs().back();
Paul's avatar
Paul committed
512
        if(add_ins->name() == "gpu::add")
513
            m.replace_instruction(ins, binary_add_op, args);
kahmed10's avatar
kahmed10 committed
514
        else if(add_ins->name() == "gpu::triadd")
515
            m.replace_instruction(ins, ternary_add_op, args);
Paul's avatar
Paul committed
516
517
518
    }
};

Paul's avatar
Paul committed
519
struct find_triadd
Paul's avatar
Paul committed
520
521
522
{
    auto matcher() const
    {
Paul's avatar
Paul committed
523
        return match::name("gpu::add")(match::either_arg(0, 1)(
Paul's avatar
Paul committed
524
            match::name("gpu::add")(match::used_once()).bind("add"),
Paul's avatar
Paul committed
525
526
527
            match::any(match::any_of(match::name("@literal"),
                                     match::any_of[match::inputs()](match::standard_shape())))
                .bind("input")));
Paul's avatar
Paul committed
528
529
    }

530
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
531
    {
Paul's avatar
Paul committed
532
533
534
535
        auto add_ins   = r.instructions["add"];
        auto input_ins = r.instructions["input"];
        auto ins       = r.result;
        auto args      = add_ins->inputs();
536

Paul's avatar
Paul committed
537
        auto is_broadcasted = [](auto arg) { return arg->get_shape().broadcasted(); };
538
        if(std::count_if(args.begin(), args.end(), is_broadcasted) > 2)
Paul's avatar
Paul committed
539
540
            return;
        args.insert(args.begin(), input_ins);
Paul's avatar
Paul committed
541
542
543
        move_standard_front(args);
        move_broadcasted_back(args);

Paul's avatar
Paul committed
544
        args.back() = ins->inputs().back();
545
        m.replace_instruction(ins, hip_triadd{}, args);
Paul's avatar
Paul committed
546
    }
Paul's avatar
Paul committed
547
548
};

Paul's avatar
Paul committed
549
550
551
552
struct find_mul_add
{
    auto matcher() const
    {
Paul's avatar
Paul committed
553
554
        return match::name("gpu::add")(match::either_arg(0, 1)(
            match::name("gpu::mul")(match::used_once()).bind("mul"), match::any().bind("b")));
Paul's avatar
Paul committed
555
556
    }

557
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
558
    {
Paul's avatar
Paul committed
559
560
561
562
        auto mul_ins = r.instructions["mul"];
        auto b_ins   = r.instructions["b"];
        auto ins     = r.result;
        auto args    = mul_ins->inputs();
Paul's avatar
Paul committed
563
564
565
566
567
568
569
        assert(mul_ins != b_ins);

        move_standard_front(args);
        move_broadcasted_back(args);
        args.insert(std::prev(args.end()), b_ins);

        args.back() = ins->inputs().back();
570
        m.replace_instruction(ins, hip_mul_add{}, args);
Paul's avatar
Paul committed
571
572
573
    }
};

Paul's avatar
Paul committed
574
575
576
577
struct find_mul_add_relu
{
    auto matcher() const
    {
Paul's avatar
Paul committed
578
        return match::name("gpu::relu")(
kahmed10's avatar
kahmed10 committed
579
            match::arg(0)(match::name("gpu::mul_add")(match::used_once()).bind("mul_add")));
Paul's avatar
Paul committed
580
581
    }

582
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
583
584
    {
        auto mul_add_ins = r.instructions["mul_add"];
Paul's avatar
Paul committed
585
586
        auto ins         = r.result;
        auto args        = mul_add_ins->inputs();
Paul's avatar
Paul committed
587
588
589

        // Use the allocation from the relu operator
        args.back() = ins->inputs().back();
590
        m.replace_instruction(ins, hip_mul_add_relu{}, args);
Paul's avatar
Paul committed
591
592
593
    }
};

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
struct miopen_fusion
{
    struct fuse_op_data
    {
        operation op;
        float alpha = 1;
        float beta  = 0;
    };
    struct fuse_op : fuse_op_data, reflect_equality<fuse_op>, reflect_stream<fuse_op>
    {
        template <class Self, class F>
        static auto reflect(Self& self, F f)
        {
            return pack(f(self.op, "op"), f(self.alpha, "alpha"), f(self.beta, "beta"));
        }
    };
    std::vector<fuse_op> ops = {};
    fusion f                 = {};
    std::function<void(context&, const fusion&, const std::vector<argument>&)> execute;
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return pack(f(self.ops, "ops"));
    }

619
620
621
622
623
    std::ptrdiff_t output_alias(const std::vector<shape>& shapes) const
    {
        return shapes.size() - 1;
    }

624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
    value compile(context& ctx, const shape&, std::vector<shape> inputs)
    {
        // Compensate for allocation
        inputs.pop_back();
        std::size_t i = 0;
        f             = fusion(inputs[i]);
        i++;
        std::vector<std::function<void(const fused_operator_args&, const std::vector<argument>&)>>
            invokers;
        for(auto&& fop : ops)
        {
            if(i > inputs.size())
            {
                f = {};
                return {};
            }
            if(fop.op.name() == "convolution")
            {
                auto* mop = f.create_conv(any_cast<op::convolution>(fop.op), inputs[i]);
                invokers.push_back(
                    [=](const fused_operator_args& fargs, const std::vector<argument>& args) {
                        miopenSetOpArgsConvForward(
                            fargs.get(), mop, &fop.alpha, &fop.beta, args[i].implicit());
                    });
                i++;
            }
            else if(fop.op.name() == "add")
            {
                auto* mop = f.create_bias(inputs[i]);
                invokers.push_back(
                    [=](const fused_operator_args& fargs, const std::vector<argument>& args) {
                        miopenSetOpArgsBiasForward(
                            fargs.get(), mop, &fop.alpha, &fop.beta, args[i].implicit());
                    });
                i++;
            }
            else if(fop.op.name() == "relu")
            {
                auto* mop = f.create_relu();
                invokers.push_back([=](const fused_operator_args& fargs,
                                       const std::vector<argument>&) {
                    miopenSetOpArgsActivForward(fargs.get(), mop, &fop.alpha, &fop.beta, 0, 0, 0);
                });
            }
            else
            {
                f = {};
                return {};
            }
        }
        if(not f.compile(ctx))
        {
            f = {};
            return {};
        }
        execute = [invokers](context& c, const fusion& ff, const std::vector<argument>& args) {
            auto fargs = make_fused_args();
            for(auto&& invoker : invokers)
                invoker(fargs, args);
            ff.execute(c, fargs, args.front(), args.back());
        };
        return {{"workspace", f.get_workspace(ctx).bytes()}};
    }
    void finalize(context& ctx, const shape& output_shape, const std::vector<shape>& inputs)
    {
        if(not f.empty())
            return;
        auto v = compile(ctx, output_shape, inputs);
        if(not v.is_object())
            MIGRAPHX_THROW("Failed to compile fusion plan");
    }
    std::string name() const { return "gpu::miopen_fusion"; }
    shape compute_shape(const std::vector<shape>& inputs) const
    {
        if(ops.empty())
            return {};
        // TODO: Check number of arguments
        return ops.front().op.compute_shape({inputs[0], inputs[1]});
    }
    argument compute(context& ctx, const shape&, const std::vector<argument>& args) const
    {
        execute(ctx, f, args);
        return args.back();
    }
};
709
MIGRAPHX_REGISTER_OP(miopen_fusion)
710

Paul's avatar
Paul committed
711
712
713
struct miopen_conv_bias
{
    op::convolution op;
714
    fusion fp         = {};
715
716
    fusion::op_t conv = {};
    fusion::op_t bias = {};
Paul's avatar
Paul committed
717

Paul's avatar
Paul committed
718
719
720
721
722
723
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return op::convolution::reflect(self.op, f);
    }

Paul's avatar
Paul committed
724
725
726
727
728
    std::string name() const { return "gpu::conv_bias"; }
    shape compute_shape(const std::vector<shape>& inputs) const
    {
        check_shapes{inputs, *this}.has(5);
        // TODO: Check slices
kahmed10's avatar
kahmed10 committed
729
        return op.normalize_compute_shape({inputs.at(0), inputs.at(1)});
Paul's avatar
Paul committed
730
    }
Paul's avatar
Paul committed
731
    argument compute(context& ctx, const shape&, const std::vector<argument>& args) const
Paul's avatar
Paul committed
732
    {
Paul's avatar
Paul committed
733
        auto fargs  = make_fused_args();
Paul's avatar
Paul committed
734
        float alpha = 1;
Paul's avatar
Paul committed
735
        float beta  = 0;
Paul's avatar
Paul committed
736
737
        miopenSetOpArgsConvForward(fargs.get(), conv, &alpha, &beta, args[1].implicit());
        miopenSetOpArgsBiasForward(fargs.get(), bias, &alpha, &beta, args[3].implicit());
738
        return fp.execute(ctx, fargs, args[0], args[4]);
Paul's avatar
Paul committed
739
740
    }

741
742
    void finalize(context& ctx, const shape&, const std::vector<shape>& inputs)
    {
743
744
745
746
        fp   = fusion(inputs[0]);
        conv = fp.create_conv(op, inputs[1]);
        bias = fp.create_bias(inputs[3]);
        if(not fp.compile(ctx))
747
            MIGRAPHX_THROW("Failed to compile fusion plan");
748
749
    }

750
    shape get_workspace(context& ctx) { return fp.get_workspace(ctx); }
Paul's avatar
Paul committed
751
752
753
754
    std::ptrdiff_t output_alias(const std::vector<shape>& shapes) const
    {
        return shapes.size() - 1;
    }
Paul's avatar
Paul committed
755
};
756
MIGRAPHX_REGISTER_OP(miopen_conv_bias)
Paul's avatar
Paul committed
757

Paul's avatar
Add cbr  
Paul committed
758
759
760
struct miopen_conv_bias_relu
{
    op::convolution op;
761
    fusion fp         = {};
762
763
764
    fusion::op_t conv = {};
    fusion::op_t bias = {};
    fusion::op_t relu = {};
Paul's avatar
Add cbr  
Paul committed
765

Paul's avatar
Paul committed
766
767
768
769
770
771
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return op::convolution::reflect(self.op, f);
    }

Paul's avatar
Add cbr  
Paul committed
772
773
774
775
776
    std::string name() const { return "gpu::conv_bias_relu"; }
    shape compute_shape(const std::vector<shape>& inputs) const
    {
        check_shapes{inputs, *this}.has(5);
        // TODO: Check slices
kahmed10's avatar
kahmed10 committed
777
        return op.normalize_compute_shape({inputs.at(0), inputs.at(1)});
Paul's avatar
Add cbr  
Paul committed
778
    }
Paul's avatar
Paul committed
779
    argument compute(context& ctx, const shape&, const std::vector<argument>& args) const
Paul's avatar
Add cbr  
Paul committed
780
781
    {
        auto fargs  = make_fused_args();
Paul's avatar
Paul committed
782
        float alpha = 1;
Paul's avatar
Paul committed
783
        float beta  = 0;
Paul's avatar
Add cbr  
Paul committed
784
785
        miopenSetOpArgsConvForward(fargs.get(), conv, &alpha, &beta, args[1].implicit());
        miopenSetOpArgsBiasForward(fargs.get(), bias, &alpha, &beta, args[3].implicit());
Paul's avatar
Paul committed
786
        miopenSetOpArgsActivForward(fargs.get(), relu, &alpha, &beta, 0, 0, 0);
787
        return fp.execute(ctx, fargs, args[0], args[4]);
Paul's avatar
Add cbr  
Paul committed
788
    }
789
790
    void finalize(context& ctx, const shape&, const std::vector<shape>& inputs)
    {
791
792
793
794
795
        fp   = fusion(inputs[0]);
        conv = fp.create_conv(op, inputs[1]);
        bias = fp.create_bias(inputs[3]);
        relu = fp.create_relu();
        fp.compile(ctx);
796
797
    }

798
    shape get_workspace(context& ctx) { return fp.get_workspace(ctx); }
Paul's avatar
Paul committed
799
800
801
802
    std::ptrdiff_t output_alias(const std::vector<shape>& shapes) const
    {
        return shapes.size() - 1;
    }
Paul's avatar
Add cbr  
Paul committed
803
};
804
MIGRAPHX_REGISTER_OP(miopen_conv_bias_relu)
Paul's avatar
Add cbr  
Paul committed
805

Paul's avatar
Paul committed
806
template <class... Ms>
Paul's avatar
Add cbr  
Paul committed
807
808
auto conv_bias(Ms... ms)
{
Paul's avatar
Paul committed
809
    return match::name("gpu::add")(
Paul's avatar
Paul committed
810
811
        match::either_arg(0, 1)(bias_shape(match::used_once()).bind("bias"),
                                fusable_conv(match::used_once()).bind("conv")),
Paul's avatar
Paul committed
812
        ms...);
Paul's avatar
Paul committed
813
814
}

Paul's avatar
Paul committed
815
template <class Op>
816
void apply_conv_bias(context& ctx, module& m, const match::matcher_result& r)
Paul's avatar
Paul committed
817
818
819
820
821
822
823
824
825
826
{
    auto conv_ins    = r.instructions["conv"];
    auto bias_ins    = r.instructions["bias"];
    auto ins         = r.result;
    auto input_ins   = conv_ins->inputs().at(0);
    auto weights_ins = conv_ins->inputs().at(1);
    auto conv_op     = any_cast<miopen_convolution>(conv_ins->get_operator()).op;
    auto alloc_ins   = ins->inputs().back();
    auto old_ws_ins  = conv_ins->inputs().at(2);

827
    Op cb{conv_op};
Paul's avatar
Paul committed
828
    // TODO: Insert ws allocation
Paul's avatar
Paul committed
829
    auto ws = cb.get_workspace(ctx);
Paul's avatar
Paul committed
830
    (void)ws;
831
    m.replace_instruction(ins, cb, input_ins, weights_ins, old_ws_ins, bias_ins, alloc_ins);
Paul's avatar
Add cbr  
Paul committed
832
833
}

834
835
template <class... Strings>
inline auto precompile_name(Strings... names) // NOLINT
836
837
838
839
840
{
    return match::make_basic_pred_matcher([=](instruction_ref ins) {
        if(ins->name() != "gpu::precompile_op")
            return false;
        auto op = from_value<operation>(ins->get_operator().to_value().at("op"));
841
        return (contains({names...}, op.name()));
842
843
844
    });
}

Paul's avatar
Paul committed
845
struct find_conv_bias
Paul's avatar
Paul committed
846
{
Paul's avatar
Paul committed
847
    context* ctx = nullptr;
Paul's avatar
Paul committed
848
849
    auto matcher() const
    {
kahmed10's avatar
kahmed10 committed
850
851
        return conv_bias(match::none_of(
            match::output(match::name(std::unordered_set<std::string>{"gpu::relu"}))));
Paul's avatar
Paul committed
852
853
    }

854
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
855
    {
856
        apply_conv_bias<miopen_conv_bias>(*ctx, m, r);
Paul's avatar
Paul committed
857
858
859
    }
};

Paul's avatar
Paul committed
860
struct find_conv_bias_relu
Paul's avatar
Add cbr  
Paul committed
861
862
{
    context* ctx = nullptr;
Paul's avatar
Paul committed
863
    auto matcher() const { return match::name("gpu::relu")(match::arg(0)(conv_bias())); }
Paul's avatar
Add cbr  
Paul committed
864

865
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Add cbr  
Paul committed
866
    {
867
        apply_conv_bias<miopen_conv_bias_relu>(*ctx, m, r);
Paul's avatar
Add cbr  
Paul committed
868
869
    }
};
870

871
872
873
874
875
876
877
878
879
880
881
struct find_conv_pointwise
{
    context* ctx = nullptr;
    auto matcher() const
    {
        return precompile_name("pointwise")(
            match::nargs(3),
            match::either_arg(0, 1)(bias_shape(match::used_once()).bind("bias"),
                                    fusable_conv(match::used_once()).bind("conv")));
    }

882
    void apply(module& m, const match::matcher_result& r) const
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
    {
        auto conv_ins    = r.instructions["conv"];
        auto bias_ins    = r.instructions["bias"];
        auto ins         = r.result;
        auto input_ins   = conv_ins->inputs().at(0);
        auto weights_ins = conv_ins->inputs().at(1);
        auto conv_op     = any_cast<miopen_convolution>(conv_ins->get_operator()).op;
        auto alloc_ins   = ins->inputs().back();

        module_ref pm = ins->module_inputs().front();

        miopen_fusion op{};
        op.ops.push_back({{conv_op}});
        for(auto&& i : *pm)
        {
            if(i.name()[0] == '@')
                continue;
            op.ops.push_back({{i.get_operator()}});
        }
        std::vector<instruction_ref> inputs = {input_ins, weights_ins, bias_ins, alloc_ins};
        auto v                              = op.compile(*ctx, ins->get_shape(), to_shapes(inputs));
        if(not v.is_object())
            return;
        m.replace_instruction(ins, op, inputs);
    }
};

910
911
912
913
914
915
916
917
918
919
struct find_gemm_add
{
    auto matcher() const
    {
        return match::name("gpu::add")(
            match::all_of[match::inputs()](match::standard_shape()),
            match::either_arg(0, 1)(match::used_once().bind("c"),
                                    match::name("gpu::gemm")(match::nargs(3)).bind("gemm")));
    }

920
    void apply(module& m, const match::matcher_result& r) const
921
922
923
924
925
926
927
928
    {
        auto ins      = r.result;
        auto gemm_ins = r.instructions["gemm"];
        auto c_ins    = r.instructions["c"];

        auto gemm = any_cast<rocblas_gemm<op::dot>>(gemm_ins->get_operator());

        // Already fused gemm
929
        if(not float_equal(gemm.beta, 0))
930
931
932
933
934
935
936
937
            return;

        auto inputs = gemm_ins->inputs();
        inputs.pop_back();

        auto copy_ins = c_ins;

        // Insert copy
938
        if(ins == m.end() or c_ins->outputs().size() > 1 or c_ins->inputs().empty())
939
        {
940
            copy_ins = m.insert_instruction(ins, hip_copy{}, c_ins, ins->inputs().back());
941
942
943
944
        }
        inputs.push_back(copy_ins);
        inputs.push_back(copy_ins);

945
        gemm.beta = 1;
946
        m.replace_instruction(ins, gemm, inputs);
947
948
949
    }
};

950
951
952
953
struct find_gemm_pointwise
{
    auto matcher() const
    {
954
        return precompile_name("pointwise")(
955
            match::nargs(3),
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
            match::either_arg(0, 1)(
                match::any_of(match::standard_shape(), match::is_constant()).bind("c"),
                match::name("gpu::gemm")(match::nargs(3), match::used_once()).bind("gemm")));
    }

    // TODO: Move to matcher.hpp
    static auto match_param(const std::string& name)
    {
        return match::make_basic_pred_matcher([=](auto ins) {
            if(ins->name() != "@param")
                return false;
            auto p = any_cast<builtin::param>(ins->get_operator());
            return p.parameter == name;
        });
    }

    template <class M>
    static auto match_mul_const(M m, const std::string& var)
    {
        return match::name("mul")(match::either_arg(0, 1)(match::name("@literal").bind(var), m))
            .bind(var + "_mul");
    }

    static auto match_add(const std::string& input, const std::string& output)
    {
        auto param     = match::name("@param");
        auto add       = match::name("add")(match::args(param, param));
        auto inner_mul = match::any_of(match_mul_const(match_param(input), "alpha"),
                                       match_mul_const(match_param(output), "beta"));
        auto mul_add   = match::name("add")(match::either_arg(0, 1)(inner_mul, param));
        auto add_mul   = match_mul_const(add, "gamma");
        return match::name("@return")(match::args(match::any_of(add, mul_add, add_mul)));
    }

    static float get_float(instruction_ref ins) { return ins->get_literal().at<float>(); }

    template <class Gemm>
    static bool update_gemm(Gemm& gemm, module_ref pm, unsigned input)
    {
        auto names = pm->get_parameter_names();
        if(names.size() != 2)
            return false;
        std::sort(names.begin(), names.end());
        unsigned output = input == 0 ? 1 : 0;
        auto mr         = match::match_instruction(
            *pm, std::prev(pm->end()), match_add(names[input], names[output]));
        if(mr.result == pm->end())
            return false;
        if(contains(mr.instructions, "alpha_mul"))
            gemm.alpha *= get_float(mr.instructions["alpha"]);
        else if(contains(mr.instructions, "beta_mul"))
            gemm.beta *= get_float(mr.instructions["beta"]);
        else if(contains(mr.instructions, "gamma_mul"))
        {
            gemm.alpha *= get_float(mr.instructions["gamma"]);
            gemm.beta *= get_float(mr.instructions["gamma"]);
        }
        return true;
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins      = r.result;
        auto gemm_ins = r.instructions["gemm"];
        auto c_ins    = r.instructions["c"];

        auto gemm = any_cast<rocblas_gemm<op::dot>>(gemm_ins->get_operator());

        // Already fused gemm
        if(not float_equal(gemm.beta, 0))
            return;
1027
1028
1029
1030
1031
1032
1033
1034
1035
        gemm.beta = 1;

        if(not update_gemm(
               gemm, ins->module_inputs().front(), ins->inputs().front() == gemm_ins ? 0 : 1))
            return;

        // const-fold input if not standard shape since rocblas can't handle it
        if(not c_ins->get_shape().standard())
        {
Paul Fultz II's avatar
Paul Fultz II committed
1036
            auto c = make_op("contiguous");
1037
1038
1039
            auto l = c.compute(c.compute_shape({c_ins->get_shape()}), {c_ins->eval()});
            c_ins  = m.add_literal(l.get_shape(), l.data());
        }
1040
1041
1042
1043
1044

        auto inputs = gemm_ins->inputs();
        inputs.pop_back();

        inputs.push_back(c_ins);
1045
        inputs.push_back(ins->inputs().back());
1046
1047
1048
1049
1050

        m.replace_instruction(ins, gemm, inputs);
    }
};

1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
struct find_contiguous_tranpose_gemm
{
    auto matcher() const
    {
        return match::name("gpu::contiguous")(match::arg(0)(
            match::name("transpose")(
                match::arg(0)(match::name("gpu::gemm")(match::used_once()).bind("gemm")))
                .bind("transpose")));
    }

    template <class Vector>
    static bool is_swapped(const Vector& perm, std::size_t i, std::size_t j)
    {
        if(i >= perm.size() or j >= perm.size())
            return false;
        auto perm2 = perm;
        std::iota(perm2.begin(), perm2.end(), 0);
        std::swap(perm2[i], perm2[j]);
        return perm2 == perm;
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins       = r.result;
        auto gemm      = r.instructions["gemm"];
        auto alloc     = gemm->inputs().back();
        auto transpose = r.instructions["transpose"];
        auto perm      = transpose->get_operator().to_value()["permutation"].to_vector<int64_t>();
        auto iperm     = invert_permutation(perm);

        if(perm.size() < 3)
            return;

        if(not is_swapped(perm, perm.size() - 3, perm.size() - 2))
            return;

        auto lens = gemm->get_shape().lens();
        if(lens.size() > 3 and
           not std::all_of(lens.begin(), lens.end() - 3, [](auto i) { return i == 1; }))
            return;

        auto gemmv           = gemm->get_operator().to_value();
        gemmv["trans_batch"] = 1;

        auto s = shape{alloc->get_shape().type(), reorder_dims(alloc->get_shape().lens(), iperm)};
        auto new_alloc = m.insert_instruction(gemm, make_op("allocate", {{"shape", to_value(s)}}));
        auto alloc_transpose =
            m.insert_instruction(gemm, make_op("transpose", {{"permutation", perm}}), new_alloc);

        auto inputs        = gemm->inputs();
        inputs.back()      = alloc_transpose;
        auto new_gemm      = m.insert_instruction(gemm, make_op("gpu::gemm", gemmv), inputs);
        auto gemm_transpoe = m.insert_instruction(gemm, transpose->get_operator(), new_gemm);

        m.replace_instruction(ins, gemm_transpoe);
    }
};

1109
1110
1111
1112
1113
1114
1115
struct find_commutative_broadcast
{
    auto matcher() const
    {
        return match::name("gpu::add", "gpu::mul")(match::arg(1)(match::broadcast_shape()));
    }

1116
    void apply(module& m, const match::matcher_result& r) const
1117
1118
1119
1120
1121
    {
        auto ins  = r.result;
        auto args = ins->inputs();
        move_broadcasted_back(args);

1122
        m.replace_instruction(ins, ins->get_operator(), args);
1123
1124
    }
};
Paul Fultz II's avatar
Paul Fultz II committed
1125
} // namespace
1126

1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
struct find_contiguous
{
    auto matcher() const { return match::name("gpu::contiguous"); }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins = r.result;

        m.replace_instruction(
            ins,
            make_op("gpu::precompile_op", {{"op", to_value(make_op("contiguous"))}}),
            ins->inputs());
    }
};

struct find_contiguous_pointwise
{
    auto matcher() const
    {
        return match::name("gpu::contiguous")(match::arg(0)(precompile_name("pointwise")));
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins    = r.result;
        auto pw     = ins->inputs().front();
        auto alloc  = ins->inputs().back();
        auto args   = pw->inputs();
        args.back() = alloc;

        m.replace_instruction(ins, pw->get_operator(), args, pw->module_inputs());
    }
};

1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
struct find_layernorm_pointwise
{
    auto matcher() const
    {
        return precompile_name("pointwise")(match::arg(0)(
            precompile_name("gpu::prelayernorm", "gpu::preadd_layernorm").bind("layernorm")));
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins       = r.result;
        auto layernorm = r.instructions["layernorm"];
        auto* pm       = ins->module_inputs().front();

        if(not layernorm->module_inputs().empty())
            return;

        auto inputs = layernorm->inputs();
        inputs.pop_back();
        inputs.insert(inputs.end(), ins->inputs().begin() + 1, ins->inputs().end());

        m.replace_instruction(ins, layernorm->get_operator(), inputs, {pm});
    }
};

1186
void fuse_ops::apply(module& m) const
Paul's avatar
Paul committed
1187
{
1188
    match::find_matches(m, find_contiguous_pointwise{}, find_gelu{}, find_gelu_new{fast_math});
1189
1190
1191
    run_passes(m, {dead_code_elimination{}});
    match::find_matches(m, find_triadd{});
    match::find_matches(m,
kahmed10's avatar
kahmed10 committed
1192
                        find_layernorm{},
1193
                        find_conv_pointwise{ctx},
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
                        find_conv_bias_relu{ctx},
                        find_conv_bias{ctx},
                        find_add_gelu{},
                        find_add_gelu_new{},
                        find_mul_add{},
                        find_mul_add_relu{},
                        find_add_unary{"gpu::relu", hip_add_relu{}, hip_triadd_relu{}},
                        find_add_unary{"gpu::sigmoid", hip_add_sigmoid{}, hip_triadd_sigmoid{}},
                        find_add_unary{"gpu::tanh", hip_add_tanh{}, hip_triadd_tanh{}},
                        find_add_clip{});
1204
    run_passes(m, {dead_code_elimination{}});
1205
1206
1207
    match::find_matches(m,
                        find_triadd_layernorm{},
                        find_gemm_add{},
1208
                        find_layernorm_pointwise{},
1209
                        find_gemm_pointwise{},
1210
                        find_contiguous_tranpose_gemm{},
1211
                        find_commutative_broadcast{});
1212
    match::find_matches(m, find_contiguous{});
Paul's avatar
Paul committed
1213
}
Paul's avatar
Paul committed
1214
1215

} // namespace gpu
Paul's avatar
Paul committed
1216
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1217
} // namespace migraphx