onnx.cpp 21.4 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
#include <migraph/fallthrough.hpp>
#include <migraph/program.hpp>
#include <migraph/operators.hpp>
#include <migraph/ranges.hpp>
16
#include <migraph/instruction.hpp>
Paul's avatar
Paul committed
17

Paul's avatar
Paul committed
18
namespace migraph {
Paul's avatar
Paul committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

struct unknown
{
    std::string op;
    std::string name() const { return "unknown:" + op; }
    shape compute_shape(std::vector<shape> input) const
    {
        if(input.empty())
            return {};
        else
            return input.front();
    }
    friend std::ostream& operator<<(std::ostream& os, const unknown& x)
    {
        os << x.name();
        return os;
    }
};

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
42
    using op_func = std::function<instruction_ref(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
43
44
45
46
47
48
49
50
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
    program prog = program();

    std::unordered_map<std::string, op_func> ops;

    onnx_parser()
    {
51
52
53
54
55
56
57
        add_generic_op("Add", op::add{});
        add_generic_op("Div", op::div{});
        add_generic_op("MatMul", op::gemm{});
        add_generic_op("Mul", op::mul{});
        add_generic_op("Relu", op::activation{"relu"});
        add_generic_op("Sub", op::sub{});
        add_generic_op("Sum", op::add{});
Paul's avatar
Paul committed
58

Paul's avatar
Paul committed
59
60
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
61
62
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
63
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
64
65
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
66
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
67
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
68
69
70
71
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
        //add_mem_op("Concat", &onnx_parser::parse_concat);
Paul's avatar
Paul committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
    }

    template <class F>
    void add_op(std::string name, F f)
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }

Paul's avatar
Paul committed
88
    template <class T>
Paul's avatar
Paul committed
89
90
91
92
93
94
95
96
97
98
99
    void add_generic_op(std::string name, T x)
    {
        ops.emplace(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
            if(args.size() == 2 and contains(attributes, "broadcast"))
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
                    uint64_t axis = (contains(attributes, "axis"))
                                        ? parse_value(attributes.at("axis")).at<uint64_t>()
                                        : 0;
Scott Thornton's avatar
Scott Thornton committed
100
101
                    auto l =
                        prog.add_instruction(op::broadcast{axis, args[0]->get_shape()}, args[1]);
Paul's avatar
Paul committed
102
103
104
105
106
107
108
                    return prog.add_instruction(x, args[0], l);
                }
            }
            return prog.add_instruction(x, args);
        });
    }

Paul's avatar
Paul committed
109
    instruction_ref
Paul's avatar
Paul committed
110
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
111
112
    {
        auto dims = args.front()->get_shape().lens();
Scott Thornton's avatar
Scott Thornton committed
113
114
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
115
116
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
Paul's avatar
Paul committed
117
118
    }

Paul's avatar
Paul committed
119
    instruction_ref
Paul's avatar
Paul committed
120
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
121
    {
122
        op::convolution op;
Paul's avatar
Paul committed
123
124
125
        if(contains(attributes, "pads"))
        {
            copy(attributes["pads"].ints(), op.padding.begin());
Paul's avatar
Paul committed
126
        }
Paul's avatar
Paul committed
127
128
129
130
131
132
133
134
135
136
137
138
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Scott Thornton's avatar
Scott Thornton committed
139
            auto l2       = prog.add_instruction(op::broadcast{axis, l1->get_shape()}, args[2]);
140
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
141
        }
Paul's avatar
Paul committed
142
143
        return prog.add_instruction(op, args);
    }
Paul's avatar
Paul committed
144

Paul's avatar
Paul committed
145
146
147
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
148
    {
149
        op::pooling op{name == "MaxPool" ? "max" : "average"};
Paul's avatar
Paul committed
150
151
152
153
154
155
156
157
158
159
160
161
        if(contains(attributes, "pads"))
        {
            copy(attributes["pads"].ints(), op.padding.begin());
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Paul's avatar
Paul committed
162
        return prog.add_instruction(op, std::move(args));
Paul's avatar
Paul committed
163
164
    }

Paul's avatar
Paul committed
165
    instruction_ref
Paul's avatar
Paul committed
166
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
167
    {
168
        op::reshape op;
Paul's avatar
Paul committed
169
170
171
172
173
174
175
        if(args.size() == 1)
        {
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
176
            literal s = args[1]->get_literal();
Paul's avatar
Paul committed
177
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
178
        }
Paul's avatar
Paul committed
179
180
181
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
182
    instruction_ref
Paul's avatar
Paul committed
183
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
184
185
    {
        uint64_t axis = 0;
Paul's avatar
Paul committed
186
187
188
189
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
190
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
191
192
    }

193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    // instruction_ref
    // parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    // {
    //     literal axis = parse_value(attributes.at("axis")).at<int>();
    //     op::concat op{axis};
    //     return prog.add_instruction(op, std::move(args));
    // }

    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
239
240
241
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
242
243
244
245
    {
        literal v = parse_value(attributes.at("value"));
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
246

Paul's avatar
Paul committed
247
    instruction_ref
Paul's avatar
Paul committed
248
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
    {
        float alpha = 1.0f;
        float beta  = 0.0f;
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
            alpha = parse_value(attributes.at("beta")).at<float>();
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
        std::vector<int64_t> perm = {1, 0};
271
272
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
273
274
275
        if(args.size() == 3)
        {
            uint64_t axis = 1;
276
            auto l3       = prog.add_instruction(op::gemm{alpha, beta}, l1, l2);
Scott Thornton's avatar
Scott Thornton committed
277
            auto l4       = prog.add_instruction(op::broadcast{axis, l3->get_shape()}, args[2]);
278
            return prog.add_instruction(op::add{}, l3, l4);
Paul's avatar
Paul committed
279
        }
280
        return prog.add_instruction(op::gemm{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
281
282
    }

283
    instruction_ref
Paul's avatar
Paul committed
284
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
285
    {
Scott Thornton's avatar
Scott Thornton committed
286
287
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
288
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
289
        bool is_test                                      = false;
290
291
292
293
294
295
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
296
            momentum = parse_value(attributes.at("momentum")).at<float>();
297
298
299
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
300
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
301
302
303
        }
        if(contains(attributes, "spatial"))
        {
304
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
305
306
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
307
        }
308
        op::batch_norm_inference op{epsilon, momentum, bn_mode, is_test};
Paul's avatar
Paul committed
309
        return prog.add_instruction(op, std::move(args));
310
311
    }

Paul's avatar
Paul committed
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
            throw std::runtime_error("Failed reading");
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
331
332
333
334
335
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
336
337
338
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
339
340
341
342
343
344
345
346
347
348
349
350
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
351
352
353
        }
        for(auto&& p : nodes)
        {
354
            this->parse_node(get_name(p.second));
Paul's avatar
Paul committed
355
356
357
        }
    }

Paul's avatar
Paul committed
358
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
359
    {
Paul's avatar
Paul committed
360
        if(name.empty())
Paul's avatar
Paul committed
361
            MIGRAPH_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
362
363
364
365
366
367
368
369
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
370
                    auto&& iname = get_name(nodes.at(input));
Paul's avatar
Paul committed
371
                    assert(name != iname);
Paul's avatar
Paul committed
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
                    this->parse_node(iname);
                    args.push_back(instructions.at(iname));
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
            if(ops.count(node.op_type()) == 0)
            {
                instructions[name] = prog.add_instruction(unknown{node.op_type()}, args);
            }
            else
            {
                instructions[name] = ops[node.op_type()](get_attributes(node), args);
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

401
402
403
404
405
    static std::string get_name(const onnx::NodeProto& node)
    {
        if(node.name().empty())
        {
            std::string generated = "migraph_unnamed_node";
Paul's avatar
Paul committed
406
407
408
409
            return std::accumulate(node.output().begin(),
                                   node.output().end(),
                                   generated,
                                   [](auto x, auto y) { return x + "_" + y; });
410
411
412
413
        }
        return node.name();
    }

Paul's avatar
Paul committed
414
415
416
417
418
    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
        for(auto&& node : graph.node())
        {
419
            result[get_name(node)] = node;
Paul's avatar
Paul committed
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
445
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
446
447
448
449
450
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
451
        MIGRAPH_THROW("Invalid attribute type");
Paul's avatar
Paul committed
452
453
454
455
456
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
457
458
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
459
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
            case onnx::TensorProto::FLOAT: return literal{{shape::float_type, dims}, s.data()};
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
            case onnx::TensorProto::INT8: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::UINT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT32: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT64: return literal{{shape::int64_type, dims}, s.data()};
            case onnx::TensorProto::STRING: throw std::runtime_error("");
            case onnx::TensorProto::BOOL: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::FLOAT16: throw std::runtime_error("");
            case onnx::TensorProto::DOUBLE: return literal{{shape::double_type, dims}, s.data()};
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
            MIGRAPH_THROW("Invalid tensor type");
480
        }
Paul's avatar
Paul committed
481
482
483
484
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Paul's avatar
Paul committed
485
            return literal{{shape::float_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
486
487
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Paul's avatar
Paul committed
488
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
489
        case onnx::TensorProto::UINT16:
Paul's avatar
Paul committed
490
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
491
        case onnx::TensorProto::INT16:
Paul's avatar
Paul committed
492
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
493
        case onnx::TensorProto::INT32:
Paul's avatar
Paul committed
494
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
495
        case onnx::TensorProto::INT64:
Paul's avatar
Paul committed
496
            return literal{{shape::int64_type, dims}, t.int64_data().begin(), t.int64_data().end()};
Paul's avatar
Paul committed
497
498
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Paul's avatar
Paul committed
499
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
500
501
502
503
504
505
506
507
508
        case onnx::TensorProto::FLOAT16: throw std::runtime_error("");
        case onnx::TensorProto::DOUBLE:
            return literal{
                {shape::double_type, dims}, t.double_data().begin(), t.double_data().end()};
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
509
        MIGRAPH_THROW("Invalid tensor type");
Paul's avatar
Paul committed
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
    }

    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
        case onnx::TensorProto::FLOAT16:
            break; // throw std::runtime_error("Unsupported type FLOAT16");
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
542
        auto&& tensor_dims = t.tensor_type().shape().dim();
Paul's avatar
Paul committed
543
544
545
546
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) { return d.dim_value(); });
Paul's avatar
Paul committed
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
        return {shape_type, dims};
    }
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
572
} // namespace migraph