quantization.cpp 20.7 KB
Newer Older
Shucai Xiao's avatar
Shucai Xiao committed
1
#include <migraphx/quantization.hpp>
2
3
4
#include <migraphx/program.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/iterator_for.hpp>
5
#include <migraphx/op/convert.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
6
7
#include <migraphx/op/clip.hpp>
#include <migraphx/op/round.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
8
9
10
#include <migraphx/op/dot.hpp>
#include <migraphx/op/mul.hpp>
#include <migraphx/op/add.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
11
#include <migraphx/op/quant_dot.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
12
#include <migraphx/op/capture.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
13
#include <migraphx/op/convolution.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
14
#include <migraphx/op/quant_convolution.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
15
#include <migraphx/op/multibroadcast.hpp>
16
#include <migraphx/stringutils.hpp>
17
#include <migraphx/ranges.hpp>
18
#include <migraphx/target.hpp>
19
#include <utility>
Shucai Xiao's avatar
Shucai Xiao committed
20
#include <set>
21
22
#include <iomanip>
#include <fstream>
Shucai Xiao's avatar
Shucai Xiao committed
23
#include <algorithm>
24
25
26
27

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

Shucai Xiao's avatar
Shucai Xiao committed
28
29
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_INT8_QUANTIZATION_PARAMS)

Shucai Xiao's avatar
Shucai Xiao committed
30
31
32
instruction_ref insert_quant_ins(program& prog,
                                 instruction_ref& ins,
                                 shape::type_t type,
Shucai Xiao's avatar
Shucai Xiao committed
33
34
35
                                 std::unordered_map<instruction_ref, instruction_ref>& map_ins,
                                 float scale = 1.0f,
                                 float shift = 0.0f)
36
{
Shucai Xiao's avatar
Shucai Xiao committed
37
    if(map_ins.count(ins) > 0)
38
    {
Shucai Xiao's avatar
Shucai Xiao committed
39
40
41
42
43
44
        return map_ins[ins];
    }

    if(ins->name() == "undefined")
    {
        return ins;
45
46
    }

Shucai Xiao's avatar
Shucai Xiao committed
47
48
    assert(ins->get_shape().type() == shape::float_type or
           ins->get_shape().type() == shape::double_type or
Shucai Xiao's avatar
Shucai Xiao committed
49
50
           ins->get_shape().type() == shape::int32_type or
           ins->get_shape().type() == shape::half_type);
Shucai Xiao's avatar
Shucai Xiao committed
51
    instruction_ref quant_ins{};
Shucai Xiao's avatar
Shucai Xiao committed
52
    auto insert_loc = std::next(ins);
Shucai Xiao's avatar
Shucai Xiao committed
53
    if(type == shape::int8_type)
Shucai Xiao's avatar
Shucai Xiao committed
54
55
    {
        auto scaled_ins = ins;
Shucai Xiao's avatar
Shucai Xiao committed
56
        if(scale != 1.0f)
Shucai Xiao's avatar
Shucai Xiao committed
57
58
        {
            auto float_ins = scaled_ins;
Shucai Xiao's avatar
Shucai Xiao committed
59
            if(scaled_ins->get_shape().type() != shape::float_type)
Shucai Xiao's avatar
Shucai Xiao committed
60
            {
Shucai Xiao's avatar
Shucai Xiao committed
61
62
                float_ins =
                    prog.insert_instruction(insert_loc, op::convert{shape::float_type}, scaled_ins);
Shucai Xiao's avatar
Shucai Xiao committed
63
64
            }
            std::vector<float> vec_scale(scaled_ins->get_shape().elements(), scale);
65
            auto l_scale = prog.add_literal(literal(float_ins->get_shape(), vec_scale));
Shucai Xiao's avatar
Shucai Xiao committed
66
            scaled_ins   = prog.insert_instruction(insert_loc, op::mul{}, l_scale, float_ins);
Shucai Xiao's avatar
Shucai Xiao committed
67
68
69
        }

        auto shifted_ins = scaled_ins;
Shucai Xiao's avatar
Shucai Xiao committed
70
        if(shift != 0.0f)
Shucai Xiao's avatar
Shucai Xiao committed
71
72
        {
            auto float_ins = shifted_ins;
Shucai Xiao's avatar
Shucai Xiao committed
73
            if(shifted_ins->get_shape().type() != shape::float_type)
Shucai Xiao's avatar
Shucai Xiao committed
74
            {
Shucai Xiao's avatar
Shucai Xiao committed
75
76
                float_ins = prog.insert_instruction(
                    insert_loc, op::convert{shape::float_type}, shifted_ins);
Shucai Xiao's avatar
Shucai Xiao committed
77
78
            }
            std::vector<float> vec_shift(shifted_ins->get_shape().elements(), shift);
79
            auto l_shift = prog.add_literal(literal(float_ins->get_shape(), vec_shift));
Shucai Xiao's avatar
Shucai Xiao committed
80
            shifted_ins  = prog.insert_instruction(insert_loc, op::add{}, l_shift, float_ins);
Shucai Xiao's avatar
Shucai Xiao committed
81
82
        }

83
        auto rounded_ins = prog.insert_instruction(insert_loc, op::round{}, shifted_ins);
Shucai Xiao's avatar
Shucai Xiao committed
84
        auto clipped_ins =
85
            prog.insert_instruction(insert_loc, op::clip{127.0f, -128.0f}, rounded_ins);
Shucai Xiao's avatar
Shucai Xiao committed
86
        quant_ins = prog.insert_instruction(insert_loc, op::convert{type}, clipped_ins);
Shucai Xiao's avatar
Shucai Xiao committed
87
88
89
    }
    else
    {
Shucai Xiao's avatar
Shucai Xiao committed
90
        quant_ins = prog.insert_instruction(insert_loc, op::convert{type}, ins);
Shucai Xiao's avatar
Shucai Xiao committed
91
    }
Shucai Xiao's avatar
Shucai Xiao committed
92

Shucai Xiao's avatar
Shucai Xiao committed
93
    map_ins[ins] = quant_ins;
94

Shucai Xiao's avatar
Shucai Xiao committed
95
    return quant_ins;
96
97
}

Shucai Xiao's avatar
Shucai Xiao committed
98
99
100
101
102
// This function is to convert any instructions specified in the input
// from double or float to float16 by inserting a convert operator.
// For the conversion, there could be cases of overflowing, but it
// is very rare in the area of deeping learning, so we just do a
// truncate of the input to get the fp16.
Shucai Xiao's avatar
Shucai Xiao committed
103
void quantize_fp16(program& prog, const std::vector<std::string>& ins_names)
104
{
105
    std::unordered_map<instruction_ref, instruction_ref> map_fp16;
Shucai Xiao's avatar
Shucai Xiao committed
106
    for(auto ins : iterator_for(prog))
107
    {
108
109
110
        if(ins->name() == "@return")
            break;

111
        // all indicates every instruction is converted
Shucai Xiao's avatar
Shucai Xiao committed
112
        if((not contains(ins_names, "all")) and (not contains(ins_names, ins->name())))
113
114
115
        {
            continue;
        }
116

117
        shape::type_t orig_type = ins->get_shape().type();
Shucai Xiao's avatar
Shucai Xiao committed
118
        // process all inputs, if input is a fp32 or fp64, convert it
119
        // to a fp16 by adding a convert operator.
120
        auto inputs = ins->inputs();
121
        std::vector<instruction_ref> converted_inputs;
Shucai Xiao's avatar
Shucai Xiao committed
122
        for(auto input : inputs)
123
124
        {
            auto s = input->get_shape();
Shucai Xiao's avatar
Shucai Xiao committed
125
            if(s.type() == shape::float_type || s.type() == shape::double_type)
126
            {
127
                // if the input is a convert operator, uses its input
128
129
                // as its current input
                instruction_ref input_fp16{};
Shucai Xiao's avatar
Shucai Xiao committed
130
131
                if(input->name() == "convert" and
                   input->inputs().front()->get_shape().type() == shape::half_type)
132
133
134
135
136
                {
                    input_fp16 = input->inputs().front();
                }
                else
                {
Shucai Xiao's avatar
Shucai Xiao committed
137
                    input_fp16 = insert_quant_ins(prog, input, shape::half_type, map_fp16);
138
                }
139
                converted_inputs.push_back(input_fp16);
140
            }
141
142
143
144
145
146
            else
            {
                converted_inputs.push_back(input);
            }
        }

147
        // no change for the input, go to the next instruction
Shucai Xiao's avatar
Shucai Xiao committed
148
        if(inputs == converted_inputs)
149
        {
150
            continue;
Shucai Xiao's avatar
Shucai Xiao committed
151
152
153
154
155
156
        }

        auto op        = ins->get_operator();
        auto ins_shape = compute_shape(op, converted_inputs);
        if(ins_shape.type() != orig_type)
        {
Shucai Xiao's avatar
Shucai Xiao committed
157
158
159
160
161
            // check the dead code case to avoid assert
            bool output_empty = ins->outputs().empty();
            auto ins_orig_type =
                prog.insert_instruction(std::next(ins), op::convert{orig_type}, ins);
            if(!output_empty)
162
            {
Shucai Xiao's avatar
Shucai Xiao committed
163
                prog.replace_instruction(ins, ins_orig_type);
164
            }
165
        }
Shucai Xiao's avatar
Shucai Xiao committed
166
167

        prog.replace_instruction(ins, op, converted_inputs);
168
169
170
    }
}

171
static void ins_quantize_int8(program& prog,
Shucai Xiao's avatar
Shucai Xiao committed
172
173
174
                              instruction_ref ins,
                              std::vector<instruction_ref>& converted_inputs,
                              const std::vector<std::pair<float, float>>& ins_quant_params)
Shucai Xiao's avatar
Shucai Xiao committed
175
176
{
    auto orig_type = ins->get_shape().type();
Shucai Xiao's avatar
Shucai Xiao committed
177
    auto inputs    = ins->inputs();
Shucai Xiao's avatar
Shucai Xiao committed
178
179
    if(ins->name() == "dot")
    {
Shucai Xiao's avatar
Shucai Xiao committed
180
181
182
        auto dot_op     = any_cast<op::dot>(ins->get_operator());
        float new_alpha = dot_op.alpha / (ins_quant_params[0].first * ins_quant_params[1].first);
        float new_beta  = dot_op.beta;
Shucai Xiao's avatar
Shucai Xiao committed
183
184
185
186
187
188
        // We need additional checking about the quant_alpha value. If
        // abs(quant_alpha) > 50 (some tmp value set here), we can convert
        // it to an integer as the new_alpha in the quant_dot
        float threshold = 50.0f;
        if(fabs(new_alpha) >= threshold && fabs(new_beta) >= threshold)
        {
189
190
            int32_t quant_alpha = static_cast<int32_t>(std::round(new_alpha));
            int32_t quant_beta  = static_cast<int32_t>(std::round(new_beta));
Shucai Xiao's avatar
Shucai Xiao committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
            if(shape::int32_type == orig_type)
            {
                prog.replace_instruction(
                    ins, op::quant_dot{quant_alpha, quant_beta}, converted_inputs);
            }
            else
            {
                auto quant_dot = prog.insert_instruction(
                    ins, op::quant_dot{quant_alpha, quant_beta}, converted_inputs);
                prog.replace_instruction(ins, op::convert{orig_type}, quant_dot);
            }
        }
        // either alpha or beta cannot be quantized because of too big
        // relative rounding error
        else
        {
            if(converted_inputs.size() == 3)
            {
                converted_inputs.pop_back();
            }
            auto q_dot   = prog.insert_instruction(ins, op::quant_dot{1, 0}, converted_inputs);
            auto f_dot   = prog.insert_instruction(ins, op::convert{shape::float_type}, q_dot);
            auto c_shape = q_dot->get_shape();
            std::vector<float> vec_alpha(c_shape.elements(), new_alpha);
            auto l_alpha =
                prog.add_literal(literal({shape::float_type, c_shape.lens()}, vec_alpha));

            if(inputs.size() == 3 and dot_op.beta != 0.0f)
            {
                auto alpha_ab = prog.insert_instruction(ins, op::mul{}, l_alpha, f_dot);
                std::vector<float> vec_beta(c_shape.elements(), dot_op.beta);
                auto l_beta =
                    prog.add_literal(literal({shape::float_type, c_shape.lens()}, vec_beta));
                instruction_ref beta_c{};
                if(orig_type != shape::float_type)
                {
Shucai Xiao's avatar
Shucai Xiao committed
227
228
                    auto fp32_c =
                        prog.insert_instruction(ins, op::convert{shape::float_type}, inputs.back());
229
                    beta_c = prog.insert_instruction(ins, op::mul{}, l_beta, fp32_c);
Shucai Xiao's avatar
Shucai Xiao committed
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
                }
                else
                {
                    beta_c = prog.insert_instruction(ins, op::mul{}, l_beta, inputs.back());
                }

                if(orig_type == shape::float_type)
                {
                    prog.replace_instruction(ins, op::add{}, alpha_ab, beta_c);
                }
                else
                {
                    auto f_res = prog.insert_instruction(ins, op::add{}, alpha_ab, beta_c);
                    prog.replace_instruction(ins, op::convert{orig_type}, f_res);
                }
            }
            else
            {
                if(orig_type == shape::float_type)
                {
                    prog.replace_instruction(ins, op::mul{}, l_alpha, f_dot);
                }
                else
                {
                    auto alpha_ab = prog.insert_instruction(ins, op::mul{}, l_alpha, f_dot);
                    prog.replace_instruction(ins, op::convert{orig_type}, alpha_ab);
                }
            }
        }
    }
    else if(ins->name() == "convolution")
    {
        // Current MIOpen convolution does not support alpha and beta,
        // so we need a separate multiply to adjust the output
Shucai Xiao's avatar
Shucai Xiao committed
264
265
266
267
268
269
        auto conv_op       = any_cast<op::convolution>(ins->get_operator());
        auto padding       = conv_op.padding;
        auto stride        = conv_op.stride;
        auto dilation      = conv_op.dilation;
        auto padding_mode  = conv_op.padding_mode;
        auto group         = conv_op.group;
270
        auto adjust_factor = 1.0f / (ins_quant_params[0].first * ins_quant_params[1].first);
Shucai Xiao's avatar
Shucai Xiao committed
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296

        auto quant_conv = prog.insert_instruction(
            ins,
            op::quant_convolution{padding, stride, dilation, padding_mode, group},
            converted_inputs);
        float threshold = 50.0f;
        std::vector<float> vec_factor(quant_conv->get_shape().elements(), adjust_factor);
        if(quant_conv->get_shape().type() == orig_type and adjust_factor >= threshold)
        {
            auto l_factor = prog.add_literal(
                literal(quant_conv->get_shape(), vec_factor.begin(), vec_factor.end()));
            prog.replace_instruction(ins, op::mul{}, quant_conv, l_factor);
        }
        // convert quant_conv output to float type, multiply the factor and
        // conver back to original type
        else
        {
            auto float_conv =
                prog.insert_instruction(ins, op::convert{shape::float_type}, quant_conv);
            auto l_factor = prog.add_literal(literal(float_conv->get_shape(), vec_factor));
            if(orig_type == shape::float_type)
            {
                prog.replace_instruction(ins, op::mul{}, l_factor, float_conv);
            }
            else
            {
Shucai Xiao's avatar
Shucai Xiao committed
297
                auto adjusted_conv = prog.insert_instruction(ins, op::mul{}, l_factor, float_conv);
Shucai Xiao's avatar
Shucai Xiao committed
298
299
300
301
302
303
                prog.replace_instruction(ins, op::convert{orig_type}, adjusted_conv);
            }
        }
    }
    else
    {
304
        MIGRAPHX_THROW("QUANTIZE_INT8: does not support operator " + ins->name());
Shucai Xiao's avatar
Shucai Xiao committed
305
306
307
    }
}

Shucai Xiao's avatar
Shucai Xiao committed
308
309
310
311
// int8 quantization is different from fp16 since int8 can only handle value
// -128 ~ 127. To convert the float or double to int8, we need a scale and
// a shift, then the convert can be done as v_int8 = fp * scale + shift.
// To simplify the changes, we consider shift as 0.0f for now.
Shucai Xiao's avatar
Shucai Xiao committed
312
void quantize_int8_impl(program& prog,
Shucai Xiao's avatar
Shucai Xiao committed
313
314
                        const std::vector<std::pair<float, float>>& quant_params,
                        const std::vector<std::string>& ins_names)
Shucai Xiao's avatar
Shucai Xiao committed
315
{
Shucai Xiao's avatar
Shucai Xiao committed
316
317
318
    if(enabled(MIGRAPHX_INT8_QUANTIZATION_PARAMS{}))
    {
        for(std::size_t i = 0; i < quant_params.size(); ++i)
319
320
        {
            auto param = quant_params.at(i);
Shucai Xiao's avatar
Shucai Xiao committed
321
322
            std::cout << "ins_index = " << i << ", scale = " << param.first
                      << ", shift = " << param.second << std::endl;
323
324
325
326
        }
        std::cout << std::endl;
    }

Shucai Xiao's avatar
Shucai Xiao committed
327
    // For now, we only support the int8 quantization of gemm and convolution
Shucai Xiao's avatar
Shucai Xiao committed
328
329
    std::set<std::string> op_names = {"convolution", "dot"};
    std::set<std::string> input_ins_names(ins_names.begin(), ins_names.end());
Shucai Xiao's avatar
Shucai Xiao committed
330
331
    if(!std::includes(
           op_names.begin(), op_names.end(), input_ins_names.begin(), input_ins_names.end()))
Shucai Xiao's avatar
Shucai Xiao committed
332
333
334
335
336
337
    {
        MIGRAPHX_THROW("QUANTIZE_INT8: only support DOT and CONVOLUTION operation");
    }

    std::size_t quant_param_index = 0;
    std::unordered_map<instruction_ref, instruction_ref> map_quant_ins;
Shucai Xiao's avatar
Shucai Xiao committed
338
    std::unordered_map<instruction_ref, std::size_t> map_ins_index;
Shucai Xiao's avatar
Shucai Xiao committed
339
340
    for(auto ins : iterator_for(prog))
    {
341
342
343
        if(ins->name() == "@return")
            break;

Shucai Xiao's avatar
Shucai Xiao committed
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
        if(not contains(ins_names, ins->name()))
        {
            continue;
        }

        // for the dot operator, there could be 2 or 3 input arguments
        // if the 3rd argument is available, convert it to an int32.
        std::vector<instruction_ref> converted_inputs;

        // process all inputs, if input is a fp32 or fp64, convert it
        // to a int8 type by adding a convert operator and replace
        // the operator with the corresponding int8 version
        auto inputs = ins->inputs();
        std::vector<std::pair<float, float>> ins_quant_params;
        for(auto input : inputs)
        {
            // calculate the index of each instruction to be quantized
Shucai Xiao's avatar
Shucai Xiao committed
361
362
            std::size_t ins_index =
                (map_ins_index.count(input) > 0) ? map_ins_index[input] : quant_param_index++;
Shucai Xiao's avatar
Shucai Xiao committed
363
364
365
            map_ins_index[input] = ins_index;

            auto param = quant_params[map_ins_index[input]];
Shucai Xiao's avatar
Shucai Xiao committed
366
367
368
369
370
371
            ins_quant_params.push_back(param);

            // In general, the target_type is int8, but for the dot
            // operation, if it has 3 inputs, then the last one should
            // be converted to int32_type
            shape::type_t quant_type = shape::int8_type;
Shucai Xiao's avatar
Shucai Xiao committed
372
            if((ins->name() == "dot") and (inputs.size() == 3) and (input == inputs.back()))
Shucai Xiao's avatar
Shucai Xiao committed
373
374
375
376
377
            {
                quant_type = shape::int32_type;
            }

            auto s = input->get_shape();
Shucai Xiao's avatar
Shucai Xiao committed
378
            if((s.type() == shape::float_type or s.type() == shape::double_type or
379
                s.type() == shape::half_type or s.type() == shape::int32_type) and
Shucai Xiao's avatar
Shucai Xiao committed
380
381
382
383
384
               s.type() != quant_type)
            {
                // if the input is a convert operator, uses its input
                // as its current input
                instruction_ref quant_input{};
Shucai Xiao's avatar
Shucai Xiao committed
385
386
                if(input->name() == "convert" and
                   input->inputs().front()->get_shape().type() == quant_type)
Shucai Xiao's avatar
Shucai Xiao committed
387
                {
Shucai Xiao's avatar
Shucai Xiao committed
388
                    quant_input = input->inputs().front();
389
390
                    // the scale in this case is not used, so tune the scale
                    // to 1.0f for this parameter
Shucai Xiao's avatar
Shucai Xiao committed
391
                    ins_quant_params.back() = std::pair<float, float>(1.0f, 0.0f);
Shucai Xiao's avatar
Shucai Xiao committed
392
393
394
                }
                else
                {
Shucai Xiao's avatar
Shucai Xiao committed
395
396
                    quant_input = insert_quant_ins(
                        prog, input, quant_type, map_quant_ins, param.first, param.second);
Shucai Xiao's avatar
Shucai Xiao committed
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
                }
                converted_inputs.push_back(quant_input);
            }
            else
            {
                converted_inputs.push_back(input);
            }
        }

        // no change for the input, go to the next instruction
        if(inputs == converted_inputs)
        {
            continue;
        }

412
        ins_quantize_int8(prog, ins, converted_inputs, ins_quant_params);
Shucai Xiao's avatar
Shucai Xiao committed
413
414
415
416
417
418
419
420
    }

    if(quant_param_index != quant_params.size())
    {
        MIGRAPHX_THROW("QUANTIZE_INT8: number of scales does not match");
    }
}

Shucai Xiao's avatar
Shucai Xiao committed
421
422
void quantize_int8(program& prog,
                   const target& t,
423
                   const std::vector<program::parameter_map>& calibration,
Shucai Xiao's avatar
Shucai Xiao committed
424
                   const std::vector<std::string>& ins_names)
Shucai Xiao's avatar
Shucai Xiao committed
425
{
426
    // insert capture operator
Shucai Xiao's avatar
Shucai Xiao committed
427
    auto cap_prog          = prog;
428
429
430
431
432
    auto int8_quant_params = capture_arguments(cap_prog, t, ins_names);

    // use the calibration data to compute the quantization scale
    cap_prog.compile(t);

Shucai Xiao's avatar
Shucai Xiao committed
433
    // use all calibration data to run the program to calculate the
434
    // quantization scale and shift
Shucai Xiao's avatar
Shucai Xiao committed
435
    for(auto&& arg : calibration)
436
437
    {
        program::parameter_map m;
Shucai Xiao's avatar
Shucai Xiao committed
438
        for(auto&& x : cap_prog.get_parameter_shapes())
439
        {
Shucai Xiao's avatar
Shucai Xiao committed
440
            if(arg.count(x.first) > 0)
441
            {
442
443
                assert(x.second == arg.at(x.first).get_shape());
                m[x.first] = t.copy_to(arg.at(x.first));
444
445
446
447
448
449
450
451
452
            }
            else
            {
                m[x.first] = t.allocate(x.second);
            }
        }
        cap_prog.eval(m);
    }

Shucai Xiao's avatar
Shucai Xiao committed
453
    quantize_int8_impl(prog, *int8_quant_params, ins_names);
Shucai Xiao's avatar
Shucai Xiao committed
454
455
}

Shucai Xiao's avatar
Shucai Xiao committed
456
457
// For the input of each input argument, we need to insert a
// capture operator to compute the scale and shift
Shucai Xiao's avatar
Shucai Xiao committed
458
std::size_t capture_arguments(program& prog,
Shucai Xiao's avatar
Shucai Xiao committed
459
460
                              const std::vector<std::string>& ins_names,
                              const std::function<void(std::size_t, std::vector<argument>)>& func)
Shucai Xiao's avatar
Shucai Xiao committed
461
{
462

Shucai Xiao's avatar
Shucai Xiao committed
463
    size_t num_quant_params = 0;
Shucai Xiao's avatar
Shucai Xiao committed
464
    // the int8 quantization only support dot and convolution
Shucai Xiao's avatar
Shucai Xiao committed
465
    std::set<std::string> op_names = {"dot", "convolution"};
Shucai Xiao's avatar
Shucai Xiao committed
466
    std::set<std::string> input_ins_names(ins_names.begin(), ins_names.end());
Shucai Xiao's avatar
Shucai Xiao committed
467
468
    if(!std::includes(
           op_names.begin(), op_names.end(), input_ins_names.begin(), input_ins_names.end()))
Shucai Xiao's avatar
Shucai Xiao committed
469
470
471
472
473
474
475
    {
        MIGRAPHX_THROW("CAPTURE_ARGUMENTS: input operator is not supported");
    }

    std::unordered_map<instruction_ref, instruction_ref> ins_map;
    for(auto ins : iterator_for(prog))
    {
Shucai Xiao's avatar
Shucai Xiao committed
476
        if(not contains(ins_names, ins->name()))
Shucai Xiao's avatar
Shucai Xiao committed
477
478
479
480
481
482
        {
            continue;
        }

        auto inputs = ins->inputs();
        std::vector<instruction_ref> new_args;
Shucai Xiao's avatar
Shucai Xiao committed
483
        for(auto input : inputs)
Shucai Xiao's avatar
Shucai Xiao committed
484
485
        {
            instruction_ref new_ins{};
Shucai Xiao's avatar
Shucai Xiao committed
486
            if(ins_map.count(input) > 0)
Shucai Xiao's avatar
Shucai Xiao committed
487
488
489
490
491
            {
                new_ins = ins_map[input];
            }
            else
            {
Shucai Xiao's avatar
Shucai Xiao committed
492
                new_ins = prog.insert_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
493
                    std::next(input), op::capture{num_quant_params++, func}, input);
Shucai Xiao's avatar
Shucai Xiao committed
494
495
496
497
498
499
                ins_map[input] = new_ins;
            }
            new_args.push_back(new_ins);
        }
        instruction::replace(ins, ins->get_operator(), ins->get_shape(), new_args);
    }
Shucai Xiao's avatar
Shucai Xiao committed
500

Shucai Xiao's avatar
Shucai Xiao committed
501
    return num_quant_params;
Shucai Xiao's avatar
Shucai Xiao committed
502
503
}

Shucai Xiao's avatar
Shucai Xiao committed
504
std::shared_ptr<std::vector<std::pair<float, float>>>
Shucai Xiao's avatar
Shucai Xiao committed
505
capture_arguments_impl(program& prog, const target& t, const std::vector<std::string>& ins_names)
Shucai Xiao's avatar
Shucai Xiao committed
506
{
Shucai Xiao's avatar
Shucai Xiao committed
507
508
509
510
    std::shared_ptr<std::vector<std::pair<float, float>>> int8_quant_params =
        std::make_shared<std::vector<std::pair<float, float>>>();
    std::shared_ptr<std::vector<float>> max_abs_vals = std::make_shared<std::vector<float>>();

Shucai Xiao's avatar
Shucai Xiao committed
511
512
    auto calc_quant_params = [int8_quant_params, max_abs_vals, &t](std::size_t ins_index,
                                                                   std::vector<argument> args) {
Shucai Xiao's avatar
Shucai Xiao committed
513
        std::pair<float, float> param_pair{64.0f, 0.0f};
514
515
516
517

        // scale and shift is need for only int8 type, and we do not
        // consider shift, so set shift to 0
        std::vector<float> vec_val;
Shucai Xiao's avatar
Shucai Xiao committed
518
        argument arg = t.copy_from(args.front());
Shucai Xiao's avatar
Shucai Xiao committed
519
        arg.visit([&](auto output) { vec_val.assign(output.begin(), output.end()); });
Shucai Xiao's avatar
Shucai Xiao committed
520
521
522
        auto max_val                = *std::max_element(vec_val.begin(), vec_val.end());
        auto min_val                = *std::min_element(vec_val.begin(), vec_val.end());
        auto max_abs                = std::max(std::fabs(max_val), std::fabs(min_val));
Shucai Xiao's avatar
Shucai Xiao committed
523
        max_abs_vals->at(ins_index) = std::max(max_abs_vals->at(ins_index), max_abs);
524

Shucai Xiao's avatar
Shucai Xiao committed
525
        // if all values are 0, no need to do scaling
Shucai Xiao's avatar
Shucai Xiao committed
526
        if(max_abs_vals->at(ins_index) == 0.0f)
Shucai Xiao's avatar
Shucai Xiao committed
527
528
529
530
531
532
533
        {
            param_pair.first = 1.0f;
        }
        else
        {
            param_pair.first = 127.0f / max_abs_vals->at(ins_index);
        }
Shucai Xiao's avatar
Shucai Xiao committed
534
        int8_quant_params->at(ins_index) = param_pair;
535
536
    };

Shucai Xiao's avatar
Shucai Xiao committed
537
538
    auto num_params = capture_arguments(prog, ins_names, calc_quant_params);

Shucai Xiao's avatar
Shucai Xiao committed
539
    int8_quant_params->resize(num_params, std::pair<float, float>(64.0f, 0.0f));
Shucai Xiao's avatar
Shucai Xiao committed
540
541
542
    max_abs_vals->resize(num_params, 0.0f);

    return int8_quant_params;
Shucai Xiao's avatar
Shucai Xiao committed
543
544
}

545
546
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx