glue.py 12.2 KB
Newer Older
Jason Phang's avatar
checkin  
Jason Phang committed
1
import numpy as np
Jason Phang's avatar
Jason Phang committed
2
from scipy.stats import pearsonr, spearmanr
Jason Phang's avatar
checkin  
Jason Phang committed
3
from sklearn.metrics import f1_score, matthews_corrcoef
Jason Phang's avatar
Jason Phang committed
4
from tqdm import auto as tqdm_lib
sdtblck's avatar
sdtblck committed
5
from . common import HFTask, simple_accuracy_metric, yesno
Jason Phang's avatar
checkin  
Jason Phang committed
6

Jason Phang's avatar
Jason Phang committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
def get_accuracy_and_f1(preds, golds):
    golds = np.array(golds)
    preds = np.array(preds)
    acc = float((preds == golds).mean())
    f1 = float(f1_score(y_true=golds, y_pred=preds))
    minor = {
        "acc": acc,
        "f1": f1,
        "acc_and_f1": (acc + f1) / 2,
    }
    return {
        "major": minor["acc_and_f1"],
        "minor": minor,
        "higher_is_better": True,
    }


sdtblck's avatar
sdtblck committed
24
class CoLA(HFTask):
sdtblck's avatar
sdtblck committed
25
26
    DATASET_PATH = "glue"
    DATASET_NAME = "cola"
27
    
Jason Phang's avatar
checkin  
Jason Phang committed
28
29
30
31
32
33
34
35
36
    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

Jason Phang's avatar
Jason Phang committed
37
38
39
    def fewshot_description(self):
        return "Does this sentence make sense?:\tTrue or False?"

Jason Phang's avatar
checkin  
Jason Phang committed
40
    def doc_to_text(self, doc, include_target=True):
Jason Phang's avatar
Jason Phang committed
41
        text = "Sentence: {}\nAnswer:".format(doc["sentence"])
Jason Phang's avatar
checkin  
Jason Phang committed
42
43
44
45
        if include_target:
            text += " {}".format({1: "True", 0: "False"}[doc["label"]])
        return text

Jason Phang's avatar
Jason Phang committed
46
    def evaluate(self, docs, lm, provide_description, num_fewshot):
Jason Phang's avatar
checkin  
Jason Phang committed
47
48
        golds = [doc["label"] for doc in docs]
        preds = []
Jason Phang's avatar
Jason Phang committed
49
50
51
52
53
        for doc in tqdm_lib.tqdm(docs):
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
Jason Phang's avatar
checkin  
Jason Phang committed
54
            )
Jason Phang's avatar
Jason Phang committed
55
            preds.append(lm.loglikelihood(ctx, ' True') > lm.loglikelihood(ctx, ' False'))
Jason Phang's avatar
checkin  
Jason Phang committed
56
57
58
59
60
61
62
63
64
65
        golds = np.array(golds)
        preds = np.array(preds)
        mcc = float(matthews_corrcoef(y_true=golds, y_pred=preds))
        return {
            "major": mcc,
            "minor": {"mcc": mcc},
            "higher_is_better": True,
        }


sdtblck's avatar
sdtblck committed
66
class MNLI(HFTask):
sdtblck's avatar
sdtblck committed
67
68
    DATASET_PATH = "glue"
    DATASET_NAME = "mnli"
Jason Phang's avatar
Jason Phang committed
69

Jason Phang's avatar
checkin  
Jason Phang committed
70
71
72
73
74
75
76
77
78
79
80
    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def validation_docs(self):
        if self.has_validation_docs():
sdtblck's avatar
sdtblck committed
81
            return self.data["validation_matched"]
Jason Phang's avatar
checkin  
Jason Phang committed
82
83
84

    def test_docs(self):
        if self.has_test_docs():
sdtblck's avatar
sdtblck committed
85
            return self.data["test_matched"]
Jason Phang's avatar
checkin  
Jason Phang committed
86
87
88

    def doc_to_text(self, doc, include_target=True):
        text = "{}\nquestion:\t{}\tTrue, False or Neither?\nanswer:".format(
Jason Phang's avatar
Jason Phang committed
89
90
            doc["premise"],
            doc["hypothesis"],
Jason Phang's avatar
checkin  
Jason Phang committed
91
92
93
94
95
96
97
98
        )
        if include_target:
            # True = entailment
            # False = contradiction
            # Neither = neutral
            text += " {}".format({0: "True", 1: "Neither", 2: "False"}[doc["label"]])
        return text

Jason Phang's avatar
Jason Phang committed
99
    def evaluate(self, docs, lm, provide_description, num_fewshot):
Jason Phang's avatar
checkin  
Jason Phang committed
100
101
        golds = [doc["label"] for doc in docs]
        preds = []
Jason Phang's avatar
Jason Phang committed
102
103
104
105
106
        for doc in tqdm_lib.tqdm(docs):
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
Jason Phang's avatar
checkin  
Jason Phang committed
107
            )
Jason Phang's avatar
Jason Phang committed
108
            probs = np.array([
Jason Phang's avatar
Jason Phang committed
109
110
111
                lm.loglikelihood(ctx, ' True'),
                lm.loglikelihood(ctx, ' Neither'),
                lm.loglikelihood(ctx, ' False'),
Jason Phang's avatar
Jason Phang committed
112
113
            ])
            preds.append(np.argmax(probs))
Jason Phang's avatar
checkin  
Jason Phang committed
114
115
116
        return simple_accuracy_metric(preds=preds, golds=golds)


Jason Phang's avatar
Jason Phang committed
117
118
119
120
121
122
123
124
125
126
127
class MNLIMismatched(MNLI):

    def validation_docs(self):
        if self.has_validation_docs():
            return self.data["validation_mismatched"]

    def test_docs(self):
        if self.has_test_docs():
            return self.data["test_mismatched"]


sdtblck's avatar
sdtblck committed
128
class MRPC(HFTask):
sdtblck's avatar
sdtblck committed
129
130
    DATASET_PATH = "glue"
    DATASET_NAME = "mrpc"
Jason Phang's avatar
Jason Phang committed
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def fewshot_description(self):
        return "Indicate if both sentences mean the same thing."

    def doc_to_text(self, doc, include_target=True):
        text = "sentence 1:\t{}\nsentence 2:\t{}\nanswer:".format(
            doc["sentence1"],
            doc["sentence2"],
        )
        if include_target:
            text += " {}".format(yesno(doc["label"]))
        return text

    def evaluate(self, docs, lm, provide_description, num_fewshot):
        golds = [doc["label"] for doc in docs]
        preds = []
        for doc in tqdm_lib.tqdm(docs):
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
            )
Jason Phang's avatar
Jason Phang committed
162
            preds.append(lm.loglikelihood(ctx, 'yes') > lm.loglikelihood(ctx, 'no'))
Jason Phang's avatar
Jason Phang committed
163
164
        return get_accuracy_and_f1(preds=preds, golds=golds)

165
      
sdtblck's avatar
sdtblck committed
166
class RTE(HFTask):
sdtblck's avatar
sdtblck committed
167
168
    DATASET_PATH = "glue"
    DATASET_NAME = "rte"
Jason Phang's avatar
checkin  
Jason Phang committed
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def doc_to_text(self, doc, include_target=True):
        text = "{}\nquestion:\t{}\tTrue or False?\nanswer:".format(
            doc["sentence1"],
            doc["sentence2"],
        )
        if include_target:
Jason Phang's avatar
seed  
Jason Phang committed
185
186
            # 0 = entailment
            # 1 = not_entailment
Jason Phang's avatar
Jason Phang committed
187
            text += " {}".format({0: "True", 1: "False"}[doc["label"]])
Jason Phang's avatar
checkin  
Jason Phang committed
188
189
        return text

Jason Phang's avatar
Jason Phang committed
190
191
192
193
194
195
196
197
198
    def evaluate(self, docs, lm, provide_description, num_fewshot):
        golds = [doc["label"] for doc in docs]
        preds = []
        for doc in tqdm_lib.tqdm(docs):
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
            )
Jason Phang's avatar
Jason Phang committed
199
            preds.append(lm.loglikelihood(ctx, ' False') > lm.loglikelihood(ctx, ' True'))
Jason Phang's avatar
Jason Phang committed
200
201
202
        return simple_accuracy_metric(preds=preds, golds=golds)


sdtblck's avatar
sdtblck committed
203
class QNLI(HFTask):
sdtblck's avatar
sdtblck committed
204
205
    DATASET_PATH = "glue"
    DATASET_NAME = "qnli"
Jason Phang's avatar
Jason Phang committed
206
207
208
209
210
211
212
213
214
215
216

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def doc_to_text(self, doc, include_target=True):
Jason Phang's avatar
Jason Phang committed
217
        text = "question:\t{}\nresponse:\t{}\nDoes this answer the question, Yes or No?:".format(
Jason Phang's avatar
Jason Phang committed
218
219
220
221
222
223
            doc["question"],
            doc["sentence"],
        )
        if include_target:
            # True = entailment
            # False = not entailment
Jason Phang's avatar
Jason Phang committed
224
            text += " {}".format({0: "Yes", 1: "No"}[doc["label"]])
Jason Phang's avatar
Jason Phang committed
225
226
227
228
229
230
231
232
233
234
235
        return text

    def evaluate(self, docs, lm, provide_description, num_fewshot):
        golds = [doc["label"] for doc in docs]
        preds = []
        for doc in tqdm_lib.tqdm(docs):
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
            )
Jason Phang's avatar
Jason Phang committed
236
            preds.append(lm.loglikelihood(ctx, ' False') > lm.loglikelihood(ctx, ' True'))
Jason Phang's avatar
Jason Phang committed
237
238
239
        return simple_accuracy_metric(preds=preds, golds=golds)


sdtblck's avatar
sdtblck committed
240
class QQP(HFTask):
sdtblck's avatar
sdtblck committed
241
242
    DATASET_PATH = "glue"
    DATASET_NAME = "qqp"
Jason Phang's avatar
Jason Phang committed
243
244
245
246
247
248
249
250
251
252
253

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def fewshot_description(self):
Jason Phang's avatar
Jason Phang committed
254
        return "Indicate if both questions ask the same thing."
Jason Phang's avatar
Jason Phang committed
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277

    def doc_to_text(self, doc, include_target=True):
        text = "question 1:\t{}\nquestion 2:\t{}\nanswer:".format(
            doc["question1"],
            doc["question2"],
        )
        if include_target:
            text += " {}".format(yesno(doc["label"]))
        return text

    def evaluate(self, docs, lm, provide_description, num_fewshot):
        golds = [doc["label"] for doc in docs]
        preds = []
        for doc in tqdm_lib.tqdm(docs):
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
            )
            preds.append(lm.loglikelihood(ctx, ' yes') > lm.loglikelihood(ctx, ' no'))
        return get_accuracy_and_f1(preds=preds, golds=golds)


sdtblck's avatar
sdtblck committed
278
class STSB(HFTask):
sdtblck's avatar
sdtblck committed
279
280
    DATASET_PATH = "glue"
    DATASET_NAME = "stsb"
Jason Phang's avatar
Jason Phang committed
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def fewshot_description(self):
        return "Indicate if both sentences mean the same thing from a scale of 0-5, " \
           "where 5 means identical and 0 means unrelated."

    def doc_to_text(self, doc, include_target=True):
        text = "sentence 1:\t{}\nsentence 2:\t{}\nanswer:".format(
            doc["sentence1"],
            doc["sentence2"],
        )
        if include_target:
Jason Phang's avatar
Jason Phang committed
301
            text += " {}".format(doc["label"])
Jason Phang's avatar
Jason Phang committed
302
303
304
        return text

    def evaluate(self, docs, lm, provide_description, num_fewshot):
Jason Phang's avatar
checkin  
Jason Phang committed
305
306
        golds = [doc["label"] for doc in docs]
        preds = []
Jason Phang's avatar
Jason Phang committed
307
308
309
310
311
        for doc in tqdm_lib.tqdm(docs):
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
Jason Phang's avatar
checkin  
Jason Phang committed
312
            )
Jason Phang's avatar
Jason Phang committed
313
314
315
316
            output = lm.generate(context=ctx, max_gen_length=5).strip()
            first_element = output.split()[0]
            if first_element.isnumeric():
                pred = max(min(float(first_element), 5.0), 0.0)
Jason Phang's avatar
checkin  
Jason Phang committed
317
            else:
Jason Phang's avatar
Jason Phang committed
318
                pred = 2.5
Jason Phang's avatar
Jason Phang committed
319
            import pdb; pdb.set_trace()
Jason Phang's avatar
Jason Phang committed
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
            preds.append(pred)
        pearson_corr = float(pearsonr(preds, golds)[0])
        spearman_corr = float(spearmanr(preds, golds)[0])
        minor = {
            "pearson": pearson_corr,
            "spearmanr": spearman_corr,
            "corr": (pearson_corr + spearman_corr) / 2,
        }
        return {
            "major": minor["corr"],
            "minor": minor,
            "higher_is_better": True,
        }


sdtblck's avatar
sdtblck committed
335
class SST(HFTask):
sdtblck's avatar
sdtblck committed
336
337
    DATASET_PATH = "glue"
    DATASET_NAME = "sst2"
Jason Phang's avatar
Jason Phang committed
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def fewshot_description(self):
        return "Indicate if each sentence is Positive or Negative."

    def doc_to_text(self, doc, include_target=True):
        text = "sentence:\t{}\t\nanswer:".format(
            doc["sentence"],
        )
        if include_target:
            text += " {}".format({1: "Positive", 0: "Negative"}[doc["label"]])
        return text

    def evaluate(self, docs, lm, provide_description, num_fewshot):
        golds = [doc["label"] for doc in docs]
        preds = []
        for doc in tqdm_lib.tqdm(docs):
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
            )
            preds.append(lm.loglikelihood(ctx, ' Positive') > lm.loglikelihood(ctx, ' Negative'))
        return simple_accuracy_metric(preds=preds, golds=golds)


sdtblck's avatar
sdtblck committed
372
class WNLI(HFTask):
sdtblck's avatar
sdtblck committed
373
374
    DATASET_PATH = "glue"
    DATASET_NAME = "wnli"
375
    
Jason Phang's avatar
Jason Phang committed
376
377
378
379
380
381
382
383
384
385
386
    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def doc_to_text(self, doc, include_target=True):
        text = "{}\nquestion:\t{}\tTrue, False or Neither?\nanswer:".format(
Jason Phang's avatar
Jason Phang committed
387
388
            doc["sentence1"],
            doc["sentence2"],
Jason Phang's avatar
Jason Phang committed
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
        )
        if include_target:
            # True = entailment
            # False = contradiction
            # Neither = neutral
            text += " {}".format({0: "True", 1: "Neither", 2: "False"}[doc["label"]])
        return text

    def evaluate(self, docs, lm, provide_description, num_fewshot):
        golds = [doc["label"] for doc in docs]
        preds = []
        for doc in tqdm_lib.tqdm(docs):
            ctx = self.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
            )
            probs = np.array([
Jason Phang's avatar
Jason Phang committed
407
408
409
                lm.loglikelihood(ctx, ' True'),
                lm.loglikelihood(ctx, ' Neither'),
                lm.loglikelihood(ctx, ' False'),
Jason Phang's avatar
Jason Phang committed
410
411
            ])
            preds.append(np.argmax(probs))
Jason Phang's avatar
checkin  
Jason Phang committed
412
        return simple_accuracy_metric(preds=preds, golds=golds)