fuse_ops.cpp 39.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
kahmed10's avatar
kahmed10 committed
24
25
#include <migraphx/pass_manager.hpp>
#include <migraphx/dead_code_elimination.hpp>
Paul's avatar
Paul committed
26
27
28
#include <migraphx/gpu/fuse_ops.hpp>
#include <migraphx/matcher.hpp>
#include <migraphx/gpu/miopen.hpp>
kahmed10's avatar
kahmed10 committed
29
#include <migraphx/gpu/clip.hpp>
Paul's avatar
Paul committed
30
#include <migraphx/gpu/convolution.hpp>
31
#include <migraphx/gpu/device_name.hpp>
32
#include <migraphx/gpu/oper.hpp>
kahmed10's avatar
kahmed10 committed
33
34
#include <migraphx/gpu/add.hpp>
#include <migraphx/gpu/mul.hpp>
35
#include <migraphx/gpu/gemm.hpp>
kahmed10's avatar
kahmed10 committed
36
#include <migraphx/gpu/device/layernorm.hpp>
kahmed10's avatar
kahmed10 committed
37
#include <migraphx/gpu/device/gelu.hpp>
Paul's avatar
Paul committed
38
#include <migraphx/gpu/device/mul_add.hpp>
39
40
41
42
43
#include <migraphx/gpu/device/add_clip.hpp>
#include <migraphx/gpu/device/add_relu.hpp>
#include <migraphx/gpu/device/add_sigmoid.hpp>
#include <migraphx/gpu/device/add_tanh.hpp>
#include <migraphx/gpu/device/mul_add_relu.hpp>
Paul's avatar
Paul committed
44
#include <migraphx/gpu/device/add.hpp>
45
46
47
#include <migraphx/match/layernorm.hpp>
#include <migraphx/match/gelu_erf.hpp>
#include <migraphx/match/gelu_tanh.hpp>
Paul's avatar
Paul committed
48
#include <migraphx/instruction.hpp>
49
#include <migraphx/register_op.hpp>
Paul's avatar
Paul committed
50
#include <migraphx/array.hpp>
51
#include <migraphx/permutation.hpp>
52
#include <migraphx/make_op.hpp>
kahmed10's avatar
kahmed10 committed
53
#include <migraphx/op/clip.hpp>
54
#include <migraphx/op/contiguous.hpp>
kahmed10's avatar
kahmed10 committed
55
#include <cmath>
56
#include <set>
Paul's avatar
Paul committed
57
58

namespace migraphx {
Paul's avatar
Paul committed
59
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
60
61
namespace gpu {

62
63
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_DISABLE_MIOPEN_FUSION)

Paul's avatar
Paul committed
64
65
66
67
68
69
70
71
struct fusion
{
    using op_t = miopenFusionOpDescriptor_t;
    shared<fusion_plan_descriptor> fp;

    // Used as a temporary hack to keep descriptor references alive
    std::vector<std::shared_ptr<void>> storage;

Paul's avatar
Paul committed
72
    template <class T>
Paul's avatar
Paul committed
73
74
75
76
77
78
79
    auto keep_alive(T x)
    {
        auto result = share(std::move(x));
        storage.push_back(result);
        return result;
    }

80
81
    fusion() = default;

Paul's avatar
Paul committed
82
83
    fusion(const shape& input)
    {
84
        assert(input.standard());
Paul's avatar
Paul committed
85
        auto t = make_tensor(input);
Paul's avatar
Paul committed
86
        fp     = make_fusion_plan(t);
87
        assert(fp);
Paul's avatar
Paul committed
88
89
90
        keep_alive(std::move(t));
    }

91
92
    bool empty() const { return fp == nullptr; }

Paul's avatar
Paul committed
93
94
    op_t operator[](std::size_t i) const
    {
95
        assert(fp);
Paul's avatar
Paul committed
96
97
98
        op_t result;
        auto status = miopenFusionPlanGetOp(fp.get(), i, &result);
        if(status != miopenStatusSuccess)
Paul's avatar
Paul committed
99
            MIGRAPHX_THROW("Failed retrieving operator at " + std::to_string(i));
Paul's avatar
Paul committed
100
101
102
        return result;
    }

103
104
105
106
107
    auto get() const
    {
        assert(fp);
        return fp.get();
    }
Paul's avatar
Paul committed
108
109
110

    op_t create_bias(const shape& bias)
    {
111
        assert(fp);
Paul's avatar
Paul committed
112
        op_t result;
Paul's avatar
Paul committed
113
114
        auto b      = shape{bias.type(), {1, bias.lens().at(1), 1, 1}};
        auto t      = keep_alive(make_tensor(b));
Paul's avatar
Paul committed
115
116
        auto status = miopenCreateOpBiasForward(fp.get(), &result, t.get());
        if(status != miopenStatusSuccess)
Paul's avatar
Paul committed
117
            MIGRAPHX_THROW("Creating operator failed");
Paul's avatar
Paul committed
118
119
120
121
122
        return result;
    }

    op_t create_relu()
    {
123
        assert(fp);
Paul's avatar
Paul committed
124
125
126
        op_t result;
        auto status = miopenCreateOpActivationForward(fp.get(), &result, miopenActivationRELU);
        if(status != miopenStatusSuccess)
Paul's avatar
Paul committed
127
            MIGRAPHX_THROW("Creating operator failed");
Paul's avatar
Paul committed
128
129
130
131
132
        return result;
    }

    op_t create_conv(const op::convolution& op, const shape& weights)
    {
133
        assert(fp);
Paul's avatar
Paul committed
134
        op_t result;
Paul's avatar
Paul committed
135
136
        auto cd     = keep_alive(make_conv(op));
        auto t      = keep_alive(make_tensor(weights));
Paul's avatar
Paul committed
137
138
        auto status = miopenCreateOpConvForward(fp.get(), &result, cd.get(), t.get());
        if(status != miopenStatusSuccess)
Paul's avatar
Paul committed
139
            MIGRAPHX_THROW("Creating operator failed");
Paul's avatar
Paul committed
140
141
        return result;
    }
Paul's avatar
Paul committed
142
143
144

    shape get_workspace(context&)
    {
145
        // assert(fp);
Paul's avatar
Paul committed
146
147
148
149
150
        // TODO: Use zero workspace for now
        std::size_t ws_size = 0;
        // int algo_count = 1;
        // miopenConvFwdAlgorithm_t algo;
        // miopenFusionPlanConvolutionGetAlgo(fp.get(), 1, &algo_count, &algo);
Paul's avatar
Paul committed
151
152
        // miopenFusionPlanGetWorkSpaceSize(ctx.get_stream().get_miopen(), fp.get(), &ws_size,
        // algo);
Paul's avatar
Paul committed
153
154
155
        return shape{shape::int8_type, {ws_size}};
    }

156
    bool compile(context& ctx)
Paul's avatar
Paul committed
157
    {
158
        assert(fp);
159
160
        return miopenCompileFusionPlan(ctx.get_stream().get_miopen(), fp.get()) ==
               miopenStatusSuccess;
Paul's avatar
Paul committed
161
162
    }

Paul's avatar
Paul committed
163
164
165
166
    argument execute(context& ctx,
                     const fused_operator_args& fargs,
                     const argument& x,
                     const argument& y) const
Paul's avatar
Paul committed
167
    {
168
        assert(fp);
Paul's avatar
Paul committed
169
170
        auto x_td   = make_tensor(x.get_shape());
        auto y_td   = make_tensor(y.get_shape());
Paul's avatar
Paul committed
171
        auto status = miopenExecuteFusionPlan(ctx.get_stream().get_miopen(),
Paul's avatar
Paul committed
172
173
174
175
176
177
                                              fp.get(),
                                              x_td.get(),
                                              x.implicit(),
                                              y_td.get(),
                                              y.implicit(),
                                              fargs.get());
Paul's avatar
Paul committed
178
        if(status != miopenStatusSuccess)
Paul's avatar
Paul committed
179
            MIGRAPHX_THROW("Failed to execute fusion plan");
Paul's avatar
Paul committed
180
181
        return y;
    }
Paul's avatar
Paul committed
182
183
};

184
185
186
187
188
189
const std::unordered_set<std::string>& get_supported_archs()
{
    static std::unordered_set<std::string> supported_archs{"gfx900", "gfx906", "gfx908", "gfx1030"};
    return supported_archs;
}

Paul's avatar
Paul committed
190
MIGRAPHX_PRED_MATCHER(bias_shape, instruction_ref ins)
Paul's avatar
Paul committed
191
192
{
    auto&& s = ins->get_shape();
Paul's avatar
Paul committed
193
194
    return s.broadcasted() and s.strides().size() == 4 and s.strides()[0] == 0 and
           s.strides()[1] != 0 and s.strides()[2] == 0 and s.strides()[3] == 0;
Paul's avatar
Paul committed
195
196
}

Paul's avatar
Paul committed
197
MIGRAPHX_PRED_MATCHER(fusable_conv, instruction_ref ins)
Paul's avatar
Paul committed
198
{
199
    const auto device_name = trim(split_string(get_device_name(), ':').front());
200
201
    if(not contains(get_supported_archs(), device_name))
        return false;
202
203
    if(enabled(MIGRAPHX_DISABLE_MIOPEN_FUSION{}))
        return false;
Paul's avatar
Paul committed
204
205
    if(ins->name() != "gpu::convolution")
        return false;
Paul's avatar
Paul committed
206
207
    if(ins->get_shape().type() != shape::float_type)
        return false;
Paul's avatar
Paul committed
208
209
210
    auto wei = ins->inputs().at(1)->get_shape();
    assert(wei.lens().size() == 4);
    auto conv = any_cast<miopen_convolution>(ins->get_operator());
Khalique's avatar
Khalique committed
211
    if(conv.op.group > 1)
Khalique's avatar
Khalique committed
212
        return false;
Paul's avatar
Paul committed
213
    if(wei.lens()[1] > 512 and conv.algo != miopenConvolutionFwdAlgoWinograd)
Paul's avatar
Paul committed
214
        return false;
215
216
217
218
219
220

    // Do not fuse non-symmetric input
    auto input_lens = ins->inputs().at(0)->get_shape().lens();
    if(input_lens[2] != input_lens[3] or wei.lens()[2] != wei.lens()[3])
        return false;

Paul's avatar
Paul committed
221
    auto op = conv.op;
222
223
    // Dont fuse winograd for non-3x3s since there is no fused windograd for those configs
    if(conv.algo == miopenConvolutionFwdAlgoWinograd and wei.lens()[2] != 3 and
224
       wei.lens()[3] != 3 and contains({{1, 1}}, op.stride))
225
        return false;
kahmed10's avatar
kahmed10 committed
226
    return contains({{0, 0, 0, 0}, {1, 1, 1, 1}, {2, 2, 2, 2}}, op.padding) and
227
           contains({{0, 0}, {1, 1}}, op.stride) and contains({{1, 1}}, op.dilation);
Paul's avatar
Paul committed
228
229
}

230
struct hip_triadd : ternary_device<hip_triadd, &device::add>
Paul's avatar
Paul committed
231
232
{
};
233
MIGRAPHX_REGISTER_OP(hip_triadd)
Paul's avatar
Paul committed
234

235
struct hip_triadd_clip : quinary_device<hip_triadd_clip, &device::add_clip>
kahmed10's avatar
kahmed10 committed
236
237
{
};
238
MIGRAPHX_REGISTER_OP(hip_triadd_clip)
kahmed10's avatar
kahmed10 committed
239

240
struct hip_add_clip : quaternary_device<hip_add_clip, &device::add_clip>
kahmed10's avatar
kahmed10 committed
241
242
{
};
243
MIGRAPHX_REGISTER_OP(hip_add_clip)
kahmed10's avatar
kahmed10 committed
244

245
struct hip_triadd_relu : ternary_device<hip_triadd_relu, &device::add_relu>
Paul's avatar
Paul committed
246
247
{
};
248
MIGRAPHX_REGISTER_OP(hip_triadd_relu)
Paul's avatar
Paul committed
249

250
251
252
struct hip_triadd_sigmoid : ternary_device<hip_triadd_sigmoid, &device::add_sigmoid>
{
};
253
MIGRAPHX_REGISTER_OP(hip_triadd_sigmoid)
254
255
256
257

struct hip_triadd_tanh : ternary_device<hip_triadd_tanh, &device::add_tanh>
{
};
258
MIGRAPHX_REGISTER_OP(hip_triadd_tanh)
259
260
261
262

struct hip_add_relu : binary_device<hip_add_relu, &device::add_relu>
{
};
263
MIGRAPHX_REGISTER_OP(hip_add_relu)
264
265
266
267

struct hip_add_sigmoid : binary_device<hip_add_relu, &device::add_sigmoid>
{
};
268
MIGRAPHX_REGISTER_OP(hip_add_sigmoid)
269
270

struct hip_add_tanh : binary_device<hip_add_tanh, &device::add_tanh>
Paul's avatar
Paul committed
271
272
{
};
273
MIGRAPHX_REGISTER_OP(hip_add_tanh)
Paul's avatar
Paul committed
274

kahmed10's avatar
kahmed10 committed
275
276
struct hip_layernorm : unary_device<hip_layernorm, &device::layernorm>
{
277
278
    // Empty finalize to skip dimension reduction
    void finalize(context&, const shape&, const std::vector<shape>&) {}
kahmed10's avatar
kahmed10 committed
279
};
280
MIGRAPHX_REGISTER_OP(hip_layernorm)
kahmed10's avatar
kahmed10 committed
281

Paul Fultz II's avatar
Paul Fultz II committed
282
283
struct hip_triadd_layernorm : ternary_device<hip_triadd_layernorm, &device::triadd_layernorm>
{
284
285
286
287
288
    shape compute_shape(const std::vector<shape>& inputs) const
    {
        check_shapes{inputs, *this}.has(4).standard();
        return inputs[0];
    }
Paul Fultz II's avatar
Paul Fultz II committed
289
290
291
292
293
    // Empty finalize to skip dimension reduction
    void finalize(context&, const shape&, const std::vector<shape>&) {}
};
MIGRAPHX_REGISTER_OP(hip_triadd_layernorm)

kahmed10's avatar
kahmed10 committed
294
295
296
struct hip_gelu : unary_device<hip_gelu, &device::gelu>
{
};
297
MIGRAPHX_REGISTER_OP(hip_gelu)
kahmed10's avatar
kahmed10 committed
298
299
300
301

struct hip_add_gelu : binary_device<hip_add_gelu, &device::add_gelu>
{
};
302
MIGRAPHX_REGISTER_OP(hip_add_gelu)
kahmed10's avatar
kahmed10 committed
303
304
305
306

struct hip_gelu_new : unary_device<hip_gelu_new, &device::gelu_new>
{
};
307
MIGRAPHX_REGISTER_OP(hip_gelu_new)
kahmed10's avatar
kahmed10 committed
308
309
310
311

struct hip_add_gelu_new : binary_device<hip_add_gelu_new, &device::add_gelu_new>
{
};
312
MIGRAPHX_REGISTER_OP(hip_add_gelu_new)
kahmed10's avatar
kahmed10 committed
313

314
struct hip_mul_add : ternary_device<hip_mul_add, &device::mul_add>
Paul's avatar
Paul committed
315
316
{
};
317
MIGRAPHX_REGISTER_OP(hip_mul_add)
Paul's avatar
Paul committed
318

319
struct hip_mul_add_relu : ternary_device<hip_mul_add_relu, &device::mul_add_relu>
Paul's avatar
Paul committed
320
321
{
};
322
MIGRAPHX_REGISTER_OP(hip_mul_add_relu)
Paul's avatar
Paul committed
323

Paul's avatar
Paul committed
324
325
326
void move_broadcasted_back(std::vector<instruction_ref>& args)
{
    // Ensure the last arguments is the broadcasted one
Paul's avatar
Paul committed
327
    auto last = std::prev(args.end());
Paul's avatar
Paul committed
328
329
    auto it =
        std::find_if(args.begin(), last, [](auto arg) { return arg->get_shape().broadcasted(); });
Paul's avatar
Paul committed
330
331
    if(it != last)
        std::swap(*it, *std::prev(last));
Paul's avatar
Paul committed
332
333
334
335
336
}

void move_standard_front(std::vector<instruction_ref>& args)
{
    // Ensure the first arguments is the standard one
Paul's avatar
Paul committed
337
    auto last = std::prev(args.end());
Paul's avatar
Paul committed
338
339
    auto it =
        std::find_if(args.begin(), last, [](auto arg) { return arg->get_shape().standard(); });
Paul's avatar
Paul committed
340
    if(it != last)
Paul's avatar
Paul committed
341
342
343
        std::swap(*it, args.front());
}

344
345
auto gpu_name(const std::string& s) { return match::name("gpu::" + s); }

Paul Fultz II's avatar
Paul Fultz II committed
346
namespace {
kahmed10's avatar
kahmed10 committed
347
348
struct find_layernorm
{
349
    auto matcher() const { return match::layernorm(&gpu_name); }
kahmed10's avatar
kahmed10 committed
350

351
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
352
353
354
355
356
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto args  = ins->inputs();

357
358
359
360
361
362
363
364
365
        // We dont fuse for non-standard layouts
        if(not x_ins->get_shape().standard())
            return;

        auto relements = x_ins->get_shape().lens().back();

        if(relements > 1024 or (relements % 4 != 0 and relements > 256))
            return;

366
        m.replace_instruction(ins, hip_layernorm{}, x_ins, args.back());
kahmed10's avatar
kahmed10 committed
367
368
369
    }
};

Paul Fultz II's avatar
Paul Fultz II committed
370
371
372
373
374
375
376
377
struct find_triadd_layernorm
{
    auto matcher() const
    {
        return match::name("gpu::layernorm")(match::arg(0)(match::name("gpu::triadd")(
            match::used_once(), match::all_of[match::inputs()](match::standard_shape()))));
    }

378
    void apply(module& m, const match::matcher_result& r) const
Paul Fultz II's avatar
Paul Fultz II committed
379
380
381
    {
        auto ins    = r.result;
        auto triadd = ins->inputs().front();
382
        m.replace_instruction(ins, hip_triadd_layernorm{}, triadd->inputs());
Paul Fultz II's avatar
Paul Fultz II committed
383
384
385
    }
};

kahmed10's avatar
kahmed10 committed
386
387
struct find_gelu
{
388
    auto matcher() const { return match::gelu_erf(&gpu_name); }
kahmed10's avatar
kahmed10 committed
389

390
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
391
392
393
394
395
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto args  = ins->inputs();

396
        m.replace_instruction(ins, hip_gelu{}, x_ins, args.back());
kahmed10's avatar
kahmed10 committed
397
398
399
400
401
402
403
404
405
406
    }
};

struct find_add_gelu
{
    auto matcher() const
    {
        return match::name("gpu::gelu")(match::arg(0)(match::name("gpu::add").bind("add")));
    }

407
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
408
409
410
411
412
413
414
415
    {
        auto add_ins = r.instructions["add"];
        auto ins     = r.result;
        auto args    = add_ins->inputs();
        move_standard_front(args);
        move_broadcasted_back(args);

        args.back() = ins->inputs().back();
416
        m.replace_instruction(ins, hip_add_gelu{}, args);
kahmed10's avatar
kahmed10 committed
417
418
419
420
421
    }
};

struct find_gelu_new
{
kahmed10's avatar
kahmed10 committed
422
    bool fast_math = true;
kahmed10's avatar
kahmed10 committed
423

424
    auto matcher() const { return match::gelu_tanh(&gpu_name); }
kahmed10's avatar
kahmed10 committed
425

426
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
427
428
429
430
431
    {
        auto ins   = r.result;
        auto x_ins = r.instructions["x"];
        auto args  = ins->inputs();

Paul Fultz II's avatar
Paul Fultz II committed
432
        if(fast_math)
433
            m.replace_instruction(ins, hip_gelu{}, x_ins, args.back());
Paul Fultz II's avatar
Paul Fultz II committed
434
        else
435
            m.replace_instruction(ins, hip_gelu_new{}, x_ins, args.back());
kahmed10's avatar
kahmed10 committed
436
437
438
439
440
441
442
443
444
445
    }
};

struct find_add_gelu_new
{
    auto matcher() const
    {
        return match::name("gpu::gelu_new")(match::arg(0)(match::name("gpu::add").bind("add")));
    }

446
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
447
448
449
450
451
452
453
454
    {
        auto add_ins = r.instructions["add"];
        auto ins     = r.result;
        auto args    = add_ins->inputs();
        move_standard_front(args);
        move_broadcasted_back(args);

        args.back() = ins->inputs().back();
455
        m.replace_instruction(ins, hip_add_gelu_new{}, args);
kahmed10's avatar
kahmed10 committed
456
457
458
    }
};

kahmed10's avatar
kahmed10 committed
459
460
461
462
463
464
struct find_add_clip
{
    auto matcher() const
    {
        return match::name(std::unordered_set<std::string>{"gpu::clip", "gpu::clipped_relu"})(
            match::arg(0)(match::any_of(match::name("gpu::add"),
kahmed10's avatar
kahmed10 committed
465
                                        match::name("gpu::triadd"),
kahmed10's avatar
kahmed10 committed
466
467
468
469
                                        match::any_of[match::inputs()](match::standard_shape()))
                              .bind("add")));
    }

470
    void apply(module& m, const match::matcher_result& r) const
kahmed10's avatar
kahmed10 committed
471
    {
kahmed10's avatar
kahmed10 committed
472
473
474
475
476
477
478
479
480
481
        auto add_ins  = r.instructions["add"];
        auto ins      = r.result;
        auto ins_args = ins->inputs();
        auto add_args = add_ins->inputs();
        move_standard_front(add_args);
        move_broadcasted_back(add_args);

        // Use the allocation from the clip operator
        add_args.pop_back();
        add_args.insert(add_args.end(), std::next(ins_args.begin()), ins_args.end());
kahmed10's avatar
kahmed10 committed
482
        if(add_ins->name() == "gpu::add")
483
            m.replace_instruction(ins, hip_add_clip{}, add_args);
kahmed10's avatar
kahmed10 committed
484
        else if(add_ins->name() == "gpu::triadd")
485
            m.replace_instruction(ins, hip_triadd_clip{}, add_args);
kahmed10's avatar
kahmed10 committed
486
487
488
    }
};

489
struct find_add_unary
Paul's avatar
Paul committed
490
{
491
492
493
    std::string op_name;
    operation binary_add_op;
    operation ternary_add_op;
Paul's avatar
Paul committed
494
495
    auto matcher() const
    {
496
        return match::name(op_name)(match::arg(0)(
Paul's avatar
Paul committed
497
            match::used_once(),
Paul's avatar
Paul committed
498
            match::any_of(match::name("gpu::add"),
kahmed10's avatar
kahmed10 committed
499
                          match::name("gpu::triadd"),
Paul's avatar
Paul committed
500
501
502
                          match::any_of(match::name("@literal"),
                                        match::any_of[match::inputs()](match::standard_shape())))
                .bind("add")));
Paul's avatar
Paul committed
503
    }
Paul's avatar
Paul committed
504

505
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
506
    {
Paul's avatar
Paul committed
507
        auto add_ins = r.instructions["add"];
Paul's avatar
Paul committed
508
509
        auto ins     = r.result;
        auto args    = add_ins->inputs();
Paul's avatar
Paul committed
510
511
512
        move_standard_front(args);
        move_broadcasted_back(args);

Paul's avatar
Paul committed
513
        // Use the allocation from the relu operator
Paul's avatar
Paul committed
514
        args.back() = ins->inputs().back();
Paul's avatar
Paul committed
515
        if(add_ins->name() == "gpu::add")
516
            m.replace_instruction(ins, binary_add_op, args);
kahmed10's avatar
kahmed10 committed
517
        else if(add_ins->name() == "gpu::triadd")
518
            m.replace_instruction(ins, ternary_add_op, args);
Paul's avatar
Paul committed
519
520
521
    }
};

Paul's avatar
Paul committed
522
struct find_triadd
Paul's avatar
Paul committed
523
524
525
{
    auto matcher() const
    {
Paul's avatar
Paul committed
526
        return match::name("gpu::add")(match::either_arg(0, 1)(
Paul's avatar
Paul committed
527
            match::name("gpu::add")(match::used_once()).bind("add"),
Paul's avatar
Paul committed
528
529
530
            match::any(match::any_of(match::name("@literal"),
                                     match::any_of[match::inputs()](match::standard_shape())))
                .bind("input")));
Paul's avatar
Paul committed
531
532
    }

533
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
534
    {
Paul's avatar
Paul committed
535
536
537
538
        auto add_ins   = r.instructions["add"];
        auto input_ins = r.instructions["input"];
        auto ins       = r.result;
        auto args      = add_ins->inputs();
539

Paul's avatar
Paul committed
540
        auto is_broadcasted = [](auto arg) { return arg->get_shape().broadcasted(); };
541
        if(std::count_if(args.begin(), args.end(), is_broadcasted) > 2)
Paul's avatar
Paul committed
542
543
            return;
        args.insert(args.begin(), input_ins);
Paul's avatar
Paul committed
544
545
546
        move_standard_front(args);
        move_broadcasted_back(args);

Paul's avatar
Paul committed
547
        args.back() = ins->inputs().back();
548
        m.replace_instruction(ins, hip_triadd{}, args);
Paul's avatar
Paul committed
549
    }
Paul's avatar
Paul committed
550
551
};

Paul's avatar
Paul committed
552
553
554
555
struct find_mul_add
{
    auto matcher() const
    {
Paul's avatar
Paul committed
556
557
        return match::name("gpu::add")(match::either_arg(0, 1)(
            match::name("gpu::mul")(match::used_once()).bind("mul"), match::any().bind("b")));
Paul's avatar
Paul committed
558
559
    }

560
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
561
    {
Paul's avatar
Paul committed
562
563
564
565
        auto mul_ins = r.instructions["mul"];
        auto b_ins   = r.instructions["b"];
        auto ins     = r.result;
        auto args    = mul_ins->inputs();
Paul's avatar
Paul committed
566
567
568
569
570
571
572
        assert(mul_ins != b_ins);

        move_standard_front(args);
        move_broadcasted_back(args);
        args.insert(std::prev(args.end()), b_ins);

        args.back() = ins->inputs().back();
573
        m.replace_instruction(ins, hip_mul_add{}, args);
Paul's avatar
Paul committed
574
575
576
    }
};

Paul's avatar
Paul committed
577
578
579
580
struct find_mul_add_relu
{
    auto matcher() const
    {
Paul's avatar
Paul committed
581
        return match::name("gpu::relu")(
kahmed10's avatar
kahmed10 committed
582
            match::arg(0)(match::name("gpu::mul_add")(match::used_once()).bind("mul_add")));
Paul's avatar
Paul committed
583
584
    }

585
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
586
587
    {
        auto mul_add_ins = r.instructions["mul_add"];
Paul's avatar
Paul committed
588
589
        auto ins         = r.result;
        auto args        = mul_add_ins->inputs();
Paul's avatar
Paul committed
590
591
592

        // Use the allocation from the relu operator
        args.back() = ins->inputs().back();
593
        m.replace_instruction(ins, hip_mul_add_relu{}, args);
Paul's avatar
Paul committed
594
595
596
    }
};

597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
struct miopen_fusion
{
    struct fuse_op_data
    {
        operation op;
        float alpha = 1;
        float beta  = 0;
    };
    struct fuse_op : fuse_op_data, reflect_equality<fuse_op>, reflect_stream<fuse_op>
    {
        template <class Self, class F>
        static auto reflect(Self& self, F f)
        {
            return pack(f(self.op, "op"), f(self.alpha, "alpha"), f(self.beta, "beta"));
        }
    };
    std::vector<fuse_op> ops = {};
    fusion f                 = {};
    std::function<void(context&, const fusion&, const std::vector<argument>&)> execute;
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return pack(f(self.ops, "ops"));
    }

622
623
624
625
626
    std::ptrdiff_t output_alias(const std::vector<shape>& shapes) const
    {
        return shapes.size() - 1;
    }

627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
    value compile(context& ctx, const shape&, std::vector<shape> inputs)
    {
        // Compensate for allocation
        inputs.pop_back();
        std::size_t i = 0;
        f             = fusion(inputs[i]);
        i++;
        std::vector<std::function<void(const fused_operator_args&, const std::vector<argument>&)>>
            invokers;
        for(auto&& fop : ops)
        {
            if(i > inputs.size())
            {
                f = {};
                return {};
            }
            if(fop.op.name() == "convolution")
            {
                auto* mop = f.create_conv(any_cast<op::convolution>(fop.op), inputs[i]);
                invokers.push_back(
                    [=](const fused_operator_args& fargs, const std::vector<argument>& args) {
                        miopenSetOpArgsConvForward(
                            fargs.get(), mop, &fop.alpha, &fop.beta, args[i].implicit());
                    });
                i++;
            }
            else if(fop.op.name() == "add")
            {
                auto* mop = f.create_bias(inputs[i]);
                invokers.push_back(
                    [=](const fused_operator_args& fargs, const std::vector<argument>& args) {
                        miopenSetOpArgsBiasForward(
                            fargs.get(), mop, &fop.alpha, &fop.beta, args[i].implicit());
                    });
                i++;
            }
            else if(fop.op.name() == "relu")
            {
                auto* mop = f.create_relu();
                invokers.push_back([=](const fused_operator_args& fargs,
                                       const std::vector<argument>&) {
                    miopenSetOpArgsActivForward(fargs.get(), mop, &fop.alpha, &fop.beta, 0, 0, 0);
                });
            }
            else
            {
                f = {};
                return {};
            }
        }
        if(not f.compile(ctx))
        {
            f = {};
            return {};
        }
        execute = [invokers](context& c, const fusion& ff, const std::vector<argument>& args) {
            auto fargs = make_fused_args();
            for(auto&& invoker : invokers)
                invoker(fargs, args);
            ff.execute(c, fargs, args.front(), args.back());
        };
        return {{"workspace", f.get_workspace(ctx).bytes()}};
    }
    void finalize(context& ctx, const shape& output_shape, const std::vector<shape>& inputs)
    {
        if(not f.empty())
            return;
        auto v = compile(ctx, output_shape, inputs);
        if(not v.is_object())
            MIGRAPHX_THROW("Failed to compile fusion plan");
    }
    std::string name() const { return "gpu::miopen_fusion"; }
    shape compute_shape(const std::vector<shape>& inputs) const
    {
        if(ops.empty())
            return {};
        // TODO: Check number of arguments
        return ops.front().op.compute_shape({inputs[0], inputs[1]});
    }
    argument compute(context& ctx, const shape&, const std::vector<argument>& args) const
    {
        execute(ctx, f, args);
        return args.back();
    }
};
712
MIGRAPHX_REGISTER_OP(miopen_fusion)
713

Paul's avatar
Paul committed
714
715
716
struct miopen_conv_bias
{
    op::convolution op;
717
    fusion fp         = {};
718
719
    fusion::op_t conv = {};
    fusion::op_t bias = {};
Paul's avatar
Paul committed
720

Paul's avatar
Paul committed
721
722
723
724
725
726
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return op::convolution::reflect(self.op, f);
    }

Paul's avatar
Paul committed
727
728
729
730
731
    std::string name() const { return "gpu::conv_bias"; }
    shape compute_shape(const std::vector<shape>& inputs) const
    {
        check_shapes{inputs, *this}.has(5);
        // TODO: Check slices
kahmed10's avatar
kahmed10 committed
732
        return op.normalize_compute_shape({inputs.at(0), inputs.at(1)});
Paul's avatar
Paul committed
733
    }
Paul's avatar
Paul committed
734
    argument compute(context& ctx, const shape&, const std::vector<argument>& args) const
Paul's avatar
Paul committed
735
    {
Paul's avatar
Paul committed
736
        auto fargs  = make_fused_args();
Paul's avatar
Paul committed
737
        float alpha = 1;
Paul's avatar
Paul committed
738
        float beta  = 0;
Paul's avatar
Paul committed
739
740
        miopenSetOpArgsConvForward(fargs.get(), conv, &alpha, &beta, args[1].implicit());
        miopenSetOpArgsBiasForward(fargs.get(), bias, &alpha, &beta, args[3].implicit());
741
        return fp.execute(ctx, fargs, args[0], args[4]);
Paul's avatar
Paul committed
742
743
    }

744
745
    void finalize(context& ctx, const shape&, const std::vector<shape>& inputs)
    {
746
747
748
749
        fp   = fusion(inputs[0]);
        conv = fp.create_conv(op, inputs[1]);
        bias = fp.create_bias(inputs[3]);
        if(not fp.compile(ctx))
750
            MIGRAPHX_THROW("Failed to compile fusion plan");
751
752
    }

753
    shape get_workspace(context& ctx) { return fp.get_workspace(ctx); }
Paul's avatar
Paul committed
754
755
756
757
    std::ptrdiff_t output_alias(const std::vector<shape>& shapes) const
    {
        return shapes.size() - 1;
    }
Paul's avatar
Paul committed
758
};
759
MIGRAPHX_REGISTER_OP(miopen_conv_bias)
Paul's avatar
Paul committed
760

Paul's avatar
Add cbr  
Paul committed
761
762
763
struct miopen_conv_bias_relu
{
    op::convolution op;
764
    fusion fp         = {};
765
766
767
    fusion::op_t conv = {};
    fusion::op_t bias = {};
    fusion::op_t relu = {};
Paul's avatar
Add cbr  
Paul committed
768

Paul's avatar
Paul committed
769
770
771
772
773
774
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return op::convolution::reflect(self.op, f);
    }

Paul's avatar
Add cbr  
Paul committed
775
776
777
778
779
    std::string name() const { return "gpu::conv_bias_relu"; }
    shape compute_shape(const std::vector<shape>& inputs) const
    {
        check_shapes{inputs, *this}.has(5);
        // TODO: Check slices
kahmed10's avatar
kahmed10 committed
780
        return op.normalize_compute_shape({inputs.at(0), inputs.at(1)});
Paul's avatar
Add cbr  
Paul committed
781
    }
Paul's avatar
Paul committed
782
    argument compute(context& ctx, const shape&, const std::vector<argument>& args) const
Paul's avatar
Add cbr  
Paul committed
783
784
    {
        auto fargs  = make_fused_args();
Paul's avatar
Paul committed
785
        float alpha = 1;
Paul's avatar
Paul committed
786
        float beta  = 0;
Paul's avatar
Add cbr  
Paul committed
787
788
        miopenSetOpArgsConvForward(fargs.get(), conv, &alpha, &beta, args[1].implicit());
        miopenSetOpArgsBiasForward(fargs.get(), bias, &alpha, &beta, args[3].implicit());
Paul's avatar
Paul committed
789
        miopenSetOpArgsActivForward(fargs.get(), relu, &alpha, &beta, 0, 0, 0);
790
        return fp.execute(ctx, fargs, args[0], args[4]);
Paul's avatar
Add cbr  
Paul committed
791
    }
792
793
    void finalize(context& ctx, const shape&, const std::vector<shape>& inputs)
    {
794
795
796
797
798
        fp   = fusion(inputs[0]);
        conv = fp.create_conv(op, inputs[1]);
        bias = fp.create_bias(inputs[3]);
        relu = fp.create_relu();
        fp.compile(ctx);
799
800
    }

801
    shape get_workspace(context& ctx) { return fp.get_workspace(ctx); }
Paul's avatar
Paul committed
802
803
804
805
    std::ptrdiff_t output_alias(const std::vector<shape>& shapes) const
    {
        return shapes.size() - 1;
    }
Paul's avatar
Add cbr  
Paul committed
806
};
807
MIGRAPHX_REGISTER_OP(miopen_conv_bias_relu)
Paul's avatar
Add cbr  
Paul committed
808

Paul's avatar
Paul committed
809
template <class... Ms>
Paul's avatar
Add cbr  
Paul committed
810
811
auto conv_bias(Ms... ms)
{
Paul's avatar
Paul committed
812
    return match::name("gpu::add")(
Paul's avatar
Paul committed
813
814
        match::either_arg(0, 1)(bias_shape(match::used_once()).bind("bias"),
                                fusable_conv(match::used_once()).bind("conv")),
Paul's avatar
Paul committed
815
        ms...);
Paul's avatar
Paul committed
816
817
}

Paul's avatar
Paul committed
818
template <class Op>
819
void apply_conv_bias(context& ctx, module& m, const match::matcher_result& r)
Paul's avatar
Paul committed
820
821
822
823
824
825
826
827
828
829
{
    auto conv_ins    = r.instructions["conv"];
    auto bias_ins    = r.instructions["bias"];
    auto ins         = r.result;
    auto input_ins   = conv_ins->inputs().at(0);
    auto weights_ins = conv_ins->inputs().at(1);
    auto conv_op     = any_cast<miopen_convolution>(conv_ins->get_operator()).op;
    auto alloc_ins   = ins->inputs().back();
    auto old_ws_ins  = conv_ins->inputs().at(2);

830
    Op cb{conv_op};
Paul's avatar
Paul committed
831
    // TODO: Insert ws allocation
Paul's avatar
Paul committed
832
    auto ws = cb.get_workspace(ctx);
Paul's avatar
Paul committed
833
    (void)ws;
834
    m.replace_instruction(ins, cb, input_ins, weights_ins, old_ws_ins, bias_ins, alloc_ins);
Paul's avatar
Add cbr  
Paul committed
835
836
}

837
838
template <class... Strings>
inline auto precompile_name(Strings... names) // NOLINT
839
840
841
842
843
{
    return match::make_basic_pred_matcher([=](instruction_ref ins) {
        if(ins->name() != "gpu::precompile_op")
            return false;
        auto op = from_value<operation>(ins->get_operator().to_value().at("op"));
844
        return (contains({names...}, op.name()));
845
846
847
    });
}

Paul's avatar
Paul committed
848
struct find_conv_bias
Paul's avatar
Paul committed
849
{
Paul's avatar
Paul committed
850
    context* ctx = nullptr;
Paul's avatar
Paul committed
851
852
    auto matcher() const
    {
kahmed10's avatar
kahmed10 committed
853
854
        return conv_bias(match::none_of(
            match::output(match::name(std::unordered_set<std::string>{"gpu::relu"}))));
Paul's avatar
Paul committed
855
856
    }

857
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Paul committed
858
    {
859
        apply_conv_bias<miopen_conv_bias>(*ctx, m, r);
Paul's avatar
Paul committed
860
861
862
    }
};

Paul's avatar
Paul committed
863
struct find_conv_bias_relu
Paul's avatar
Add cbr  
Paul committed
864
865
{
    context* ctx = nullptr;
Paul's avatar
Paul committed
866
    auto matcher() const { return match::name("gpu::relu")(match::arg(0)(conv_bias())); }
Paul's avatar
Add cbr  
Paul committed
867

868
    void apply(module& m, const match::matcher_result& r) const
Paul's avatar
Add cbr  
Paul committed
869
    {
870
        apply_conv_bias<miopen_conv_bias_relu>(*ctx, m, r);
Paul's avatar
Add cbr  
Paul committed
871
872
    }
};
873

874
875
876
877
878
879
880
881
882
883
884
struct find_conv_pointwise
{
    context* ctx = nullptr;
    auto matcher() const
    {
        return precompile_name("pointwise")(
            match::nargs(3),
            match::either_arg(0, 1)(bias_shape(match::used_once()).bind("bias"),
                                    fusable_conv(match::used_once()).bind("conv")));
    }

885
    void apply(module& m, const match::matcher_result& r) const
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
    {
        auto conv_ins    = r.instructions["conv"];
        auto bias_ins    = r.instructions["bias"];
        auto ins         = r.result;
        auto input_ins   = conv_ins->inputs().at(0);
        auto weights_ins = conv_ins->inputs().at(1);
        auto conv_op     = any_cast<miopen_convolution>(conv_ins->get_operator()).op;
        auto alloc_ins   = ins->inputs().back();

        module_ref pm = ins->module_inputs().front();

        miopen_fusion op{};
        op.ops.push_back({{conv_op}});
        for(auto&& i : *pm)
        {
            if(i.name()[0] == '@')
                continue;
            op.ops.push_back({{i.get_operator()}});
        }
        std::vector<instruction_ref> inputs = {input_ins, weights_ins, bias_ins, alloc_ins};
        auto v                              = op.compile(*ctx, ins->get_shape(), to_shapes(inputs));
        if(not v.is_object())
            return;
        m.replace_instruction(ins, op, inputs);
    }
};

913
914
915
916
917
918
919
920
921
922
struct find_gemm_add
{
    auto matcher() const
    {
        return match::name("gpu::add")(
            match::all_of[match::inputs()](match::standard_shape()),
            match::either_arg(0, 1)(match::used_once().bind("c"),
                                    match::name("gpu::gemm")(match::nargs(3)).bind("gemm")));
    }

923
    void apply(module& m, const match::matcher_result& r) const
924
925
926
927
928
929
930
931
    {
        auto ins      = r.result;
        auto gemm_ins = r.instructions["gemm"];
        auto c_ins    = r.instructions["c"];

        auto gemm = any_cast<rocblas_gemm<op::dot>>(gemm_ins->get_operator());

        // Already fused gemm
932
        if(not float_equal(gemm.beta, 0))
933
934
935
936
937
938
939
940
            return;

        auto inputs = gemm_ins->inputs();
        inputs.pop_back();

        auto copy_ins = c_ins;

        // Insert copy
941
        if(ins == m.end() or c_ins->outputs().size() > 1 or c_ins->inputs().empty())
942
        {
943
            copy_ins = m.insert_instruction(ins, hip_copy{}, c_ins, ins->inputs().back());
944
945
946
947
        }
        inputs.push_back(copy_ins);
        inputs.push_back(copy_ins);

948
        gemm.beta = 1;
949
        m.replace_instruction(ins, gemm, inputs);
950
951
952
    }
};

953
954
955
956
struct find_gemm_pointwise
{
    auto matcher() const
    {
957
        return precompile_name("pointwise")(
958
            match::nargs(3),
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
            match::either_arg(0, 1)(
                match::any_of(match::standard_shape(), match::is_constant()).bind("c"),
                match::name("gpu::gemm")(match::nargs(3), match::used_once()).bind("gemm")));
    }

    // TODO: Move to matcher.hpp
    static auto match_param(const std::string& name)
    {
        return match::make_basic_pred_matcher([=](auto ins) {
            if(ins->name() != "@param")
                return false;
            auto p = any_cast<builtin::param>(ins->get_operator());
            return p.parameter == name;
        });
    }

    template <class M>
    static auto match_mul_const(M m, const std::string& var)
    {
        return match::name("mul")(match::either_arg(0, 1)(match::name("@literal").bind(var), m))
            .bind(var + "_mul");
    }

    static auto match_add(const std::string& input, const std::string& output)
    {
        auto param     = match::name("@param");
        auto add       = match::name("add")(match::args(param, param));
        auto inner_mul = match::any_of(match_mul_const(match_param(input), "alpha"),
                                       match_mul_const(match_param(output), "beta"));
        auto mul_add   = match::name("add")(match::either_arg(0, 1)(inner_mul, param));
        auto add_mul   = match_mul_const(add, "gamma");
        return match::name("@return")(match::args(match::any_of(add, mul_add, add_mul)));
    }

    static float get_float(instruction_ref ins) { return ins->get_literal().at<float>(); }

    template <class Gemm>
    static bool update_gemm(Gemm& gemm, module_ref pm, unsigned input)
    {
        auto names = pm->get_parameter_names();
        if(names.size() != 2)
            return false;
        std::sort(names.begin(), names.end());
        unsigned output = input == 0 ? 1 : 0;
        auto mr         = match::match_instruction(
            *pm, std::prev(pm->end()), match_add(names[input], names[output]));
        if(mr.result == pm->end())
            return false;
        if(contains(mr.instructions, "alpha_mul"))
            gemm.alpha *= get_float(mr.instructions["alpha"]);
        else if(contains(mr.instructions, "beta_mul"))
            gemm.beta *= get_float(mr.instructions["beta"]);
        else if(contains(mr.instructions, "gamma_mul"))
        {
            gemm.alpha *= get_float(mr.instructions["gamma"]);
            gemm.beta *= get_float(mr.instructions["gamma"]);
        }
        return true;
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins      = r.result;
        auto gemm_ins = r.instructions["gemm"];
        auto c_ins    = r.instructions["c"];

        auto gemm = any_cast<rocblas_gemm<op::dot>>(gemm_ins->get_operator());

        // Already fused gemm
        if(not float_equal(gemm.beta, 0))
            return;
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
        gemm.beta = 1;

        if(not update_gemm(
               gemm, ins->module_inputs().front(), ins->inputs().front() == gemm_ins ? 0 : 1))
            return;

        // const-fold input if not standard shape since rocblas can't handle it
        if(not c_ins->get_shape().standard())
        {
            auto c = op::contiguous{};
            auto l = c.compute(c.compute_shape({c_ins->get_shape()}), {c_ins->eval()});
            c_ins  = m.add_literal(l.get_shape(), l.data());
        }
1043
1044
1045
1046
1047

        auto inputs = gemm_ins->inputs();
        inputs.pop_back();

        inputs.push_back(c_ins);
1048
        inputs.push_back(ins->inputs().back());
1049
1050
1051
1052
1053

        m.replace_instruction(ins, gemm, inputs);
    }
};

1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
struct find_contiguous_tranpose_gemm
{
    auto matcher() const
    {
        return match::name("gpu::contiguous")(match::arg(0)(
            match::name("transpose")(
                match::arg(0)(match::name("gpu::gemm")(match::used_once()).bind("gemm")))
                .bind("transpose")));
    }

    template <class Vector>
    static bool is_swapped(const Vector& perm, std::size_t i, std::size_t j)
    {
        if(i >= perm.size() or j >= perm.size())
            return false;
        auto perm2 = perm;
        std::iota(perm2.begin(), perm2.end(), 0);
        std::swap(perm2[i], perm2[j]);
        return perm2 == perm;
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins       = r.result;
        auto gemm      = r.instructions["gemm"];
        auto alloc     = gemm->inputs().back();
        auto transpose = r.instructions["transpose"];
        auto perm      = transpose->get_operator().to_value()["permutation"].to_vector<int64_t>();
        auto iperm     = invert_permutation(perm);

        if(perm.size() < 3)
            return;

        if(not is_swapped(perm, perm.size() - 3, perm.size() - 2))
            return;

        auto lens = gemm->get_shape().lens();
        if(lens.size() > 3 and
           not std::all_of(lens.begin(), lens.end() - 3, [](auto i) { return i == 1; }))
            return;

        auto gemmv           = gemm->get_operator().to_value();
        gemmv["trans_batch"] = 1;

        auto s = shape{alloc->get_shape().type(), reorder_dims(alloc->get_shape().lens(), iperm)};
        auto new_alloc = m.insert_instruction(gemm, make_op("allocate", {{"shape", to_value(s)}}));
        auto alloc_transpose =
            m.insert_instruction(gemm, make_op("transpose", {{"permutation", perm}}), new_alloc);

        auto inputs        = gemm->inputs();
        inputs.back()      = alloc_transpose;
        auto new_gemm      = m.insert_instruction(gemm, make_op("gpu::gemm", gemmv), inputs);
        auto gemm_transpoe = m.insert_instruction(gemm, transpose->get_operator(), new_gemm);

        m.replace_instruction(ins, gemm_transpoe);
    }
};

1112
1113
1114
1115
1116
1117
1118
struct find_commutative_broadcast
{
    auto matcher() const
    {
        return match::name("gpu::add", "gpu::mul")(match::arg(1)(match::broadcast_shape()));
    }

1119
    void apply(module& m, const match::matcher_result& r) const
1120
1121
1122
1123
1124
    {
        auto ins  = r.result;
        auto args = ins->inputs();
        move_broadcasted_back(args);

1125
        m.replace_instruction(ins, ins->get_operator(), args);
1126
1127
    }
};
Paul Fultz II's avatar
Paul Fultz II committed
1128
} // namespace
1129

1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
struct find_contiguous
{
    auto matcher() const { return match::name("gpu::contiguous"); }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins = r.result;

        m.replace_instruction(
            ins,
            make_op("gpu::precompile_op", {{"op", to_value(make_op("contiguous"))}}),
            ins->inputs());
    }
};

struct find_contiguous_pointwise
{
    auto matcher() const
    {
        return match::name("gpu::contiguous")(match::arg(0)(precompile_name("pointwise")));
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins    = r.result;
        auto pw     = ins->inputs().front();
        auto alloc  = ins->inputs().back();
        auto args   = pw->inputs();
        args.back() = alloc;

        m.replace_instruction(ins, pw->get_operator(), args, pw->module_inputs());
    }
};

1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
struct find_layernorm_pointwise
{
    auto matcher() const
    {
        return precompile_name("pointwise")(match::arg(0)(
            precompile_name("gpu::prelayernorm", "gpu::preadd_layernorm").bind("layernorm")));
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins       = r.result;
        auto layernorm = r.instructions["layernorm"];
        auto* pm       = ins->module_inputs().front();

        if(not layernorm->module_inputs().empty())
            return;

        auto inputs = layernorm->inputs();
        inputs.pop_back();
        inputs.insert(inputs.end(), ins->inputs().begin() + 1, ins->inputs().end());

        m.replace_instruction(ins, layernorm->get_operator(), inputs, {pm});
    }
};

Paul's avatar
Paul committed
1189
1190
1191
1192
struct find_concat_pointwise
{
    auto matcher() const
    {
Paul's avatar
Format  
Paul committed
1193
1194
        return precompile_name("pointwise")(
            match::arg(0)(precompile_name("concat").bind("concat")));
Paul's avatar
Paul committed
1195
1196
1197
1198
    }

    void apply(module& m, const match::matcher_result& r) const
    {
Paul's avatar
Format  
Paul committed
1199
        auto ins    = r.result;
Paul's avatar
Paul committed
1200
        auto concat = r.instructions["concat"];
Paul's avatar
Format  
Paul committed
1201
        auto* pm    = ins->module_inputs().front();
Paul's avatar
Paul committed
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216

        if(not concat->module_inputs().empty())
            return;

        auto inputs = concat->inputs();
        inputs.pop_back();
        inputs.insert(inputs.end(), ins->inputs().begin() + 1, ins->inputs().end());

        auto op = concat->get_operator();
        op.from_value({{"additional_args", ins->inputs().size()}, {"ignore_modules", true}});

        m.replace_instruction(ins, op, inputs, {pm});
    }
};

1217
void fuse_ops::apply(module& m) const
Paul's avatar
Paul committed
1218
{
1219
    match::find_matches(m, find_contiguous_pointwise{}, find_gelu{}, find_gelu_new{fast_math});
1220
1221
1222
    run_passes(m, {dead_code_elimination{}});
    match::find_matches(m, find_triadd{});
    match::find_matches(m,
kahmed10's avatar
kahmed10 committed
1223
                        find_layernorm{},
1224
                        find_conv_pointwise{ctx},
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
                        find_conv_bias_relu{ctx},
                        find_conv_bias{ctx},
                        find_add_gelu{},
                        find_add_gelu_new{},
                        find_mul_add{},
                        find_mul_add_relu{},
                        find_add_unary{"gpu::relu", hip_add_relu{}, hip_triadd_relu{}},
                        find_add_unary{"gpu::sigmoid", hip_add_sigmoid{}, hip_triadd_sigmoid{}},
                        find_add_unary{"gpu::tanh", hip_add_tanh{}, hip_triadd_tanh{}},
                        find_add_clip{});
1235
    run_passes(m, {dead_code_elimination{}});
1236
1237
1238
    match::find_matches(m,
                        find_triadd_layernorm{},
                        find_gemm_add{},
1239
                        find_layernorm_pointwise{},
Paul's avatar
Paul committed
1240
                        find_concat_pointwise{},
1241
                        find_gemm_pointwise{},
1242
                        find_contiguous_tranpose_gemm{},
1243
                        find_commutative_broadcast{});
1244
    match::find_matches(m, find_contiguous{});
Paul's avatar
Paul committed
1245
}
Paul's avatar
Paul committed
1246
1247

} // namespace gpu
Paul's avatar
Paul committed
1248
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1249
} // namespace migraphx