quantization.cpp 18.2 KB
Newer Older
Shucai Xiao's avatar
Shucai Xiao committed
1
#include <migraphx/quantization.hpp>
2
3
4
#include <migraphx/program.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/iterator_for.hpp>
5
#include <migraphx/op/convert.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
6
7
#include <migraphx/op/clip.hpp>
#include <migraphx/op/round.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
8
9
10
#include <migraphx/op/dot.hpp>
#include <migraphx/op/mul.hpp>
#include <migraphx/op/add.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
11
#include <migraphx/op/quant_dot.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
12
#include <migraphx/op/capture.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
13
#include <migraphx/op/convolution.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
14
#include <migraphx/op/quant_convolution.hpp>
Shucai Xiao's avatar
Shucai Xiao committed
15
#include <migraphx/op/multibroadcast.hpp>
16
#include <migraphx/stringutils.hpp>
17
#include <migraphx/ranges.hpp>
18
#include <utility>
19
20
#include <iomanip>
#include <fstream>
21
22
23
24

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

Shucai Xiao's avatar
Shucai Xiao committed
25
26
27
instruction_ref insert_quant_ins(program& prog,
                                 instruction_ref& ins,
                                 shape::type_t type,
Shucai Xiao's avatar
Shucai Xiao committed
28
29
30
                                 std::unordered_map<instruction_ref, instruction_ref>& map_ins,
                                 float scale = 1.0f,
                                 float shift = 0.0f)
31
{
Shucai Xiao's avatar
Shucai Xiao committed
32
    if(map_ins.count(ins) > 0)
33
    {
Shucai Xiao's avatar
Shucai Xiao committed
34
35
36
37
38
39
        return map_ins[ins];
    }

    if(ins->name() == "undefined")
    {
        return ins;
40
41
    }

Shucai Xiao's avatar
Shucai Xiao committed
42
43
    assert(ins->get_shape().type() == shape::float_type or
           ins->get_shape().type() == shape::double_type or
Shucai Xiao's avatar
Shucai Xiao committed
44
45
           ins->get_shape().type() == shape::int32_type);
    instruction_ref quant_ins{};
Shucai Xiao's avatar
Shucai Xiao committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
    auto insert_loc = std::next(ins);
    if (type == shape::int8_type)
    {
        auto scaled_ins = ins;
        if (scale != 1.0f)
        {
            auto float_ins = scaled_ins;
            if (scaled_ins->get_shape().type() != shape::float_type)
            {
                float_ins = prog.insert_instruction(insert_loc, op::convert{shape::float_type}, scaled_ins);
            }
            std::vector<float> vec_scale(scaled_ins->get_shape().elements(), scale);
            auto l_scale = prog.add_literal(literal(scaled_ins->get_shape(), vec_scale));
            scaled_ins = prog.insert_instruction(insert_loc, op::mul{}, l_scale, float_ins);
        }

        auto shifted_ins = scaled_ins;
        if (shift != 0.0f)
        {
            auto float_ins = shifted_ins;
            if (shifted_ins->get_shape().type() != shape::float_type)
            {
                float_ins = prog.insert_instruction(insert_loc, op::convert{shape::float_type}, shifted_ins);
            }
            std::vector<float> vec_shift(shifted_ins->get_shape().elements(), shift);
            auto l_shift = prog.add_literal(literal(shifted_ins->get_shape(), vec_shift));
            shifted_ins = prog.insert_instruction(insert_loc, op::add{}, l_shift, float_ins);
        }

        auto clipped_ins = prog.insert_instruction(insert_loc, op::clip{127.0f, -128.0f}, shifted_ins);
        auto rounded_ins = prog.insert_instruction(insert_loc, op::round{}, clipped_ins);
        quant_ins = prog.insert_instruction(insert_loc, op::convert{type}, rounded_ins);
    }
    else
    {
        quant_ins    = prog.insert_instruction(insert_loc, op::convert{type}, ins);
    }
    
Shucai Xiao's avatar
Shucai Xiao committed
84
    map_ins[ins] = quant_ins;
85

Shucai Xiao's avatar
Shucai Xiao committed
86
    return quant_ins;
87
88
}

Shucai Xiao's avatar
Shucai Xiao committed
89
90
91
92
93
// This function is to convert any instructions specified in the input
// from double or float to float16 by inserting a convert operator.
// For the conversion, there could be cases of overflowing, but it
// is very rare in the area of deeping learning, so we just do a
// truncate of the input to get the fp16.
94
void quantize(program& prog, const std::vector<std::string>& ins_names)
95
{
96
    std::unordered_map<instruction_ref, instruction_ref> map_fp16;
Shucai Xiao's avatar
Shucai Xiao committed
97
    for(auto ins : iterator_for(prog))
98
    {
99
        // all indicates every instruction is converted
Shucai Xiao's avatar
Shucai Xiao committed
100
        if((not contains(ins_names, "all")) and (not contains(ins_names, ins->name())))
101
102
103
        {
            continue;
        }
104

105
        shape::type_t orig_type = ins->get_shape().type();
Shucai Xiao's avatar
Shucai Xiao committed
106
        // process all inputs, if input is a fp32 or fp64, convert it
107
        // to a fp16 by adding a convert operator.
108
        auto inputs = ins->inputs();
109
        std::vector<instruction_ref> converted_inputs;
Shucai Xiao's avatar
Shucai Xiao committed
110
        for(auto input : inputs)
111
112
        {
            auto s = input->get_shape();
Shucai Xiao's avatar
Shucai Xiao committed
113
            if(s.type() == shape::float_type || s.type() == shape::double_type)
114
            {
115
                // if the input is a convert operator, uses its input
116
117
                // as its current input
                instruction_ref input_fp16{};
118
                if(input->name() == "convert")
119
120
121
122
123
                {
                    input_fp16 = input->inputs().front();
                }
                else
                {
Shucai Xiao's avatar
Shucai Xiao committed
124
                    input_fp16 = insert_quant_ins(prog, input, shape::half_type, map_fp16);
125
                }
126
                converted_inputs.push_back(input_fp16);
127
            }
128
129
130
131
132
133
            else
            {
                converted_inputs.push_back(input);
            }
        }

134
        // no change for the input, go to the next instruction
Shucai Xiao's avatar
Shucai Xiao committed
135
        if(inputs == converted_inputs)
136
        {
137
            continue;
Shucai Xiao's avatar
Shucai Xiao committed
138
139
140
141
142
143
        }

        auto op        = ins->get_operator();
        auto ins_shape = compute_shape(op, converted_inputs);
        if(ins_shape.type() != orig_type)
        {
Shucai Xiao's avatar
Shucai Xiao committed
144
145
146
147
148
            // check the dead code case to avoid assert
            bool output_empty = ins->outputs().empty();
            auto ins_orig_type =
                prog.insert_instruction(std::next(ins), op::convert{orig_type}, ins);
            if(!output_empty)
149
            {
Shucai Xiao's avatar
Shucai Xiao committed
150
                prog.replace_instruction(ins, ins_orig_type);
151
            }
152
        }
Shucai Xiao's avatar
Shucai Xiao committed
153
154

        prog.replace_instruction(ins, op, converted_inputs);
155
156
157
    }
}

Shucai Xiao's avatar
Shucai Xiao committed
158
void quantize(program& prog) { quantize(prog, {"all"}); }
Shucai Xiao's avatar
Shucai Xiao committed
159

Shucai Xiao's avatar
Shucai Xiao committed
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
// int8 quantization is different from fp16 since int8 can only handle value
// -128 ~ 127. To convert the float or double to int8, we need a scale and
// a shift, then the convert can be done as v_int8 = fp * scale + shift.
// To simplify the changes, we consider shift as 0.0f for now.
void quantize_int8(program& prog,
                   const std::vector<std::string>& ins_names,
                   const std::vector<std::pair<float, float>>& quant_params)
{
    for(size_t i = 0; i < quant_params.size(); i++)
    {
        auto param = quant_params.at(i);
        std::cout << "index = " << i << ", scale = " << param.first << "\t" << param.second
                  << std::endl;
    }
    std::cout << std::endl;

    // For now, we only support the int8 quantization of gemm and convolution
    std::vector<std::string> op_names = {"dot", "convolution"};
    if(!std::all_of(ins_names.begin(), ins_names.end(), [&](auto name) {
           return (std::find(op_names.begin(), op_names.end(), name) != op_names.end());
       }))
    {
        MIGRAPHX_THROW("QUANTIZE_INT8: only support DOT and CONVOLUTION operation");
    }

    std::size_t quant_param_index = 0;
    std::unordered_map<instruction_ref, instruction_ref> map_quant_ins;
    std::unordered_map<instruction_ref, std::size_t> map_index;
    for(auto ins : iterator_for(prog))
    {
        if(not contains(ins_names, ins->name()))
        {
            continue;
        }

        shape::type_t orig_type = ins->get_shape().type();

        // for the dot operator, there could be 2 or 3 input arguments
        // if the 3rd argument is available, convert it to an int32.
        std::vector<instruction_ref> converted_inputs;

        // process all inputs, if input is a fp32 or fp64, convert it
        // to a int8 type by adding a convert operator and replace
        // the operator with the corresponding int8 version
        auto inputs = ins->inputs();
        std::vector<std::pair<float, float>> ins_quant_params;
        for(auto input : inputs)
        {
            // calculate the index of each instruction to be quantized
            if(map_index.count(input) == 0)
            {
                map_index[input] = quant_param_index++;
            }
            auto param = quant_params[map_index[input]];
            ins_quant_params.push_back(param);

            // In general, the target_type is int8, but for the dot
            // operation, if it has 3 inputs, then the last one should
            // be converted to int32_type
            shape::type_t quant_type = shape::int8_type;
            if(ins->name() == "dot" and inputs.size() == 3 and input == inputs.back())
            {
                quant_type = shape::int32_type;
            }

            auto s = input->get_shape();
Shucai Xiao's avatar
Shucai Xiao committed
226
227
            if((s.type() == shape::float_type or s.type() == shape::double_type or
                s.type() == shape::int32_type) and
Shucai Xiao's avatar
Shucai Xiao committed
228
229
230
231
232
233
234
235
236
237
238
239
240
241
               s.type() != quant_type)
            {
                // if the input is a convert operator, uses its input
                // as its current input
                instruction_ref quant_input{};
                if(input->name() == "convert")
                {
                    auto tmp_ins = input->inputs().front();
                    if(tmp_ins->get_shape().type() == quant_type)
                    {
                        quant_input = input->inputs().front();
                    }
                    else
                    {
Shucai Xiao's avatar
Shucai Xiao committed
242
                        quant_input = insert_quant_ins(prog, input, quant_type, map_quant_ins, param.first, param.second);
Shucai Xiao's avatar
Shucai Xiao committed
243
244
245
246
                    }
                }
                else
                {
Shucai Xiao's avatar
Shucai Xiao committed
247
                    quant_input = insert_quant_ins(prog, input, quant_type, map_quant_ins, param.first, param.second);
Shucai Xiao's avatar
Shucai Xiao committed
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
                }
                converted_inputs.push_back(quant_input);
            }
            else
            {
                converted_inputs.push_back(input);
            }
        }

        // no change for the input, go to the next instruction
        if(inputs == converted_inputs)
        {
            continue;
        }

        // When converting from other types to int8_type, there are parameters
        // used as scale and shift(.0f), which will generate results diffrent from
        // the original results. To adjust the output to be "correct(approximatly
        // equal)", we need additional calculation for the adjustment
        if(ins->name() == "dot")
        {
            auto dot_op = any_cast<op::dot>(ins->get_operator());
            float new_alpha =
                dot_op.alpha / (ins_quant_params[0].first * ins_quant_params[1].first);
            float new_beta = dot_op.beta;
            // We need additional checking about the quant_alpha value. If
            // abs(quant_alpha) > 50 (some tmp value set here), we can convert
            // it to an integer as the new_alpha in the quant_dot
            float threshold = 50.0f;
            if(fabs(new_alpha) >= threshold && fabs(new_beta) >= threshold)
            {
                int32_t quant_alpha = static_cast<int32_t>(new_alpha);
                int32_t quant_beta  = static_cast<int32_t>(new_beta);
                shape quant_shape   = compute_shape(op::quant_dot{1, 0}, converted_inputs);
                if(quant_shape.type() == orig_type)
                {
                    prog.replace_instruction(
                        ins, op::quant_dot{quant_alpha, quant_beta}, converted_inputs);
                }
                else
                {
                    auto quant_dot = prog.insert_instruction(
                        ins, op::quant_dot{quant_alpha, quant_beta}, converted_inputs);
                    prog.replace_instruction(ins, op::convert{orig_type}, quant_dot);
                }
            }
            // either alpha or beta cannot be quantized because of too big
            // relative rounding error
            else
            {
                auto q_dot = prog.insert_instruction(ins, op::quant_dot{1, 0}, converted_inputs);
                if(inputs.size() == 3 and dot_op.beta != 0.0f)
                {
Shucai Xiao's avatar
Shucai Xiao committed
301
302
                    auto alpha_ab = prog.insert_instruction(ins, op::convert{orig_type}, q_dot);
                    auto c_shape  = q_dot->get_shape();
Shucai Xiao's avatar
Shucai Xiao committed
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
                    std::vector<float> vec_beta(c_shape.elements(), dot_op.beta);
                    auto l_beta =
                        prog.add_literal(literal({shape::float_type, c_shape.lens()}, vec_beta));
                    instruction_ref beta_c{};
                    if(orig_type != shape::float_type)
                    {
                        auto fp32_c = prog.insert_instruction(
                            ins, op::convert{shape::float_type}, inputs.back());
                        auto fp32_beta_c = prog.insert_instruction(ins, op::mul{}, l_beta, fp32_c);
                        beta_c = prog.insert_instruction(ins, op::convert{orig_type}, fp32_beta_c);
                    }
                    else
                    {
                        beta_c = prog.insert_instruction(ins, op::mul{}, l_beta, inputs.back());
                    }
                    prog.replace_instruction(ins, op::add{}, alpha_ab, beta_c);
                }
                else
                {
Shucai Xiao's avatar
Shucai Xiao committed
322
                    prog.replace_instruction(ins, op::convert{orig_type}, q_dot);
Shucai Xiao's avatar
Shucai Xiao committed
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
                }
            }
        }
        else if(ins->name() == "convolution")
        {
            // Current MIOpen convolution does not support alpha and beta,
            // so we need a separate multiply to adjust the output
            auto conv_op       = any_cast<op::convolution>(ins->get_operator());
            auto padding       = conv_op.padding;
            auto stride        = conv_op.stride;
            auto dilation      = conv_op.dilation;
            auto padding_mode  = conv_op.padding_mode;
            auto group         = conv_op.group;
            auto adjust_factor = 1.0f / (ins_quant_params[0].first * ins_quant_params[1].first);

            auto quant_conv = prog.insert_instruction(
                ins,
                op::quant_convolution{padding, stride, dilation, padding_mode, group},
                converted_inputs);
Shucai Xiao's avatar
Shucai Xiao committed
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
            float threshold = 50.0f;
            std::vector<float> vec_factor(quant_conv->get_shape().elements(), adjust_factor);
            if (quant_conv->get_shape().type() == orig_type and adjust_factor >= threshold)
            {
                auto l_factor = prog.add_literal(literal(quant_conv->get_shape(), vec_factor.begin(), vec_factor.end()));
                prog.replace_instruction(ins, op::mul{}, quant_conv, l_factor);
            }
            // convert quant_conv output to float type, multiply the factor and
            // conver back to original type
            else
            {
                auto float_conv = prog.insert_instruction(ins, op::convert{shape::float_type}, quant_conv);
                auto l_factor = prog.add_literal(literal(float_conv->get_shape(), vec_factor));
                if (orig_type == shape::float_type)
                {
                    prog.replace_instruction(ins, op::mul{}, l_factor, float_conv);
                }
                else
                {
                    auto adjusted_conv = prog.insert_instruction(ins, op::mul{}, l_factor, float_conv);
                    prog.replace_instruction(ins, op::convert{orig_type}, adjusted_conv);                    
                }
            }
Shucai Xiao's avatar
Shucai Xiao committed
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
        }
        else
        {
            MIGRAPHX_THROW("QUANTIZE_INT8: does not support operator" + ins->name());
        }
    }

    if(quant_param_index != quant_params.size())
    {
        MIGRAPHX_THROW("QUANTIZE_INT8: number of scales does not match");
    }
}

void quantize_int8(program& prog, const std::vector<std::string>& ins_names)
{
    quantize_int8(prog, ins_names, *prog.int8_quant_params);
}

void quantize_int8(program& prog)
{
    std::vector<std::string> ins_names = {"dot", "convolution"};
    quantize_int8(prog, ins_names);
}

Shucai Xiao's avatar
Shucai Xiao committed
389
390
// For the input of each input argument, we need to insert a
// capture operator to compute the scale and shift
Shucai Xiao's avatar
Shucai Xiao committed
391
392
void capture_arguments(program& prog,
                       const std::vector<std::string>& ins_names,
Shucai Xiao's avatar
Shucai Xiao committed
393
                       const std::function<void(std::size_t, std::vector<argument>)>& func)
Shucai Xiao's avatar
Shucai Xiao committed
394
{
395

Shucai Xiao's avatar
Shucai Xiao committed
396
    size_t num_quant_params = 0;
Shucai Xiao's avatar
Shucai Xiao committed
397
    // the int8 quantization only support dot and convolution
Shucai Xiao's avatar
Shucai Xiao committed
398
    std::vector<std::string> op_names = {"dot", "convolution", "quant_dot", "quant_convolution"};
Shucai Xiao's avatar
Shucai Xiao committed
399
400
401
    if(!std::all_of(ins_names.begin(), ins_names.end(), [&](auto name) {
           return std::find(op_names.begin(), op_names.end(), name) != op_names.end();
       }))
Shucai Xiao's avatar
Shucai Xiao committed
402
403
404
405
406
407
408
    {
        MIGRAPHX_THROW("CAPTURE_ARGUMENTS: input operator is not supported");
    }

    std::unordered_map<instruction_ref, instruction_ref> ins_map;
    for(auto ins : iterator_for(prog))
    {
Shucai Xiao's avatar
Shucai Xiao committed
409
        if(not contains(ins_names, ins->name()))
Shucai Xiao's avatar
Shucai Xiao committed
410
411
412
413
414
415
        {
            continue;
        }

        auto inputs = ins->inputs();
        std::vector<instruction_ref> new_args;
Shucai Xiao's avatar
Shucai Xiao committed
416
        for(auto input : inputs)
Shucai Xiao's avatar
Shucai Xiao committed
417
418
        {
            instruction_ref new_ins{};
Shucai Xiao's avatar
Shucai Xiao committed
419
            if(ins_map.count(input) > 0)
Shucai Xiao's avatar
Shucai Xiao committed
420
421
422
423
424
            {
                new_ins = ins_map[input];
            }
            else
            {
Shucai Xiao's avatar
Shucai Xiao committed
425
                new_ins = prog.insert_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
426
                    std::next(input), op::capture{num_quant_params++, func}, input);
Shucai Xiao's avatar
Shucai Xiao committed
427
428
429
430
431
432
                ins_map[input] = new_ins;
            }
            new_args.push_back(new_ins);
        }
        instruction::replace(ins, ins->get_operator(), ins->get_shape(), new_args);
    }
Shucai Xiao's avatar
Shucai Xiao committed
433
434

    // set one pair of parameter for each argument
435
    prog.int8_quant_params->resize(num_quant_params, std::make_pair(-1.0f, -1.0f));
Shucai Xiao's avatar
Shucai Xiao committed
436
437
438
439
}

void capture_arguments(program& prog, const std::vector<std::string>& ins_names)
{
Shucai Xiao's avatar
Shucai Xiao committed
440
    auto calc_quant_params = [&](std::size_t ins_index, std::vector<migraphx::argument> args) {
441
442
443
444
445
446
        std::pair<float, float> param_pair{1.0f, 0.0f};

        // scale and shift is need for only int8 type, and we do not
        // consider shift, so set shift to 0
        std::vector<float> vec_val;
        args.front().visit([&](auto output) { vec_val.assign(output.begin(), output.end()); });
Shucai Xiao's avatar
Shucai Xiao committed
447
448
449
        auto max_val = *std::max_element(vec_val.begin(), vec_val.end());
        auto min_val = *std::min_element(vec_val.begin(), vec_val.end());
        auto max_abs = std::max(std::fabs(max_val), std::fabs(min_val));
450

Shucai Xiao's avatar
Shucai Xiao committed
451
        param_pair.first                     = 127.0f / max_abs;
452
        (*prog.int8_quant_params)[ins_index] = param_pair;
453
454
    };

Shucai Xiao's avatar
Shucai Xiao committed
455
    capture_arguments(prog, ins_names, calc_quant_params);
Shucai Xiao's avatar
Shucai Xiao committed
456
457
}

458
459
460
461
462
463
void capture_arguments(program& prog)
{
    std::vector<std::string> ins_names = {"dot", "convolution"};
    capture_arguments(prog, ins_names);
}

464
465
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx