simplify_algebra.cpp 44.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
Paul's avatar
Paul committed
24
#include <migraphx/simplify_algebra.hpp>
Paul's avatar
Paul committed
25
#include <migraphx/dead_code_elimination.hpp>
Paul's avatar
Paul committed
26
#include <migraphx/program.hpp>
27
#include <migraphx/op/concat.hpp>
28
#include <migraphx/op/slice.hpp>
29
#include <migraphx/op/convolution.hpp>
Paul's avatar
Paul committed
30
#include <migraphx/op/broadcast.hpp>
31
32
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/transpose.hpp>
Paul's avatar
Paul committed
33
#include <migraphx/matcher.hpp>
Paul's avatar
Paul committed
34
#include <migraphx/common.hpp>
Paul's avatar
Paul committed
35
#include <migraphx/literal.hpp>
36
37
38
#include <migraphx/make_op.hpp>
#include <migraphx/serialize.hpp>

39
#include <migraphx/algorithm.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
40
#include <unordered_set>
Paul's avatar
Paul committed
41

Paul's avatar
Paul committed
42
namespace migraphx {
Paul's avatar
Paul committed
43
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
44

Paul's avatar
Paul committed
45
auto lit_broadcast() { return match::any_of(match::is_constant(), match::name("broadcast")); }
Paul's avatar
Paul committed
46
auto not_lit_broadcast() { return match::none_of(match::is_constant(), match::name("broadcast")); }
Paul's avatar
Paul committed
47
48
auto op_lit_broadcast(std::string op, std::string x, std::string y)
{
Paul's avatar
Paul committed
49
50
    return match::name(std::move(op))(match::either_arg(0, 1)(
        lit_broadcast().bind(std::move(x)), not_lit_broadcast().bind(std::move(y))));
Paul's avatar
Paul committed
51
52
}

Paul's avatar
Paul committed
53
54
auto conv_const_weights()
{
Paul's avatar
Format  
Paul committed
55
56
57
    return match::name("convolution")(
        match::used_once(),
        match::args(match::none_of(match::is_constant()), match::is_constant().bind("w")));
Paul's avatar
Paul committed
58
59
}

Shucai Xiao's avatar
Shucai Xiao committed
60
61
auto reduction() { return match::name_contains("reduce"); }

62
// conv(x, w) * a => conv(x, a * w)
Paul's avatar
Paul committed
63
64
65
struct find_mul_conv
{
    auto matcher() const
Paul's avatar
Paul committed
66
    {
67
68
69
        return match::name("mul")(
            match::either_arg(0, 1)(conv_const_weights().bind("conv"),
                                    match::name("broadcast", "multibroadcast").bind("a")));
Paul's avatar
Paul committed
70
    }
Paul's avatar
Paul committed
71

72
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
73
    {
Paul's avatar
Paul committed
74
        auto ins      = r.result;
Paul's avatar
Paul committed
75
        auto conv_ins = r.instructions["conv"];
Paul's avatar
Paul committed
76
77
78
        auto a_ins    = r.instructions["a"];
        auto w_ins    = r.instructions["w"];

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
        const auto& a_input_lens = a_ins->inputs().front()->get_shape().lens();

        std::size_t num_not_one_dims = std::count_if(
            a_input_lens.cbegin(), a_input_lens.cend(), [](auto dim) { return dim != 1; });
        if(num_not_one_dims > 1)
            return;

        // check broadcasted along channels
        const auto& a_lens    = a_ins->get_shape().lens();
        const auto& a_strides = a_ins->get_shape().strides();

        auto is_broadcasted_axis = [](auto len, auto stride) { return len == 1 or stride == 0; };

        if(a_strides.at(1) != 1)
            return;

        if(not is_broadcasted_axis(a_lens.front(), a_strides.front()))
            return;

        if(not std::equal(a_lens.begin() + 2,
                          a_lens.end(),
                          a_strides.begin() + 2,
                          a_strides.end(),
                          is_broadcasted_axis))
Paul's avatar
Paul committed
103
104
            return;

105
        auto sq    = m.insert_instruction(ins, make_op("squeeze"), a_ins->inputs().front());
106
        auto new_a = m.insert_instruction(
107
            ins, make_op("broadcast", {{"axis", 0}, {"out_lens", w_ins->get_shape().lens()}}), sq);
108
109
        auto new_mul  = m.insert_instruction(ins, make_op("mul"), new_a, w_ins);
        auto new_conv = m.insert_instruction(
Paul's avatar
Paul committed
110
            ins, conv_ins->get_operator(), conv_ins->inputs().front(), new_mul);
111
        m.replace_instruction(ins, new_conv);
Paul's avatar
Paul committed
112
    }
Paul's avatar
Paul committed
113
114
};

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
struct find_mul_slice_conv
{
    static auto conv()
    {
        return match::name("convolution")(
            match::all_of[match::outputs()](match::name("slice")),
            match::args(match::any(), match::is_constant().bind("w")));
    }
    auto matcher() const
    {
        return match::name("mul")(match::either_arg(0, 1)(
            match::name("slice")(match::used_once(), match::arg(0)(conv().bind("conv")))
                .bind("slice"),
            match::name("broadcast")(match::is_constant()).bind("a")));
    }

131
    void apply(module& m, const match::matcher_result& r) const
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
    {
        auto ins       = r.result;
        auto slice_ins = r.instructions["slice"];
        auto conv_ins  = r.instructions["conv"];
        auto a_ins     = r.instructions["a"];
        auto w_ins     = r.instructions["w"];

        auto broadcast_op = any_cast<op::broadcast>(a_ins->get_operator());
        if(broadcast_op.axis != 1)
            return;

        auto slice_op = any_cast<op::slice>(slice_ins->get_operator());
        if(slice_op.axes.size() != 1)
            return;
        if(slice_op.axes.front() != 1)
            return;

        auto slice_idx = std::distance(conv_ins, slice_ins);
        if(std::any_of(conv_ins->outputs().begin(), conv_ins->outputs().end(), [&](auto i) {
               if(i == slice_ins)
                   return false;
               if(std::distance(conv_ins, i) < slice_idx)
                   return true;
               auto sop = any_cast<op::slice>(i->get_operator());
               if(sop.axes != slice_op.axes)
                   return true;
               if(std::max(sop.starts.front(), slice_op.starts.front()) <
                  std::min(sop.ends.front(), slice_op.ends.front()))
                   return true;
               return false;
           }))
            return;

        auto w_slice_op  = slice_op;
        w_slice_op.axes  = {0};
167
        auto slice_w_ins = m.insert_instruction(ins, w_slice_op, w_ins);
168

169
        auto new_a = m.insert_instruction(
170
            ins,
171
            make_op("broadcast", {{"axis", 0}, {"out_lens", slice_w_ins->get_shape().lens()}}),
172
            a_ins->inputs().front());
173
        auto new_mul = m.insert_instruction(ins, make_op("mul"), new_a, slice_w_ins);
174
175
176

        std::vector<instruction_ref> sliced_weights;
        if(slice_op.starts.front() != 0)
177
            sliced_weights.push_back(m.insert_instruction(
178
179
180
                ins,
                make_op("slice", {{"axes", {0}}, {"starts", {0}}, {"ends", slice_op.starts}}),
                w_ins));
181
182
183
        sliced_weights.push_back(new_mul);
        int64_t end_axis = w_ins->get_shape().lens().at(0);
        if(slice_op.ends.front() != end_axis)
184
            sliced_weights.push_back(m.insert_instruction(
185
186
187
                ins,
                make_op("slice", {{"axes", {0}}, {"starts", slice_op.ends}, {"ends", {end_axis}}}),
                w_ins));
188

189
        auto new_weights =
190
            m.insert_instruction(ins, make_op("concat", {{"axis", 0}}), sliced_weights);
191

192
        auto new_conv = m.insert_instruction(
193
194
195
            ins, conv_ins->get_operator(), conv_ins->inputs().front(), new_weights);
        assert(conv_ins->get_shape() == new_conv->get_shape());

196
        auto slice1 = m.insert_instruction(ins, slice_op, new_conv);
197
        assert(ins->get_shape().lens() == slice1->get_shape().lens());
198
        m.replace_instruction(ins, slice1);
199
        // TODO: Check each slice doesn't overlap and that it occurs after slice_ins
200
201
        auto outputs = conv_ins->outputs();
        for(auto output : outputs)
202
203
204
205
206
            if(output != slice_ins)
                instruction::replace_argument(output, conv_ins, new_conv);
    }
};

Paul's avatar
Paul committed
207
// a * (x + b) => a * x + a * b
Paul's avatar
Paul committed
208
209
210
211
212
struct find_mul_add
{
    auto matcher() const
    {
        return match::name("mul")(match::either_arg(0, 1)(
Paul's avatar
Paul committed
213
214
215
            match::name("add")(
                match::either_arg(0, 1)(
                    match::any().bind("x"),
Paul's avatar
Paul committed
216
                    match::any_of(conv_const_weights(), match::is_constant()).bind("b")),
Paul's avatar
Paul committed
217
                match::none_of(match::args(match::is_constant(), match::is_constant())),
Paul's avatar
Paul committed
218
                match::used_once()),
Paul's avatar
Paul committed
219
            match::is_constant().bind("a")));
Paul's avatar
Paul committed
220
221
    }

222
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
223
    {
Paul's avatar
Paul committed
224
        auto ins   = r.result;
Paul's avatar
Paul committed
225
        auto a_ins = r.instructions["a"];
Paul's avatar
Paul committed
226
        auto b_ins = r.instructions["b"];
Paul's avatar
Paul committed
227
        auto x_ins = r.instructions["x"];
Paul's avatar
Paul committed
228
        assert(x_ins != b_ins);
Paul's avatar
Paul committed
229

230
231
232
        auto ax_ins = m.insert_instruction(ins, make_op("mul"), a_ins, x_ins);
        auto ab_ins = m.insert_instruction(ins, make_op("mul"), a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), ax_ins, ab_ins);
Paul's avatar
Paul committed
233
234
235
    }
};

236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
struct find_dot_add
{
    auto matcher() const
    {
        return match::name("dot")(match::either_arg(0, 1)(
            match::name("add")(
                match::either_arg(0, 1)(match::any().bind("x"),
                                        match::any_of(match::is_constant()).bind("b")),
                match::none_of(match::args(match::is_constant(), match::is_constant())),
                match::used_once()),
            match::is_constant().bind("a")));
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins   = r.result;
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];
        auto x_ins = r.instructions["x"];
        assert(x_ins != b_ins);

        const bool flipped = a_ins == ins->inputs().back();

        auto insert_dot = [&](auto x, auto y) {
            if(flipped)
                return m.insert_instruction(ins, make_op("dot"), y, x);
            else
                return m.insert_instruction(ins, make_op("dot"), x, y);
        };

        auto ax_ins = insert_dot(a_ins, x_ins);
        auto ab_ins = insert_dot(a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), ax_ins, ab_ins);
    }
};

Paul's avatar
Paul committed
272
273
274
275
276
struct find_conv_add
{
    auto matcher() const
    {
        auto add = match::name("add")(
Paul's avatar
Format  
Paul committed
277
278
279
            match::either_arg(0, 1)(match::any().bind("x"),
                                    match::any_of(match::is_constant()).bind("a")),
            match::used_once());
Paul's avatar
Paul committed
280
        return match::name("convolution")(match::used_once(),
Paul's avatar
Format  
Paul committed
281
                                          match::args(add, match::is_constant().bind("w")));
Paul's avatar
Paul committed
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins   = r.result;
        auto a_ins = r.instructions["a"];
        auto x_ins = r.instructions["x"];
        auto w_ins = r.instructions["w"];

        auto conv1 = m.insert_instruction(ins, ins->get_operator(), a_ins, w_ins);
        auto conv2 = m.insert_instruction(ins, ins->get_operator(), x_ins, w_ins);

        m.replace_instruction(ins, make_op("add"), conv1, conv2);
    }
};

Paul's avatar
Paul committed
298
struct find_add_lit_broadcast
Paul's avatar
Paul committed
299
300
301
302
303
304
305
{
    auto matcher() const
    {
        return match::name("add")(
            match::either_arg(0, 1)(op_lit_broadcast("add", "a", "x"), lit_broadcast().bind("b")));
    }

306
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
307
308
309
310
311
312
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];

313
314
        auto sumab = m.insert_instruction(ins, make_op("add"), a_ins, b_ins);
        m.replace_instruction(ins, make_op("add"), x_ins, sumab);
Paul's avatar
Paul committed
315
316
317
318
    }
};

struct find_double_add_lit_broadcast
Paul's avatar
Paul committed
319
{
Paul's avatar
Paul committed
320
321
    auto matcher() const
    {
Paul's avatar
Paul committed
322
        return match::name("add")(
Paul's avatar
Paul committed
323
            match::args(op_lit_broadcast("add", "a", "x"), op_lit_broadcast("add", "b", "y")));
Paul's avatar
Paul committed
324
325
    }

326
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
327
    {
Paul's avatar
Paul committed
328
329
330
331
332
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto y_ins = r.instructions["y"];
        auto a_ins = r.instructions["a"];
        auto b_ins = r.instructions["b"];
Paul's avatar
Paul committed
333
334
335

        instruction_ref sumab;

Paul's avatar
Paul committed
336
        if(a_ins->name() == "broadcast" and b_ins->name() == "broadcast")
Paul's avatar
Paul committed
337
338
339
        {
            if(a_ins->inputs().at(0)->get_shape() != b_ins->inputs().at(0)->get_shape())
                return;
340
            auto op     = a_ins->get_operator();
341
            auto presum = m.insert_instruction(
342
                ins, make_op("add"), a_ins->inputs().at(0), b_ins->inputs().at(0));
343
            sumab = m.insert_instruction(ins, op, presum);
Paul's avatar
Paul committed
344
345
346
        }
        else
        {
347
            sumab = m.insert_instruction(ins, make_op("add"), a_ins, b_ins);
Paul's avatar
Paul committed
348
349
        }

350
351
        auto sumxy = m.insert_instruction(ins, make_op("add"), x_ins, y_ins);
        m.replace_instruction(ins, make_op("add"), sumxy, sumab);
Paul's avatar
Paul committed
352
353
354
    }
};

Paul's avatar
Paul committed
355
356
struct find_inner_broadcast
{
357
    auto matcher() const { return pointwise(match::all_of[match::inputs()](match::broadcast())); }
Paul's avatar
Paul committed
358

359
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
360
    {
361
362
363
364
365
366
367
368
369
370
        auto ins        = r.result;
        auto broadcasts = ins->inputs();
        if(broadcasts.empty())
            return;
        std::vector<instruction_ref> inputs;
        std::transform(broadcasts.begin(),
                       broadcasts.end(),
                       std::back_inserter(inputs),
                       [](auto i) { return i->inputs().front(); });
        if(std::any_of(inputs.begin(), inputs.end(), [&](auto i) {
Paul's avatar
Format  
Paul committed
371
372
               return i->get_shape() != inputs.front()->get_shape() and
                      i->get_shape().elements() != 1;
373
           }))
Paul's avatar
Paul committed
374
375
            return;

Paul's avatar
Paul committed
376
377
378
        auto b_it = std::find_if(broadcasts.begin(), broadcasts.end(), [&](auto i) {
            return not i->get_shape().scalar();
        });
Paul's avatar
Format  
Paul committed
379
        if(b_it == broadcasts.end())
Paul's avatar
Paul committed
380
381
382
            b_it = broadcasts.begin();
        auto op = insert_common_op(m, ins, ins->get_operator(), inputs);
        m.replace_instruction(ins, (*b_it)->get_operator(), op);
Paul's avatar
Paul committed
383
384
385
    }
};

386
struct find_concat_op
387
388
389
{
    auto matcher() const
    {
390
        return match::name("concat")(match::any_of[match::inputs()](
391
            match::any_of(match::pointwise(), match::name("broadcast")), match::used_once()));
392
393
    }

394
395
    template <class Iterator>
    static std::vector<std::size_t> get_output_lens(Iterator start, Iterator last, std::size_t axis)
396
    {
397
398
399
        assert(start != last);
        std::size_t dim = 0;
        for(auto ins : range(start, last))
400
        {
401
            dim += ins->get_shape().lens().at(axis);
402
        }
403
404
405
        auto lens  = (*start)->get_shape().lens();
        lens[axis] = dim;
        return lens;
406
407
    }

408
409
410
411
412
    static bool is_valid_op(const operation& op)
    {
        return op.name() == "broadcast" or op.attributes().contains("pointwise");
    }

413
    void apply(module& m, const match::matcher_result& r) const
414
    {
415
416
        auto ins  = r.result;
        auto axis = any_cast<op::concat>(ins->get_operator()).axis;
417

418
419
420
421
422
423
        auto each = [&](auto start, auto last) -> std::vector<instruction_ref> {
            if(std::distance(start, last) < 2)
                return {start, last};
            auto x = *start;
            if(x->inputs().size() > 2 or x->inputs().empty() or x->outputs().size() > 1)
                return {start, last};
424
425
            auto op = x->get_operator();
            if(not is_valid_op(op))
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
                return {start, last};
            auto iaxis = axis;
            // Adjust broadcast lens
            if(op.name() == "broadcast")
            {
                auto b = any_cast<op::broadcast>(op);
                if(b.axis != iaxis)
                    return {start, last};
                b.broadcast_lens = get_output_lens(start, last, iaxis);
                op               = b;
                iaxis            = 0;
            }

            std::vector<instruction_ref> concats;
            for(std::size_t i = 0; i < x->inputs().size(); i++)
            {
                std::vector<instruction_ref> inputs;
                std::transform(start, last, std::back_inserter(inputs), [&](auto j) {
                    return j->inputs().at(i);
                });
446
                auto concat =
447
                    m.insert_instruction(ins, make_op("concat", {{"axis", iaxis}}), inputs);
448
449
                concats.push_back(concat);
            }
450
            auto y = m.insert_instruction(ins, op, concats);
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
            return {y};
        };

        std::vector<instruction_ref> args;
        auto update_args = [&](auto start, auto last) {
            auto x = each(start, last);
            args.insert(args.end(), x.begin(), x.end());
        };
        auto pred = [](auto i, auto j) {
            return i->get_operator() == j->get_operator() and
                   i->inputs().size() == i->inputs().size() and
                   i->outputs().size() == i->outputs().size();
        };
        group_unique(ins->inputs().begin(), ins->inputs().end(), update_args, pred);
        if(args.size() == 1)
466
            m.replace_instruction(ins, args.front());
467
        else
468
            m.replace_instruction(ins, make_op("concat", {{"axis", axis}}), args);
469
470
471
    }
};

472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
void move_instructions_back(module& m, instruction_ref pos, std::vector<instruction_ref> inss)
{
    auto start = range(m.begin(), pos);
    for(auto ins : iterator_for(start))
    {
        auto it = std::find(inss.begin(), inss.end(), ins);
        if(it != inss.end())
            inss.erase(it);
    }
    for(auto ins : inss)
    {
        if(not m.has_instruction(ins))
            continue;
        move_instructions_back(m, pos, ins->inputs());
        m.move_instruction(ins, pos);
    }
}

490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
std::vector<instruction_ref> get_splits(instruction_ref ins)
{
    std::vector<instruction_ref> result;
    std::copy_if(ins->outputs().begin(),
                 ins->outputs().end(),
                 std::back_inserter(result),
                 [&](auto i) { return i->name() == "slice"; });
    if(result.size() < 2)
        return {};
    auto get_slice = [](auto& i) -> auto& { return any_cast<op::slice>(i->get_operator()); };
    auto&& axes    = get_slice(result.front()).axes;
    if(std::any_of(result.begin(), result.end(), [&](auto i) { return get_slice(i).axes != axes; }))
        return {};
    auto get_start = [&](auto& i) -> auto& { return get_slice(i).starts; };
    auto get_end   = [&](auto& i) -> auto& { return get_slice(i).ends; };
    std::sort(
        result.begin(), result.end(), [&](auto x, auto y) { return get_start(x) < get_start(y); });
    if(std::any_of(get_start(result.front()).begin(), get_start(result.front()).end(), [&](auto i) {
           return i != 0;
       }))
        return {};
    auto it = std::adjacent_find(
        result.begin(), result.end(), [&](auto x, auto y) { return get_end(x) != get_start(y); });
    if(it != result.end())
        return {};
    for(std::size_t i = 0; i < axes.size(); i++)
    {
        auto axis = axes[i];
        if(ins->get_shape().lens()[axis] != get_slice(result.back()).ends[i])
            return {};
    }
    return result;
}

struct find_splits
{
    auto matcher() const
    {
528
529
530
        return match::any(
            match::any_of[match::outputs()](match::name("slice")(match::any_of[match::outputs()](
                match::pointwise(match::any_of(match::nargs(1), match::nargs(2))), reduction()))));
531
532
    }

Shucai Xiao's avatar
Shucai Xiao committed
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
    static bool is_dependent(const module& m, instruction_ref ins1, instruction_ref ins2)
    {

        std::unordered_set<instruction_ref> traversed;
        return fix<bool>([&](auto self, auto ins) -> bool {
            if(ins == ins2)
                return true;

            if(contains(traversed, ins))
                return false;

            traversed.insert(ins);
            const auto& inputs = ins->inputs();
            return std::any_of(inputs.begin(), inputs.end(), [&](auto in) {
                return m.has_instruction(in) and self(in);
            });
        })(ins1);
    }

552
    static std::vector<std::vector<instruction_ref>>
Shucai Xiao's avatar
Shucai Xiao committed
553
    get_split_groups(const module& m, const std::vector<instruction_ref>& splits)
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
    {
        std::vector<std::vector<instruction_ref>> groups;
        for(auto out : splits.front()->outputs())
        {
            if(out->name() == "slice")
                continue;
            std::vector<instruction_ref> group;
            for(auto split : splits)
            {
                auto it =
                    std::find_if(split->outputs().begin(), split->outputs().end(), [&](auto i) {
                        return i->get_operator() == out->get_operator();
                    });
                if(it == split->outputs().end())
                    break;
                assert((*it)->name() != "slice");
Shucai Xiao's avatar
Shucai Xiao committed
570

571
                // If there is a duplicate bail
Shucai Xiao's avatar
Shucai Xiao committed
572
573
574
575
576
                // there are should be no dependency between instructions in the group
                if(std::any_of(group.begin(), group.end(), [&](auto i) {
                       return is_dependent(m, *it, i) or is_dependent(m, i, *it);
                   }))
                {
577
                    return {};
Shucai Xiao's avatar
Shucai Xiao committed
578
579
                }

580
581
582
583
584
585
586
587
588
                group.push_back(*it);
            }
            if(group.size() != splits.size())
                continue;
            groups.push_back(group);
        }
        return groups;
    }

Shucai Xiao's avatar
Shucai Xiao committed
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
    bool is_fusable(instruction_ref start, instruction_ref split_front) const
    {
        auto op = start->get_operator();
        if(contains(op.name(), "reduce"))
        {
            auto slc         = any_cast<op::slice>(split_front->get_operator());
            auto slc_axes    = slc.axes;
            auto reduce_axes = start->get_operator().to_value()["axes"].to_vector<int64_t>();
            // axes of slice and reduce op cannot have overlap
            if(std::any_of(slc_axes.begin(), slc_axes.end(), [&](auto axis) {
                   return (std::find(reduce_axes.begin(), reduce_axes.end(), axis) !=
                           reduce_axes.end());
               }))
            {
                return false;
            }
        }
        else if(not op.attributes().contains("pointwise"))
        {
            return false;
        }

        return true;
    }

614
    void apply(module& m, const match::matcher_result& r) const
615
    {
Shucai Xiao's avatar
Shucai Xiao committed
616
        auto ins    = r.result;
617
618
619
        auto splits = get_splits(ins);
        if(splits.empty())
            return;
Shucai Xiao's avatar
Shucai Xiao committed
620

621
        for(const auto& group : get_split_groups(m, splits))
622
        {
Shucai Xiao's avatar
Shucai Xiao committed
623
624
625
626
627
            auto start       = group.front();
            auto split_front = splits.front();
            auto op          = start->get_operator();
            if(not is_fusable(start, split_front))
            {
628
                continue;
Shucai Xiao's avatar
Shucai Xiao committed
629
            }
630
631
632
633
634
635

            // Make sure there is no duplicates
            assert(std::none_of(
                std::next(group.begin()), group.end(), [&](auto i) { return i == start; }));

            auto split_idx    = 0;
636
            instruction_ref c = m.end();
637
638
            if(start->inputs().size() == 1)
            {
639
                c = m.insert_instruction(std::next(ins), op, ins);
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
            }
            else if(start->inputs().size() == 2)
            {
                assert(not std::none_of(start->inputs().begin(), start->inputs().end(), [](auto i) {
                    return i->name() == "slice";
                }) && "one argument must be a split");
                auto data_idx = 1;
                if(start->inputs().back()->name() == "slice")
                {
                    split_idx = 1;
                    data_idx  = 0;
                }

                std::vector<instruction_ref> data_args;
                std::transform(group.begin(),
                               group.end(),
                               std::back_inserter(data_args),
                               [&](auto i) { return i->inputs()[data_idx]; });

                // Data arguments must be a constant
                if(std::any_of(data_args.begin(), data_args.end(), [](auto i) {
                       return not i->can_eval();
                   }))
                    return;

665
                move_instructions_back(m, ins, data_args);
666
667
668
669
670
671
672

                auto slice_op = any_cast<op::slice>(splits.front()->get_operator());
                assert(not slice_op.axes.empty());
                if(slice_op.axes.size() > 1)
                    return;
                auto concat_axis = slice_op.axes.front();
                // TODO: Check if axises match
673
                auto concat = m.insert_instruction(
674
                    ins, make_op("concat", {{"axis", concat_axis}}), data_args);
675
676
677
678
679

                std::vector<instruction_ref> args;
                args.resize(2);
                args[split_idx] = ins;
                args[data_idx]  = concat;
680
                c               = m.insert_instruction(std::next(ins), op, args);
681
            }
682
            if(c != m.end())
683
684
685
686
687
688
            {
                for(auto i : group)
                {
                    auto split = i->inputs()[split_idx];
                    assert(split->name() == "slice");
                    // Insert contiguous for reshapes
689
690
                    auto outputs = i->outputs();
                    for(auto output : outputs)
691
                    {
692
                        if(output->name() != "reshape")
693
                            continue;
694
                        auto x = m.insert_instruction(output, make_op("contiguous"), i);
695
                        m.replace_instruction(output, output->get_operator(), x);
696
697
                    }

698
                    m.replace_instruction(i, split->get_operator(), c);
699
700
701
702
703
704
705
706
707
708
709
710
711
712
                }
            }
        }
    }
};

struct find_split_concat
{
    auto matcher() const
    {
        return match::any(match::any_of[match::outputs()](
            match::name("slice")(match::all_of[match::outputs()](match::name("concat")))));
    }

713
    void apply(module& m, const match::matcher_result& r) const
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
    {
        auto ins = r.result;

        auto splits = get_splits(ins);
        if(splits.empty())
            return;
        if(std::any_of(
               splits.begin(), splits.end(), [](auto i) { return i->outputs().size() != 1; }))
            return;
        // Check for concat operator
        auto concat = splits.front()->outputs().front();
        if(std::any_of(splits.begin(), splits.end(), [&](auto i) {
               return i->outputs().front() != concat;
           }))
            return;
        // Check axis match
        auto concat_op = any_cast<op::concat>(concat->get_operator());
        auto split_op  = any_cast<op::slice>(splits.front()->get_operator());
        if(split_op.axes.size() != 1)
            return;
        if(split_op.axes.front() != concat_op.axis)
            return;
        // Replace args
        auto args = concat->inputs();
        auto it =
            std::find_if(args.begin(), args.end(), [&](auto i) { return i == splits.front(); });
        if(std::distance(it, args.end()) < splits.size())
            return;
742
743
744
745
746
747
748
        // If the slices are not in order then stop
        if(not std::is_sorted(it, it + splits.size(), [](instruction_ref x, instruction_ref y) {
               auto xop = any_cast<op::slice>(x->get_operator());
               auto yop = any_cast<op::slice>(y->get_operator());
               return std::tie(xop.starts, xop.ends) < std::tie(yop.starts, yop.ends);
           }))
            return;
749
750
751
752
        *it = splits.front()->inputs().front();
        args.erase(std::next(it), it + splits.size());

        if(args.size() == 1)
753
            m.replace_instruction(concat, args.front());
754
        else
755
            m.replace_instruction(concat, concat->get_operator(), args);
756
757
758
    }
};

759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
bool axis_equal(const std::vector<std::size_t>& x,
                const std::vector<std::size_t>& y,
                std::size_t axis)
{
    return x.size() == y.size() and x.size() > axis and
           std::equal(x.begin(), x.begin() + axis, y.begin()) and
           std::equal(x.begin() + axis + 1, x.end(), y.begin() + axis + 1);
}

bool axis_shape_equal(const shape& x, const shape& y, std::size_t axis)
{
    // TODO: Check strides
    return axis_equal(x.lens(), y.lens(), axis);
}

struct find_add_convs
{
    auto matcher() const
    {
        return match::name("add")(
            match::args(conv_const_weights().bind("a"), conv_const_weights().bind("b")));
    }

    static bool symmetrical_strides(const op::convolution& op)
    {
        return op.stride[0] == op.stride[1];
    }

    static std::size_t compute_stride_factor(const op::convolution& x, const op::convolution& y)
    {
        if(not symmetrical_strides(x))
            return 0;
        if(not symmetrical_strides(y))
            return 0;
        if((x.stride[0] % y.stride[0]) != 0)
            return 0;
        return x.stride[0] / y.stride[0];
    }

798
    void apply(module& m, const match::matcher_result& r) const
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
    {
        auto ins       = r.result;
        auto a_conv    = r.instructions["a"];
        auto a_input   = a_conv->inputs().at(0);
        auto a_weights = a_conv->inputs().at(1);
        auto b_conv    = r.instructions["b"];
        auto b_input   = b_conv->inputs().at(0);
        auto b_weights = b_conv->inputs().at(1);

        if(not axis_shape_equal(a_weights->get_shape(), b_weights->get_shape(), 1))
            return;

        auto a_op   = any_cast<op::convolution>(a_conv->get_operator());
        auto b_op   = any_cast<op::convolution>(b_conv->get_operator());
        auto new_op = a_op;

        if(a_op != b_op)
        {
            if(std::tie(a_op.padding, a_op.dilation, a_op.group) ==
                   std::tie(b_op.padding, b_op.dilation, b_op.group) and
               a_weights->get_shape().lens()[2] == 1 and a_weights->get_shape().lens()[3] == 1)
            {
                if(a_op.stride < b_op.stride)
                {
                    auto n = compute_stride_factor(b_op, a_op);
                    if(n == 0)
                        return;
                    new_op  = a_op;
827
                    b_input = m.insert_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
828
                        ins, make_op("step", {{"axes", {2, 3}}, {"steps", {n, n}}}), b_input);
829
830
831
832
833
834
835
                }
                else if(b_op.stride < a_op.stride)
                {
                    auto n = compute_stride_factor(a_op, b_op);
                    if(n == 0)
                        return;
                    new_op  = b_op;
836
                    a_input = m.insert_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
837
                        ins, make_op("step", {{"axes", {2, 3}}, {"steps", {n, n}}}), a_input);
838
839
840
841
842
843
844
845
                }
                else
                    return;
            }
            else
                return;
        }

846
        auto concat_input =
847
            m.insert_instruction(ins, make_op("concat", {{"axis", 1}}), a_input, b_input);
848
        auto concat_weights =
849
850
            m.insert_instruction(ins, make_op("concat", {{"axis", 1}}), a_weights, b_weights);
        m.replace_instruction(ins, new_op, concat_input, concat_weights);
851
852
853
    }
};

854
855
856
857
858
859
860
861
862
863
MIGRAPHX_PRED_MATCHER(horiz_conv_dot, instruction_ref ins)
{
    auto pred = [&](auto name) {
        return [=](auto i) {
            return i->name() == name and i->inputs().front() == ins and
                   i->inputs().at(1)->can_eval();
        };
    };
    auto dots  = std::count_if(ins->outputs().begin(), ins->outputs().end(), pred("dot"));
    auto convs = std::count_if(ins->outputs().begin(), ins->outputs().end(), pred("convolution"));
864
    return (dots >= 2 or convs >= 2);
865
866
867
868
869
870
}

struct find_conv_dot_horiz_fusion
{
    auto matcher() const { return horiz_conv_dot(); }

871
    void apply(module& m, const match::matcher_result& r) const
872
873
874
875
876
877
878
879
880
881
882
883
    {
        auto ins = r.result;

        auto pred = [](auto i, auto j) {
            if(i->get_operator() != j->get_operator())
                return false;
            if(not contains({"dot", "convolution"}, i->name()))
                return true;
            auto x = i->inputs()[1]->get_shape().lens();
            auto y = j->inputs()[1]->get_shape().lens();
            if(x.size() != y.size())
                return false;
884
            // Check that non-axes match
885
886
887
888
889
890
891
892
893
894
895
896
897
898
            int axis = 1;
            if(i->name() == "dot")
            {
                axis = x.size() - 1;
            }
            return axis_equal(x, y, axis);
        };

        auto each = [&](auto start, auto last) {
            if(std::distance(start, last) < 2)
                return;
            auto&& name = (*start)->name();
            if(not contains({"dot", "convolution"}, name))
                return;
899
900
901
902
903
904
905
            auto op   = (*start)->get_operator();
            int group = 1;
            if(name == "convolution")
                group = any_cast<op::convolution>(op).group;
            // Skip group convolution
            if(group != 1)
                return;
906
907
908
909
910
911
912
913
914
915
916
917
            auto input = (*start)->inputs().front();
            std::vector<instruction_ref> args;
            std::transform(
                start, last, std::back_inserter(args), [&](auto x) { return x->inputs().at(1); });
            int axis        = 1;
            int concat_axis = 0;
            if(name == "dot")
            {
                axis        = int(args.front()->get_shape().lens().size() - 1);
                concat_axis = axis;
            }

918
            move_instructions_back(m, input, args);
919
            // TODO: Check if axes match
920
            auto concat =
921
922
                m.insert_instruction(input, make_op("concat", {{"axis", concat_axis}}), args);
            auto fused     = m.insert_instruction(std::next(input), op, input, concat);
923
924
925
            int64_t offset = 0;
            for(auto arg : range(start, last))
            {
926
927
928
929
930
931
932
933
934
                auto outputs = arg->outputs();
                for(auto output : outputs)
                {
                    if(output->name() != "reshape")
                        continue;
                    auto x = m.insert_instruction(output, make_op("contiguous"), arg);
                    m.replace_instruction(output, output->get_operator(), x);
                }

935
                int64_t len = arg->get_shape().lens()[axis];
936
                m.replace_instruction(
937
938
939
940
                    arg,
                    make_op("slice",
                            {{"axes", {axis}}, {"starts", {offset}}, {"ends", {offset + len}}}),
                    fused);
941
942
943
944
945
946
947
948
949
                offset += len;
            }
        };

        auto outputs = ins->outputs();
        group_by(outputs.begin(), outputs.end(), each, pred);
    }
};

950
951
952
953
954
955
956
struct find_div_const
{
    auto matcher() const
    {
        return match::name("div")(match::arg(1)(match::is_constant().bind("c")));
    }

957
    void apply(module& m, const match::matcher_result& r) const
958
959
960
961
    {
        auto ins   = r.result;
        auto c_ins = r.instructions["c"];

962
        auto recip = m.insert_instruction(std::next(c_ins), make_op("recip"), c_ins);
963
964
965

        auto args = ins->inputs();

966
        m.replace_instruction(ins, make_op("mul"), args.front(), recip);
967
968
969
    }
};

970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
struct find_unit_ops
{
    auto matcher() const
    {
        auto mul_1 = match::name("mul")(
            match::either_arg(0, 1)(match::has_value(1.0f), match::any().bind("x")));
        auto div_1 =
            match::name("div")(match::args(match::any().bind("x"), match::has_value(1.0f)));
        auto add_0 = match::name("add")(
            match::either_arg(0, 1)(match::has_value(0.0f, 1e-12), match::any().bind("x")));
        auto sub_0 =
            match::name("sub")(match::args(match::any().bind("x"), match::has_value(0.0f)));
        return match::any_of(mul_1, div_1, add_0, sub_0);
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins  = r.result;
        auto c_in = r.instructions["x"];

        m.replace_instruction(ins, c_in);
    }
};

struct find_neg_unit_ops
{
    auto matcher() const
    {
        auto mul_neg_1 = match::name("mul")(
            match::either_arg(0, 1)(match::has_value(-1.0f), match::any().bind("x")));
        auto div_neg_1 =
            match::name("div")(match::args(match::any().bind("x"), match::has_value(-1.0f)));
        auto sub_0 =
            match::name("sub")(match::args(match::has_value(0.0f), match::any().bind("x")));
        return match::any_of(mul_neg_1, div_neg_1, sub_0);
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins  = r.result;
        auto c_in = r.instructions["x"];

        auto neg = m.add_instruction(make_op("neg"), c_in);
        m.replace_instruction(ins, neg);
    }
};

struct find_zero_ops
{
    auto matcher() const
    {
        auto mul_zero = match::name("mul")(
            match::either_arg(0, 1)(match::has_value(0.0f).bind("x"), match::any()));
        auto div_zero =
            match::name("div")(match::args(match::has_value(0.0f).bind("x"), match::any()));
        return match::any_of(mul_zero, div_zero);
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins      = r.result;
        auto zero_ins = r.instructions["x"];

        m.replace_instruction(ins, zero_ins);
    }
};

1037
1038
1039
1040
1041
1042
1043
struct find_sub_const
{
    auto matcher() const
    {
        return match::name("sub")(match::arg(1)(match::is_constant().bind("c")));
    }

1044
    void apply(module& m, const match::matcher_result& r) const
1045
1046
1047
1048
    {
        auto ins   = r.result;
        auto c_ins = r.instructions["c"];

1049
        auto neg = m.insert_instruction(std::next(c_ins), make_op("neg"), c_ins);
1050
1051
1052

        auto args = ins->inputs();

1053
        m.replace_instruction(ins, make_op("add"), args.front(), neg);
1054
1055
1056
    }
};

kahmed10's avatar
kahmed10 committed
1057
1058
1059
1060
1061
1062
1063
1064
struct find_rsqrt
{
    auto matcher() const
    {
        return match::name("recip")(match::args(
            match::name("sqrt")(match::used_once(), match::args(match::any().bind("x")))));
    }

1065
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
1066
1067
1068
1069
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];

1070
        m.replace_instruction(ins, make_op("rsqrt"), x_ins);
kahmed10's avatar
kahmed10 committed
1071
1072
1073
    }
};

1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
static bool same_ops(const std::vector<instruction_ref>& vec_ins)
{
    return std::all_of(vec_ins.begin(), vec_ins.end(), [&](auto i) {
        return i->get_operator() == vec_ins.front()->get_operator();
    });
}

struct find_split_reshape
{
    auto matcher() const
    {
        return match::name("reshape")(match::arg(0)(match::name("contiguous")(
                                          match::arg(0)(match::name("slice").bind("slice")))))
            .bind("reshape");
    }

1090
    void apply(module& m, const match::matcher_result& r) const
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
    {
        auto slc = r.instructions["slice"];
        auto rsp = r.instructions["reshape"];

        auto input         = slc->inputs().front();
        auto split_outputs = get_splits(input);
        if(split_outputs.empty())
        {
            return;
        }

shivadbhavsar's avatar
shivadbhavsar committed
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
        // Only want to apply this optimization if each split output is followed by
        // a contiguous op and a reshape
        if(std::any_of(split_outputs.begin(), split_outputs.end(), [](auto i) {
               if(i->outputs().size() == 1)
               {
                   auto cont = i->outputs().front();
                   return cont->outputs().size() != 1;
               }
               return false;
           }))
        {
            return;
        }

1116
1117
1118
1119
1120
1121
1122
1123
        std::vector<instruction_ref> vec_rsp(split_outputs.size());
        std::transform(split_outputs.begin(), split_outputs.end(), vec_rsp.begin(), [](auto i) {
            auto cont = i->outputs().front();
            return cont->outputs().front();
        });

        // all outputs are reshape and of the same shape
        auto dims = any_cast<op::reshape>(rsp->get_operator()).dims;
1124
        if(not same_ops(vec_rsp))
1125
1126
1127
1128
1129
        {
            return;
        }

        // ensure reshape happens after the axis dimension
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
        auto axis         = any_cast<op::slice>(slc->get_operator()).axes[0];
        auto slc_lens     = slc->get_shape().lens();
        auto slc_dim_size = std::accumulate(
            slc_lens.begin() + axis, slc_lens.end(), 1, std::multiplies<std::size_t>());

        // search the reshape output (standard shape) to decide which axis are
        // in its output corresponding to the slc_dim_size
        auto rsp_lens    = rsp->get_shape().lens();
        auto rsp_strides = rsp->get_shape().strides();
        rsp_strides.insert(rsp_strides.begin(), rsp_strides[0] * rsp_lens[0]);
1140
1141
1142

        auto ait     = std::find(rsp_strides.begin(), rsp_strides.end(), slc_dim_size);
        int rsp_axis = -1;
1143
        if(ait == rsp_strides.end())
1144
1145
1146
        {
            return;
        }
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
        else if(ait == rsp_strides.end() - 1)
        {
            // edge case
            // slice_dim == 1, in that case it could match with last stride of 1.
            // it should accumulate lengths from last dim in that case. discount 1 to avoid going
            // out of bounds.
            assert(slc_dim_size == 1);
            rsp_axis = std::distance(rsp_strides.begin(), ait) - 1;
        }
        else
        {
            rsp_axis = std::distance(rsp_strides.begin(), ait);
        }
1160
        // calculate reshape output shape
1161
        std::vector<int64_t> vec_dims(vec_rsp.size());
1162

1163
1164
1165
1166
1167
        std::transform(vec_rsp.begin(), vec_rsp.end(), vec_dims.begin(), [&](auto is) {
            return is->get_shape().lens()[rsp_axis];
        });

        std::vector<int64_t> rsp_out_lens(rsp_lens.begin(), rsp_lens.end());
1168

1169
        rsp_out_lens[rsp_axis] = std::accumulate(vec_dims.begin(), vec_dims.end(), std::int64_t{0});
1170

1171
1172
1173
1174
1175
        // insert the reshape instruction and add contiguous if needed
        if(not input->get_shape().standard())
        {
            input = m.insert_instruction(std::next(input), make_op("contiguous"), input);
        }
1176
        auto rsp_ins = m.insert_instruction(
1177
            std::next(input), make_op("reshape", {{"dims", rsp_out_lens}}), input);
1178
1179

        // replace the original reshape with slice
1180
1181
        int64_t start = 0;
        for(std::size_t i = 0; i < vec_rsp.size(); ++i)
1182
        {
1183
            m.replace_instruction(
1184
1185
1186
1187
1188
                vec_rsp[i],
                make_op(
                    "slice",
                    {{"axes", {rsp_axis}}, {"starts", {start}}, {"ends", {start + vec_dims[i]}}}),
                rsp_ins);
1189
            start += vec_dims[i];
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
        }
    }
};

struct find_split_transpose
{
    auto matcher() const
    {
        return match::name("transpose")(match::arg(0)(match::name("slice").bind("slice")))
            .bind("trans");
    }

1202
    void apply(module& m, const match::matcher_result& r) const
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
    {
        auto slc   = r.instructions["slice"];
        auto trans = r.instructions["trans"];

        auto input         = slc->inputs().front();
        auto split_outputs = get_splits(input);
        if(split_outputs.empty())
        {
            return;
        }

        std::vector<instruction_ref> vec_trans(split_outputs.size());
        std::transform(split_outputs.begin(), split_outputs.end(), vec_trans.begin(), [](auto i) {
            assert(i->outputs().size() == 1);
            return i->outputs().front();
        });

        // all transpose are the same
        auto perm = any_cast<op::transpose>(trans->get_operator()).dims;
1222
        if(not same_ops(vec_trans))
1223
1224
1225
1226
1227
        {
            return;
        }

        // insert an transpose instruction
1228
        auto tr = m.insert_instruction(
1229
            std::next(input), make_op("transpose", {{"permutation", perm}}), input);
1230
1231
1232
1233
1234

        // compute the axis in the slice
        auto axis = any_cast<op::slice>(slc->get_operator()).axes.front();
        auto it   = std::find(perm.begin(), perm.end(), axis);
        assert(it != perm.end());
Paul Fultz II's avatar
Paul Fultz II committed
1235
        int64_t axis_new = std::distance(perm.begin(), it);
1236
1237
1238
1239
1240
1241
1242

        for(auto in : split_outputs)
        {
            auto oper    = any_cast<op::slice>(in->get_operator());
            auto starts  = oper.starts;
            auto ends    = oper.ends;
            auto tr_orig = in->outputs().front();
1243
            m.replace_instruction(
1244
1245
1246
                tr_orig,
                make_op("slice", {{"axes", {axis_new}}, {"starts", starts}, {"ends", ends}}),
                tr);
1247
1248
1249
1250
        }
    }
};

1251
void simplify_algebra::apply(module& m) const
Paul's avatar
Paul committed
1252
{
Paul's avatar
Paul committed
1253
    // Run simplifications multiple times
1254
    for(int i = 0; i < 8; i++)
Paul's avatar
Paul committed
1255
    {
1256
        match::find_matches(m,
Paul's avatar
Paul committed
1257
                            find_inner_broadcast{},
Paul's avatar
Paul committed
1258
1259
                            find_double_add_lit_broadcast{},
                            find_add_lit_broadcast{},
1260
                            find_add_convs{},
1261
                            find_conv_dot_horiz_fusion{},
Paul's avatar
Paul committed
1262
                            find_mul_conv{},
1263
                            find_mul_slice_conv{},
1264
                            find_mul_add{},
1265
1266
1267
                            find_unit_ops{},
                            find_neg_unit_ops{},
                            find_zero_ops{},
1268
                            find_dot_add{},
Paul's avatar
Paul committed
1269
                            find_conv_add{},
1270
1271
                            find_div_const{},
                            find_sub_const{},
kahmed10's avatar
kahmed10 committed
1272
                            find_rsqrt{},
1273
                            find_concat_op{},
1274
                            find_split_concat{},
1275
1276
1277
                            find_splits{},
                            find_split_reshape{},
                            find_split_transpose{});
1278
        dead_code_elimination{}.apply(m);
Paul's avatar
Paul committed
1279
    }
Paul's avatar
Paul committed
1280
}
Paul's avatar
Paul committed
1281

Paul's avatar
Paul committed
1282
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1283
} // namespace migraphx