"test/git@developer.sourcefind.cn:gaoqiong/migraphx.git" did not exist on "c7ec2c82ed9642ac75a6d57874820cd7aa09aab2"
quantization.cpp 21.1 KB
Newer Older
Shucai Xiao's avatar
Shucai Xiao committed
1
#include <migraphx/quantization.hpp>
2
3
4
#include <migraphx/program.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/iterator_for.hpp>
5
#include <migraphx/op/convert.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
6
7
#include <migraphx/op/clip.hpp>
#include <migraphx/op/round.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
8
9
10
#include <migraphx/op/dot.hpp>
#include <migraphx/op/mul.hpp>
#include <migraphx/op/add.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
11
#include <migraphx/op/quant_dot.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
12
#include <migraphx/op/capture.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
13
#include <migraphx/op/convolution.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
14
#include <migraphx/op/quant_convolution.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
15
#include <migraphx/op/multibroadcast.hpp>
16
#include <migraphx/stringutils.hpp>
17
#include <migraphx/ranges.hpp>
18
#include <migraphx/target.hpp>
19
#include <utility>
Shucai Xiao's avatar
Shucai Xiao committed
20
#include <set>
21
22
#include <iomanip>
#include <fstream>
Shucai Xiao's avatar
Shucai Xiao committed
23
#include <algorithm>
24
25
26
27

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

Shucai Xiao's avatar
Shucai Xiao committed
28
29
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_INT8_QUANTIZATION_PARAMS)

Shucai Xiao's avatar
Shucai Xiao committed
30
31
32
instruction_ref insert_quant_ins(program& prog,
                                 instruction_ref& ins,
                                 shape::type_t type,
Shucai Xiao's avatar
Shucai Xiao committed
33
34
35
                                 std::unordered_map<instruction_ref, instruction_ref>& map_ins,
                                 float scale = 1.0f,
                                 float shift = 0.0f)
36
{
Shucai Xiao's avatar
Shucai Xiao committed
37
    if(map_ins.count(ins) > 0)
38
    {
Shucai Xiao's avatar
Shucai Xiao committed
39
40
41
42
43
44
        return map_ins[ins];
    }

    if(ins->name() == "undefined")
    {
        return ins;
45
46
    }

Shucai Xiao's avatar
Shucai Xiao committed
47
48
    assert(ins->get_shape().type() == shape::float_type or
           ins->get_shape().type() == shape::double_type or
Shucai Xiao's avatar
Shucai Xiao committed
49
50
           ins->get_shape().type() == shape::int32_type or
           ins->get_shape().type() == shape::half_type);
Shucai Xiao's avatar
Shucai Xiao committed
51
    instruction_ref quant_ins{};
Shucai Xiao's avatar
Shucai Xiao committed
52
    auto insert_loc = std::next(ins);
Shucai Xiao's avatar
Shucai Xiao committed
53
    if(type == shape::int8_type)
Shucai Xiao's avatar
Shucai Xiao committed
54
55
    {
        auto scaled_ins = ins;
Shucai Xiao's avatar
Shucai Xiao committed
56
        if(scale != 1.0f)
Shucai Xiao's avatar
Shucai Xiao committed
57
58
        {
            auto float_ins = scaled_ins;
Shucai Xiao's avatar
Shucai Xiao committed
59
            if(scaled_ins->get_shape().type() != shape::float_type)
Shucai Xiao's avatar
Shucai Xiao committed
60
            {
Shucai Xiao's avatar
Shucai Xiao committed
61
62
                float_ins =
                    prog.insert_instruction(insert_loc, op::convert{shape::float_type}, scaled_ins);
Shucai Xiao's avatar
Shucai Xiao committed
63
64
            }
            std::vector<float> vec_scale(scaled_ins->get_shape().elements(), scale);
65
            auto l_scale = prog.add_literal(literal(float_ins->get_shape(), vec_scale));
Shucai Xiao's avatar
Shucai Xiao committed
66
            scaled_ins   = prog.insert_instruction(insert_loc, op::mul{}, l_scale, float_ins);
Shucai Xiao's avatar
Shucai Xiao committed
67
68
69
        }

        auto shifted_ins = scaled_ins;
Shucai Xiao's avatar
Shucai Xiao committed
70
        if(shift != 0.0f)
Shucai Xiao's avatar
Shucai Xiao committed
71
72
        {
            auto float_ins = shifted_ins;
Shucai Xiao's avatar
Shucai Xiao committed
73
            if(shifted_ins->get_shape().type() != shape::float_type)
Shucai Xiao's avatar
Shucai Xiao committed
74
            {
Shucai Xiao's avatar
Shucai Xiao committed
75
76
                float_ins = prog.insert_instruction(
                    insert_loc, op::convert{shape::float_type}, shifted_ins);
Shucai Xiao's avatar
Shucai Xiao committed
77
78
            }
            std::vector<float> vec_shift(shifted_ins->get_shape().elements(), shift);
79
            auto l_shift = prog.add_literal(literal(float_ins->get_shape(), vec_shift));
Shucai Xiao's avatar
Shucai Xiao committed
80
            shifted_ins  = prog.insert_instruction(insert_loc, op::add{}, l_shift, float_ins);
Shucai Xiao's avatar
Shucai Xiao committed
81
82
        }

kahmed10's avatar
kahmed10 committed
83
84
85
86
87
88
        auto rounded_ins  = prog.insert_instruction(insert_loc, op::round{}, shifted_ins);
        auto rounded_lens = rounded_ins->get_shape().lens();
        auto max_clip     = prog.add_literal(127.0f);
        auto min_clip     = prog.add_literal(-128.0f);
        max_clip = prog.insert_instruction(insert_loc, op::multibroadcast{rounded_lens}, max_clip);
        min_clip = prog.insert_instruction(insert_loc, op::multibroadcast{rounded_lens}, min_clip);
Shucai Xiao's avatar
Shucai Xiao committed
89
        auto clipped_ins =
kahmed10's avatar
kahmed10 committed
90
            prog.insert_instruction(insert_loc, op::clip{}, rounded_ins, min_clip, max_clip);
Shucai Xiao's avatar
Shucai Xiao committed
91
        quant_ins = prog.insert_instruction(insert_loc, op::convert{type}, clipped_ins);
Shucai Xiao's avatar
Shucai Xiao committed
92
93
94
    }
    else
    {
Shucai Xiao's avatar
Shucai Xiao committed
95
        quant_ins = prog.insert_instruction(insert_loc, op::convert{type}, ins);
Shucai Xiao's avatar
Shucai Xiao committed
96
    }
Shucai Xiao's avatar
Shucai Xiao committed
97

Shucai Xiao's avatar
Shucai Xiao committed
98
    map_ins[ins] = quant_ins;
99

Shucai Xiao's avatar
Shucai Xiao committed
100
    return quant_ins;
101
102
}

Shucai Xiao's avatar
Shucai Xiao committed
103
104
105
106
107
// This function is to convert any instructions specified in the input
// from double or float to float16 by inserting a convert operator.
// For the conversion, there could be cases of overflowing, but it
// is very rare in the area of deeping learning, so we just do a
// truncate of the input to get the fp16.
Shucai Xiao's avatar
Shucai Xiao committed
108
void quantize_fp16(program& prog, const std::vector<std::string>& ins_names)
109
{
110
    std::unordered_map<instruction_ref, instruction_ref> map_fp16;
Shucai Xiao's avatar
Shucai Xiao committed
111
    for(auto ins : iterator_for(prog))
112
    {
113
114
115
        if(ins->name() == "@return")
            break;

116
        // all indicates every instruction is converted
Shucai Xiao's avatar
Shucai Xiao committed
117
        if((not contains(ins_names, "all")) and (not contains(ins_names, ins->name())))
118
119
120
        {
            continue;
        }
121

122
        shape::type_t orig_type = ins->get_shape().type();
Shucai Xiao's avatar
Shucai Xiao committed
123
        // process all inputs, if input is a fp32 or fp64, convert it
124
        // to a fp16 by adding a convert operator.
125
        auto inputs = ins->inputs();
126
        std::vector<instruction_ref> converted_inputs;
Shucai Xiao's avatar
Shucai Xiao committed
127
        for(auto input : inputs)
128
129
        {
            auto s = input->get_shape();
Shucai Xiao's avatar
Shucai Xiao committed
130
            if(s.type() == shape::float_type || s.type() == shape::double_type)
131
            {
132
                // if the input is a convert operator, uses its input
133
134
                // as its current input
                instruction_ref input_fp16{};
Shucai Xiao's avatar
Shucai Xiao committed
135
136
                if(input->name() == "convert" and
                   input->inputs().front()->get_shape().type() == shape::half_type)
137
138
139
140
141
                {
                    input_fp16 = input->inputs().front();
                }
                else
                {
Shucai Xiao's avatar
Shucai Xiao committed
142
                    input_fp16 = insert_quant_ins(prog, input, shape::half_type, map_fp16);
143
                }
144
                converted_inputs.push_back(input_fp16);
145
            }
146
147
148
149
150
151
            else
            {
                converted_inputs.push_back(input);
            }
        }

152
        // no change for the input, go to the next instruction
Shucai Xiao's avatar
Shucai Xiao committed
153
        if(inputs == converted_inputs)
154
        {
155
            continue;
Shucai Xiao's avatar
Shucai Xiao committed
156
157
158
159
160
161
        }

        auto op        = ins->get_operator();
        auto ins_shape = compute_shape(op, converted_inputs);
        if(ins_shape.type() != orig_type)
        {
Shucai Xiao's avatar
Shucai Xiao committed
162
163
164
165
166
            // check the dead code case to avoid assert
            bool output_empty = ins->outputs().empty();
            auto ins_orig_type =
                prog.insert_instruction(std::next(ins), op::convert{orig_type}, ins);
            if(!output_empty)
167
            {
Shucai Xiao's avatar
Shucai Xiao committed
168
                prog.replace_instruction(ins, ins_orig_type);
169
            }
170
        }
Shucai Xiao's avatar
Shucai Xiao committed
171
172

        prog.replace_instruction(ins, op, converted_inputs);
173
174
175
    }
}

176
static void ins_quantize_int8(program& prog,
Shucai Xiao's avatar
Shucai Xiao committed
177
178
179
                              instruction_ref ins,
                              std::vector<instruction_ref>& converted_inputs,
                              const std::vector<std::pair<float, float>>& ins_quant_params)
Shucai Xiao's avatar
Shucai Xiao committed
180
181
{
    auto orig_type = ins->get_shape().type();
Shucai Xiao's avatar
Shucai Xiao committed
182
    auto inputs    = ins->inputs();
Shucai Xiao's avatar
Shucai Xiao committed
183
184
    if(ins->name() == "dot")
    {
Shucai Xiao's avatar
Shucai Xiao committed
185
186
187
        auto dot_op     = any_cast<op::dot>(ins->get_operator());
        float new_alpha = dot_op.alpha / (ins_quant_params[0].first * ins_quant_params[1].first);
        float new_beta  = dot_op.beta;
Shucai Xiao's avatar
Shucai Xiao committed
188
189
190
191
192
193
        // We need additional checking about the quant_alpha value. If
        // abs(quant_alpha) > 50 (some tmp value set here), we can convert
        // it to an integer as the new_alpha in the quant_dot
        float threshold = 50.0f;
        if(fabs(new_alpha) >= threshold && fabs(new_beta) >= threshold)
        {
194
195
            int32_t quant_alpha = static_cast<int32_t>(std::round(new_alpha));
            int32_t quant_beta  = static_cast<int32_t>(std::round(new_beta));
Shucai Xiao's avatar
Shucai Xiao committed
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
            if(shape::int32_type == orig_type)
            {
                prog.replace_instruction(
                    ins, op::quant_dot{quant_alpha, quant_beta}, converted_inputs);
            }
            else
            {
                auto quant_dot = prog.insert_instruction(
                    ins, op::quant_dot{quant_alpha, quant_beta}, converted_inputs);
                prog.replace_instruction(ins, op::convert{orig_type}, quant_dot);
            }
        }
        // either alpha or beta cannot be quantized because of too big
        // relative rounding error
        else
        {
            if(converted_inputs.size() == 3)
            {
                converted_inputs.pop_back();
            }
            auto q_dot   = prog.insert_instruction(ins, op::quant_dot{1, 0}, converted_inputs);
            auto f_dot   = prog.insert_instruction(ins, op::convert{shape::float_type}, q_dot);
            auto c_shape = q_dot->get_shape();
            std::vector<float> vec_alpha(c_shape.elements(), new_alpha);
            auto l_alpha =
                prog.add_literal(literal({shape::float_type, c_shape.lens()}, vec_alpha));

            if(inputs.size() == 3 and dot_op.beta != 0.0f)
            {
                auto alpha_ab = prog.insert_instruction(ins, op::mul{}, l_alpha, f_dot);
                std::vector<float> vec_beta(c_shape.elements(), dot_op.beta);
                auto l_beta =
                    prog.add_literal(literal({shape::float_type, c_shape.lens()}, vec_beta));
                instruction_ref beta_c{};
                if(orig_type != shape::float_type)
                {
Shucai Xiao's avatar
Shucai Xiao committed
232
233
                    auto fp32_c =
                        prog.insert_instruction(ins, op::convert{shape::float_type}, inputs.back());
234
                    beta_c = prog.insert_instruction(ins, op::mul{}, l_beta, fp32_c);
Shucai Xiao's avatar
Shucai Xiao committed
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
                }
                else
                {
                    beta_c = prog.insert_instruction(ins, op::mul{}, l_beta, inputs.back());
                }

                if(orig_type == shape::float_type)
                {
                    prog.replace_instruction(ins, op::add{}, alpha_ab, beta_c);
                }
                else
                {
                    auto f_res = prog.insert_instruction(ins, op::add{}, alpha_ab, beta_c);
                    prog.replace_instruction(ins, op::convert{orig_type}, f_res);
                }
            }
            else
            {
                if(orig_type == shape::float_type)
                {
                    prog.replace_instruction(ins, op::mul{}, l_alpha, f_dot);
                }
                else
                {
                    auto alpha_ab = prog.insert_instruction(ins, op::mul{}, l_alpha, f_dot);
                    prog.replace_instruction(ins, op::convert{orig_type}, alpha_ab);
                }
            }
        }
    }
    else if(ins->name() == "convolution")
    {
        // Current MIOpen convolution does not support alpha and beta,
        // so we need a separate multiply to adjust the output
Shucai Xiao's avatar
Shucai Xiao committed
269
270
271
272
273
274
        auto conv_op       = any_cast<op::convolution>(ins->get_operator());
        auto padding       = conv_op.padding;
        auto stride        = conv_op.stride;
        auto dilation      = conv_op.dilation;
        auto padding_mode  = conv_op.padding_mode;
        auto group         = conv_op.group;
275
        auto adjust_factor = 1.0f / (ins_quant_params[0].first * ins_quant_params[1].first);
Shucai Xiao's avatar
Shucai Xiao committed
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301

        auto quant_conv = prog.insert_instruction(
            ins,
            op::quant_convolution{padding, stride, dilation, padding_mode, group},
            converted_inputs);
        float threshold = 50.0f;
        std::vector<float> vec_factor(quant_conv->get_shape().elements(), adjust_factor);
        if(quant_conv->get_shape().type() == orig_type and adjust_factor >= threshold)
        {
            auto l_factor = prog.add_literal(
                literal(quant_conv->get_shape(), vec_factor.begin(), vec_factor.end()));
            prog.replace_instruction(ins, op::mul{}, quant_conv, l_factor);
        }
        // convert quant_conv output to float type, multiply the factor and
        // conver back to original type
        else
        {
            auto float_conv =
                prog.insert_instruction(ins, op::convert{shape::float_type}, quant_conv);
            auto l_factor = prog.add_literal(literal(float_conv->get_shape(), vec_factor));
            if(orig_type == shape::float_type)
            {
                prog.replace_instruction(ins, op::mul{}, l_factor, float_conv);
            }
            else
            {
Shucai Xiao's avatar
Shucai Xiao committed
302
                auto adjusted_conv = prog.insert_instruction(ins, op::mul{}, l_factor, float_conv);
Shucai Xiao's avatar
Shucai Xiao committed
303
304
305
306
307
308
                prog.replace_instruction(ins, op::convert{orig_type}, adjusted_conv);
            }
        }
    }
    else
    {
309
        MIGRAPHX_THROW("QUANTIZE_INT8: does not support operator " + ins->name());
Shucai Xiao's avatar
Shucai Xiao committed
310
311
312
    }
}

Shucai Xiao's avatar
Shucai Xiao committed
313
314
315
316
// int8 quantization is different from fp16 since int8 can only handle value
// -128 ~ 127. To convert the float or double to int8, we need a scale and
// a shift, then the convert can be done as v_int8 = fp * scale + shift.
// To simplify the changes, we consider shift as 0.0f for now.
Shucai Xiao's avatar
Shucai Xiao committed
317
void quantize_int8_impl(program& prog,
Shucai Xiao's avatar
Shucai Xiao committed
318
319
                        const std::vector<std::pair<float, float>>& quant_params,
                        const std::vector<std::string>& ins_names)
Shucai Xiao's avatar
Shucai Xiao committed
320
{
Shucai Xiao's avatar
Shucai Xiao committed
321
322
323
    if(enabled(MIGRAPHX_INT8_QUANTIZATION_PARAMS{}))
    {
        for(std::size_t i = 0; i < quant_params.size(); ++i)
324
325
        {
            auto param = quant_params.at(i);
Shucai Xiao's avatar
Shucai Xiao committed
326
327
            std::cout << "ins_index = " << i << ", scale = " << param.first
                      << ", shift = " << param.second << std::endl;
328
329
330
331
        }
        std::cout << std::endl;
    }

Shucai Xiao's avatar
Shucai Xiao committed
332
    // For now, we only support the int8 quantization of gemm and convolution
Shucai Xiao's avatar
Shucai Xiao committed
333
334
    std::set<std::string> op_names = {"convolution", "dot"};
    std::set<std::string> input_ins_names(ins_names.begin(), ins_names.end());
Shucai Xiao's avatar
Shucai Xiao committed
335
336
    if(!std::includes(
           op_names.begin(), op_names.end(), input_ins_names.begin(), input_ins_names.end()))
Shucai Xiao's avatar
Shucai Xiao committed
337
338
339
340
341
342
    {
        MIGRAPHX_THROW("QUANTIZE_INT8: only support DOT and CONVOLUTION operation");
    }

    std::size_t quant_param_index = 0;
    std::unordered_map<instruction_ref, instruction_ref> map_quant_ins;
Shucai Xiao's avatar
Shucai Xiao committed
343
    std::unordered_map<instruction_ref, std::size_t> map_ins_index;
Shucai Xiao's avatar
Shucai Xiao committed
344
345
    for(auto ins : iterator_for(prog))
    {
346
347
348
        if(ins->name() == "@return")
            break;

Shucai Xiao's avatar
Shucai Xiao committed
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
        if(not contains(ins_names, ins->name()))
        {
            continue;
        }

        // for the dot operator, there could be 2 or 3 input arguments
        // if the 3rd argument is available, convert it to an int32.
        std::vector<instruction_ref> converted_inputs;

        // process all inputs, if input is a fp32 or fp64, convert it
        // to a int8 type by adding a convert operator and replace
        // the operator with the corresponding int8 version
        auto inputs = ins->inputs();
        std::vector<std::pair<float, float>> ins_quant_params;
        for(auto input : inputs)
        {
            // calculate the index of each instruction to be quantized
Shucai Xiao's avatar
Shucai Xiao committed
366
367
            std::size_t ins_index =
                (map_ins_index.count(input) > 0) ? map_ins_index[input] : quant_param_index++;
Shucai Xiao's avatar
Shucai Xiao committed
368
369
370
            map_ins_index[input] = ins_index;

            auto param = quant_params[map_ins_index[input]];
Shucai Xiao's avatar
Shucai Xiao committed
371
372
373
374
375
376
            ins_quant_params.push_back(param);

            // In general, the target_type is int8, but for the dot
            // operation, if it has 3 inputs, then the last one should
            // be converted to int32_type
            shape::type_t quant_type = shape::int8_type;
Shucai Xiao's avatar
Shucai Xiao committed
377
            if((ins->name() == "dot") and (inputs.size() == 3) and (input == inputs.back()))
Shucai Xiao's avatar
Shucai Xiao committed
378
379
380
381
382
            {
                quant_type = shape::int32_type;
            }

            auto s = input->get_shape();
Shucai Xiao's avatar
Shucai Xiao committed
383
            if((s.type() == shape::float_type or s.type() == shape::double_type or
384
                s.type() == shape::half_type or s.type() == shape::int32_type) and
Shucai Xiao's avatar
Shucai Xiao committed
385
386
387
388
389
               s.type() != quant_type)
            {
                // if the input is a convert operator, uses its input
                // as its current input
                instruction_ref quant_input{};
Shucai Xiao's avatar
Shucai Xiao committed
390
391
                if(input->name() == "convert" and
                   input->inputs().front()->get_shape().type() == quant_type)
Shucai Xiao's avatar
Shucai Xiao committed
392
                {
Shucai Xiao's avatar
Shucai Xiao committed
393
                    quant_input = input->inputs().front();
394
395
                    // the scale in this case is not used, so tune the scale
                    // to 1.0f for this parameter
Shucai Xiao's avatar
Shucai Xiao committed
396
                    ins_quant_params.back() = std::pair<float, float>(1.0f, 0.0f);
Shucai Xiao's avatar
Shucai Xiao committed
397
398
399
                }
                else
                {
Shucai Xiao's avatar
Shucai Xiao committed
400
401
                    quant_input = insert_quant_ins(
                        prog, input, quant_type, map_quant_ins, param.first, param.second);
Shucai Xiao's avatar
Shucai Xiao committed
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
                }
                converted_inputs.push_back(quant_input);
            }
            else
            {
                converted_inputs.push_back(input);
            }
        }

        // no change for the input, go to the next instruction
        if(inputs == converted_inputs)
        {
            continue;
        }

417
        ins_quantize_int8(prog, ins, converted_inputs, ins_quant_params);
Shucai Xiao's avatar
Shucai Xiao committed
418
419
420
421
422
423
424
425
    }

    if(quant_param_index != quant_params.size())
    {
        MIGRAPHX_THROW("QUANTIZE_INT8: number of scales does not match");
    }
}

Shucai Xiao's avatar
Shucai Xiao committed
426
427
void quantize_int8(program& prog,
                   const target& t,
428
                   const std::vector<program::parameter_map>& calibration,
Shucai Xiao's avatar
Shucai Xiao committed
429
                   const std::vector<std::string>& ins_names)
Shucai Xiao's avatar
Shucai Xiao committed
430
{
431
    // insert capture operator
Shucai Xiao's avatar
Shucai Xiao committed
432
    auto cap_prog          = prog;
433
434
435
436
437
    auto int8_quant_params = capture_arguments(cap_prog, t, ins_names);

    // use the calibration data to compute the quantization scale
    cap_prog.compile(t);

Shucai Xiao's avatar
Shucai Xiao committed
438
    // use all calibration data to run the program to calculate the
439
    // quantization scale and shift
Shucai Xiao's avatar
Shucai Xiao committed
440
    for(auto&& arg : calibration)
441
442
    {
        program::parameter_map m;
Shucai Xiao's avatar
Shucai Xiao committed
443
        for(auto&& x : cap_prog.get_parameter_shapes())
444
        {
Shucai Xiao's avatar
Shucai Xiao committed
445
            if(arg.count(x.first) > 0)
446
            {
447
448
                assert(x.second == arg.at(x.first).get_shape());
                m[x.first] = t.copy_to(arg.at(x.first));
449
450
451
452
453
454
455
456
457
            }
            else
            {
                m[x.first] = t.allocate(x.second);
            }
        }
        cap_prog.eval(m);
    }

Shucai Xiao's avatar
Shucai Xiao committed
458
    quantize_int8_impl(prog, *int8_quant_params, ins_names);
Shucai Xiao's avatar
Shucai Xiao committed
459
460
}

Shucai Xiao's avatar
Shucai Xiao committed
461
462
// For the input of each input argument, we need to insert a
// capture operator to compute the scale and shift
Shucai Xiao's avatar
Shucai Xiao committed
463
std::size_t capture_arguments(program& prog,
Shucai Xiao's avatar
Shucai Xiao committed
464
465
                              const std::vector<std::string>& ins_names,
                              const std::function<void(std::size_t, std::vector<argument>)>& func)
Shucai Xiao's avatar
Shucai Xiao committed
466
{
467

Shucai Xiao's avatar
Shucai Xiao committed
468
    size_t num_quant_params = 0;
Shucai Xiao's avatar
Shucai Xiao committed
469
    // the int8 quantization only support dot and convolution
Shucai Xiao's avatar
Shucai Xiao committed
470
    std::set<std::string> op_names = {"dot", "convolution"};
Shucai Xiao's avatar
Shucai Xiao committed
471
    std::set<std::string> input_ins_names(ins_names.begin(), ins_names.end());
Shucai Xiao's avatar
Shucai Xiao committed
472
473
    if(!std::includes(
           op_names.begin(), op_names.end(), input_ins_names.begin(), input_ins_names.end()))
Shucai Xiao's avatar
Shucai Xiao committed
474
475
476
477
478
479
480
    {
        MIGRAPHX_THROW("CAPTURE_ARGUMENTS: input operator is not supported");
    }

    std::unordered_map<instruction_ref, instruction_ref> ins_map;
    for(auto ins : iterator_for(prog))
    {
Shucai Xiao's avatar
Shucai Xiao committed
481
        if(not contains(ins_names, ins->name()))
Shucai Xiao's avatar
Shucai Xiao committed
482
483
484
485
486
487
        {
            continue;
        }

        auto inputs = ins->inputs();
        std::vector<instruction_ref> new_args;
Shucai Xiao's avatar
Shucai Xiao committed
488
        for(auto input : inputs)
Shucai Xiao's avatar
Shucai Xiao committed
489
490
        {
            instruction_ref new_ins{};
Shucai Xiao's avatar
Shucai Xiao committed
491
            if(ins_map.count(input) > 0)
Shucai Xiao's avatar
Shucai Xiao committed
492
493
494
495
496
            {
                new_ins = ins_map[input];
            }
            else
            {
Shucai Xiao's avatar
Shucai Xiao committed
497
                new_ins = prog.insert_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
498
                    std::next(input), op::capture{num_quant_params++, func}, input);
Shucai Xiao's avatar
Shucai Xiao committed
499
500
501
502
503
504
                ins_map[input] = new_ins;
            }
            new_args.push_back(new_ins);
        }
        instruction::replace(ins, ins->get_operator(), ins->get_shape(), new_args);
    }
Shucai Xiao's avatar
Shucai Xiao committed
505

Shucai Xiao's avatar
Shucai Xiao committed
506
    return num_quant_params;
Shucai Xiao's avatar
Shucai Xiao committed
507
508
}

Shucai Xiao's avatar
Shucai Xiao committed
509
std::shared_ptr<std::vector<std::pair<float, float>>>
Shucai Xiao's avatar
Shucai Xiao committed
510
capture_arguments_impl(program& prog, const target& t, const std::vector<std::string>& ins_names)
Shucai Xiao's avatar
Shucai Xiao committed
511
{
Shucai Xiao's avatar
Shucai Xiao committed
512
513
514
515
    std::shared_ptr<std::vector<std::pair<float, float>>> int8_quant_params =
        std::make_shared<std::vector<std::pair<float, float>>>();
    std::shared_ptr<std::vector<float>> max_abs_vals = std::make_shared<std::vector<float>>();

Shucai Xiao's avatar
Shucai Xiao committed
516
517
    auto calc_quant_params = [int8_quant_params, max_abs_vals, &t](std::size_t ins_index,
                                                                   std::vector<argument> args) {
Shucai Xiao's avatar
Shucai Xiao committed
518
        std::pair<float, float> param_pair{64.0f, 0.0f};
519
520
521
522

        // scale and shift is need for only int8 type, and we do not
        // consider shift, so set shift to 0
        std::vector<float> vec_val;
Shucai Xiao's avatar
Shucai Xiao committed
523
        argument arg = t.copy_from(args.front());
Shucai Xiao's avatar
Shucai Xiao committed
524
        arg.visit([&](auto output) { vec_val.assign(output.begin(), output.end()); });
Shucai Xiao's avatar
Shucai Xiao committed
525
526
527
        auto max_val                = *std::max_element(vec_val.begin(), vec_val.end());
        auto min_val                = *std::min_element(vec_val.begin(), vec_val.end());
        auto max_abs                = std::max(std::fabs(max_val), std::fabs(min_val));
Shucai Xiao's avatar
Shucai Xiao committed
528
        max_abs_vals->at(ins_index) = std::max(max_abs_vals->at(ins_index), max_abs);
529

Shucai Xiao's avatar
Shucai Xiao committed
530
        // if all values are 0, no need to do scaling
Shucai Xiao's avatar
Shucai Xiao committed
531
        if(max_abs_vals->at(ins_index) == 0.0f)
Shucai Xiao's avatar
Shucai Xiao committed
532
533
534
535
536
537
538
        {
            param_pair.first = 1.0f;
        }
        else
        {
            param_pair.first = 127.0f / max_abs_vals->at(ins_index);
        }
Shucai Xiao's avatar
Shucai Xiao committed
539
        int8_quant_params->at(ins_index) = param_pair;
540
541
    };

Shucai Xiao's avatar
Shucai Xiao committed
542
543
    auto num_params = capture_arguments(prog, ins_names, calc_quant_params);

Shucai Xiao's avatar
Shucai Xiao committed
544
    int8_quant_params->resize(num_params, std::pair<float, float>(64.0f, 0.0f));
Shucai Xiao's avatar
Shucai Xiao committed
545
546
547
    max_abs_vals->resize(num_params, 0.0f);

    return int8_quant_params;
Shucai Xiao's avatar
Shucai Xiao committed
548
549
}

550
551
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx