utils.py 15.9 KB
Newer Older
sdtblck's avatar
sdtblck committed
1
import os
Leo Gao's avatar
Leo Gao committed
2
import re
Stephen Hogg's avatar
Stephen Hogg committed
3
import sys
4
5
6
7
8
9
import yaml
import inspect
import pathlib
import functools
import subprocess
import collections
lintangsutawika's avatar
lintangsutawika committed
10
import importlib.util
gakada's avatar
gakada committed
11
import fnmatch
12

13
14
from typing import List, Union

15
import gc
16
import torch
haileyschoelkopf's avatar
haileyschoelkopf committed
17
import transformers
sdtblck's avatar
sdtblck committed
18

Xingjian Shi's avatar
Xingjian Shi committed
19
from omegaconf import OmegaConf
20
from jinja2 import BaseLoader, Environment, StrictUndefined
21
from itertools import islice
sdtblck's avatar
sdtblck committed
22

23
from lm_eval.logger import eval_logger
sdtblck's avatar
sdtblck committed
24
25
26
27
28
29
30
31
32
33
34


class ExitCodeError(Exception):
    pass


def sh(x):
    if os.system(x):
        raise ExitCodeError()


35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
def escaped_split(text, sep_char, maxsplit=-1):
    """Split text into a list on occurrences of the given separation
    character `sep_char`. The separation character may be escaped by a
    backslash to avoid splitting at that location.

    The separation character must be a string of size 1.

    If `maxsplit` is given, at most `maxsplit` splits are done (thus,
    the list will have at most `maxsplit + 1` elements). If `maxsplit`
    is not specified or less than 0, then there is no limit on the
    number of splits (all possible splits are made).
    """
    assert (
        len(sep_char) == 1
    ), "separation string must be a single character for escaped splitting"

    if maxsplit == 0:
        return text
    maxsplit = max(0, maxsplit)

    return re.split(r"(?<!\\)" + sep_char, text, maxsplit)


Jason Phang's avatar
gpt3  
Jason Phang committed
58
59
60
61
62
63
def simple_parse_args_string(args_string):
    """
    Parses something like
        args1=val1,arg2=val2
    Into a dictionary
    """
Jason Phang's avatar
Jason Phang committed
64
    args_string = args_string.strip()
Jason Phang's avatar
gpt3  
Jason Phang committed
65
66
67
    if not args_string:
        return {}
    arg_list = args_string.split(",")
Xingjian Shi's avatar
Xingjian Shi committed
68
    args_dict = OmegaConf.to_object(OmegaConf.from_dotlist(arg_list))
Jason Phang's avatar
gpt3  
Jason Phang committed
69
    return args_dict
Leo Gao's avatar
Leo Gao committed
70

Fabrizio Milo's avatar
Fabrizio Milo committed
71

Leo Gao's avatar
Leo Gao committed
72
73
def join_iters(iters):
    for iter in iters:
Leo Gao's avatar
Leo Gao committed
74
        yield from iter
Leo Gao's avatar
Leo Gao committed
75
76


77
def chunks(iter, n=0, fn=None):
Leo Gao's avatar
Leo Gao committed
78
    arr = []
79
    for i, x in enumerate(iter):
Leo Gao's avatar
Leo Gao committed
80
        arr.append(x)
81
        if len(arr) == (fn(i) if fn else n):
Leo Gao's avatar
Leo Gao committed
82
83
            yield arr
            arr = []
Fabrizio Milo's avatar
Fabrizio Milo committed
84
85
86
87

    if arr:
        yield arr

Leo Gao's avatar
Leo Gao committed
88

89
90
91
92
93
def group(arr, fn):
    res = collections.defaultdict(list)

    for ob in arr:
        res[fn(ob)].append(ob)
Fabrizio Milo's avatar
Fabrizio Milo committed
94

95
96
    return list(res.values())

Fabrizio Milo's avatar
Fabrizio Milo committed
97

gakada's avatar
gakada committed
98
99
100
101
102
103
104
class MultiChoice:
    def __init__(self, choices):
        self.choices = choices

    # Simple wildcard support (linux filename patterns)
    def __contains__(self, values):
        for value in values.split(","):
105
106
107
108
109
            if len(fnmatch.filter(self.choices, value)) == 0:
                eval_logger.warning("{} is not in task list.".format(value))
                eval_logger.info(f"Available tasks to choose:")
                for choice in self.choices:
                    eval_logger.info(f"  - {choice}")
gakada's avatar
gakada committed
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
        return True

    def __iter__(self):
        for choice in self.choices:
            yield choice


# Returns a list containing all values of the source_list that
# match at least one of the patterns
def pattern_match(patterns, source_list):
    task_names = set()
    for pattern in patterns:
        for matching in fnmatch.filter(source_list, pattern):
            task_names.add(matching)
    return sorted(list(task_names))


Leo Gao's avatar
Leo Gao committed
127
128
129
130
def general_detokenize(string):
    string = string.replace(" n't", "n't")
    string = string.replace(" )", ")")
    string = string.replace("( ", "(")
Fabrizio Milo's avatar
Fabrizio Milo committed
131
132
    string = string.replace('" ', '"')
    string = string.replace(' "', '"')
Leo Gao's avatar
Fix  
Leo Gao committed
133
    string = re.sub(r" (['.,])", r"\1", string)
134
135
136
    return string


Jason Phang's avatar
Jason Phang committed
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
def get_rolling_token_windows(token_list, prefix_token, max_seq_len, context_len):
    """
    - context_len allows for a rolling window context, allowing each prediction window to potentially
      condition on some context

    :param token_list: list
        List of tokens to be PREDICTED
    :param max_seq_len: int
        max_seq_len of model (or max_seq_len we want to use)
    :param context_len: int
        Amount of desired token context for prediction. Needs to be at least 1.
    :param prefix_token: token
        Dummy token like <eos> so the first token has something to condition on
    :return: generator
        Generator of tuples
            (input_tokens, pred_tokens)
        Note: Score only the last len(pred_tokens) logits of the LM
    """
    assert 1 <= context_len <= max_seq_len
    if not token_list:
        return
    # +1 offset, going from input->preds
    pred_len = max_seq_len - context_len + 1
    predicted = 0

    # Special handling for first window: predict all tokens
    first_seq_len = min(max_seq_len, len(token_list))
Fabrizio Milo's avatar
Fabrizio Milo committed
164
    yield ([prefix_token] + token_list[: first_seq_len - 1], token_list[:first_seq_len])
Jason Phang's avatar
Jason Phang committed
165
166
167
168
169
    predicted += first_seq_len

    while predicted < len(token_list):
        window_pred_len = min(len(token_list) - predicted, pred_len)
        window_end = predicted + window_pred_len
Leo Gao's avatar
Leo Gao committed
170

Jason Phang's avatar
Jason Phang committed
171
        yield (
lintangsutawika's avatar
lintangsutawika committed
172
173
            token_list[window_end - max_seq_len - 1 : window_end - 1],
            token_list[window_end - window_pred_len : window_end],
Jason Phang's avatar
Jason Phang committed
174
175
176
        )
        predicted += window_pred_len

Fabrizio Milo's avatar
Fabrizio Milo committed
177

Leo Gao's avatar
Leo Gao committed
178
def make_disjoint_window(pair):
Fabrizio Milo's avatar
Fabrizio Milo committed
179
    """Takes output from get_rolling_token_windows and makes the context not overlap with the continuation"""
Leo Gao's avatar
Leo Gao committed
180
    a, b = pair
181
    return a[: len(a) - (len(b) - 1)], b
Fabrizio Milo's avatar
Fabrizio Milo committed
182

Jason Phang's avatar
Jason Phang committed
183

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
def select_continuation_from_batch_left_padding(
    generations: Union[List[List[int]], torch.Tensor], max_context_size: int
):
    """Select the continuation from the batch, removing prompts of different lengths.
    Args:
        generations (Union[List[List[int]], torch.Tensor]):
            A tensor or list-of-lists of shape [batch_size, sequence length].
        max_context_size (int):
            The size of the biggest context; generations will proceed from that
            index.
    Example:
        PAD     PAD Continue : The dog chased the cat  [every       day of the week]
        Riddle  me    this   : The  dog chased the  cat [yesterday] PAD PAD PAD PAD
    Output:
        [every day of the week]
        [yesterday]  PAD PAD PAD PAD
    """
    return generations[:, max_context_size:]


204
205
206
207
208
class Reorderer:
    def __init__(self, arr, fn):
        self.size = len(arr)
        arr = list(enumerate(arr))
        arr = group(arr, lambda x: fn(x[1]))
209
210
211
        # arr = [([y[0] for y in x], x[0][1]) for x in arr]
        # TODO: overhaul reorderer. It currently grouped requests by content but we don't want this
        arr = [([y[0]], x[0][1]) for x in arr for y in x]
212
213
214
        arr.sort(key=lambda x: fn(x[1]))

        self.arr = arr
Fabrizio Milo's avatar
Fabrizio Milo committed
215

216
217
    def get_reordered(self):
        return [x[1] for x in self.arr]
Fabrizio Milo's avatar
Fabrizio Milo committed
218

219
220
221
222
223
    def get_original(self, newarr):
        res = [None] * self.size
        cov = [False] * self.size

        for (inds, _), v in zip(self.arr, newarr):
Fabrizio Milo's avatar
Fabrizio Milo committed
224
            for ind in inds:
225
226
                res[ind] = v
                cov[ind] = True
Fabrizio Milo's avatar
Fabrizio Milo committed
227

228
        assert all(cov)
Fabrizio Milo's avatar
Fabrizio Milo committed
229

230
231
        return res

Fabrizio Milo's avatar
Fabrizio Milo committed
232

233
234
235
236
237
238
def make_table(result_dict):
    """Generate table of results."""
    from pytablewriter import MarkdownTableWriter, LatexTableWriter

    md_writer = MarkdownTableWriter()
    latex_writer = LatexTableWriter()
239
    md_writer.headers = ["Task", "Version", "Filter", "Metric", "Value", "", "Stderr"]
lintangsutawika's avatar
lintangsutawika committed
240
241
242
243
244
245
246
247
248
    latex_writer.headers = [
        "Task",
        "Version",
        "Filter",
        "Metric",
        "Value",
        "",
        "Stderr",
    ]
249
250
251
252
253

    values = []

    for k, dic in result_dict["results"].items():
        version = result_dict["versions"][k]
254
255
        for (mf), v in dic.items():
            m, _, f = mf.partition(",")
256
257
258
            if m.endswith("_stderr"):
                continue

259
260
261
            if m + "_stderr" + "," + f in dic:
                se = dic[m + "_stderr" + "," + f]
                values.append([k, version, f, m, "%.4f" % v, "±", "%.4f" % se])
262
            else:
263
                values.append([k, version, f, m, "%.4f" % v, "", ""])
264
265
266
267
268
269
270
271
272
273
274
            k = ""
            version = ""
    md_writer.value_matrix = values
    latex_writer.value_matrix = values

    # todo: make latex table look good
    # print(latex_writer.dumps())

    return md_writer.dumps()


275
276
def positional_deprecated(fn):
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
277
    A decorator to nudge users into passing only keyword args (`kwargs`) to the
278
279
    wrapped function, `fn`.
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
280

281
282
    @functools.wraps(fn)
    def _wrapper(*args, **kwargs):
Fabrizio Milo's avatar
Fabrizio Milo committed
283
284
285
        if len(args) != 1 if inspect.ismethod(fn) else 0:
            print(
                f"WARNING: using {fn.__name__} with positional arguments is "
286
                "deprecated and will be disallowed in a future version of "
Fabrizio Milo's avatar
Fabrizio Milo committed
287
288
                "lm-evaluation-harness!"
            )
289
        return fn(*args, **kwargs)
Fabrizio Milo's avatar
Fabrizio Milo committed
290

291
    return _wrapper
Stephen Hogg's avatar
Stephen Hogg committed
292

Fabrizio Milo's avatar
Fabrizio Milo committed
293

Stephen Hogg's avatar
Stephen Hogg committed
294
295
296
297
298
299
300
301
302
@positional_deprecated
def find_test_root(start_path: pathlib.Path) -> pathlib.Path:
    """
    Search upward in the directory tree to a maximum of three layers
    to find and return the package root (containing the 'tests' folder)
    """
    cur_path = start_path.resolve()
    max_layers = 3
    for _ in range(max_layers):
Fabrizio Milo's avatar
Fabrizio Milo committed
303
        if (cur_path / "tests" / "test_version_stable.py").exists():
Stephen Hogg's avatar
Stephen Hogg committed
304
305
306
            return cur_path
        else:
            cur_path = cur_path.parent.resolve()
Fabrizio Milo's avatar
Fabrizio Milo committed
307
308
309
310
    raise FileNotFoundError(
        f"Unable to find package root within {max_layers} upwards" + f"of {start_path}"
    )

Stephen Hogg's avatar
Stephen Hogg committed
311
312

@positional_deprecated
313
def run_task_tests(task_list: List[str]):
Stephen Hogg's avatar
Stephen Hogg committed
314
315
316
    """
    Find the package root and run the tests for the given tasks
    """
jon-tow's avatar
jon-tow committed
317
318
    import pytest

319
    package_root = find_test_root(start_path=pathlib.Path(__file__))
Fabrizio Milo's avatar
Fabrizio Milo committed
320
321
322
323
324
325
326
    task_string = " or ".join(task_list)
    args = [
        f"{package_root}/tests/test_version_stable.py",
        f"--rootdir={package_root}",
        "-k",
        f"{task_string}",
    ]
Stephen Hogg's avatar
Stephen Hogg committed
327
328
329
    sys.path.append(str(package_root))
    pytest_return_val = pytest.main(args)
    if pytest_return_val:
Fabrizio Milo's avatar
Fabrizio Milo committed
330
331
332
        raise ValueError(
            f"Not all tests for the specified tasks ({task_list}) ran successfully! Error code: {pytest_return_val}"
        )
333
334


335
336
337
338
339
340
341
342
343
344
345
346
347
def get_git_commit_hash():
    """
    Gets the git commit hash of your current repo (if it exists).
    Source: https://github.com/EleutherAI/gpt-neox/blob/b608043be541602170bfcfb8ec9bf85e8a0799e0/megatron/neox_arguments/neox_args.py#L42
    """
    try:
        git_hash = subprocess.check_output(["git", "describe", "--always"]).strip()
        git_hash = git_hash.decode()
    except subprocess.CalledProcessError:
        git_hash = None
    return git_hash


lintangsutawika's avatar
lintangsutawika committed
348
349
350
351
352
def import_function(loader, node):

    function_name = loader.construct_scalar(node)
    yaml_path = os.path.dirname(loader.name)

lintangsutawika's avatar
lintangsutawika committed
353
    module_name, function_name = function_name.split(".")
lintangsutawika's avatar
lintangsutawika committed
354
355
356
357
358
359
360
361
362
    module_path = os.path.join(yaml_path, "{}.py".format(module_name))

    spec = importlib.util.spec_from_file_location(module_name, module_path)
    module = importlib.util.module_from_spec(spec)
    spec.loader.exec_module(module)

    function = getattr(module, function_name)
    return function

lintangsutawika's avatar
lintangsutawika committed
363

lintangsutawika's avatar
lintangsutawika committed
364
# Add the import_function constructor to the YAML loader
lintangsutawika's avatar
lintangsutawika committed
365
yaml.add_constructor("!function", import_function)
lintangsutawika's avatar
lintangsutawika committed
366
367
368


def load_yaml_config(yaml_path):
lintangsutawika's avatar
lintangsutawika committed
369
    with open(yaml_path, "rb") as file:
lintangsutawika's avatar
lintangsutawika committed
370
371
        yaml_config = yaml.full_load(file)
        yaml_dir = os.path.dirname(yaml_path)
lintangsutawika's avatar
lintangsutawika committed
372
373
374
375

        if "include" in yaml_config:
            include_path = yaml_config["include"]
            del yaml_config["include"]
lintangsutawika's avatar
lintangsutawika committed
376
377
378

            if type(include_path) == str:
                include_path = [include_path]
lintangsutawika's avatar
lintangsutawika committed
379

lintangsutawika's avatar
lintangsutawika committed
380
381
382
383
384
385
            # Load from the last one first
            include_path.reverse()
            final_yaml_config = {}
            for path in include_path:

                # Assumes that path is a full path.
lintangsutawika's avatar
lintangsutawika committed
386
                # If not found, assume the included yaml
lintangsutawika's avatar
lintangsutawika committed
387
388
389
390
391
392
393
                # is in the same dir as the original yaml
                if not os.path.isfile(path):
                    path = os.path.join(yaml_dir, path)

                try:
                    included_yaml_config = load_yaml_config(path)
                    final_yaml_config.update(included_yaml_config)
lintangsutawika's avatar
lintangsutawika committed
394
                except Exception as ex:
lintangsutawika's avatar
lintangsutawika committed
395
                    # If failed to load, ignore
lintangsutawika's avatar
lintangsutawika committed
396
                    raise ex
lintangsutawika's avatar
lintangsutawika committed
397
398
399
400
401
402

            final_yaml_config.update(yaml_config)
            return final_yaml_config
        return yaml_config


403
env = Environment(loader=BaseLoader, undefined=StrictUndefined)
404
405
406
407
408


def apply_template(template, doc):
    rtemplate = env.from_string(template)
    return rtemplate.render(**doc)
409
410


411
412
413
414
def create_iterator(raw_iterator, rank, world_size, limit=None):
    """
    Method for creating a (potentially) sliced and limited
    iterator from a raw document iterator. Used for splitting data
415
416
417
    among ranks in multigpu setting or only pulling a sample of documents
    """
    return islice(raw_iterator, rank, limit, world_size)
418
419


420
421
422
def clear_torch_cache():
    gc.collect()
    torch.cuda.empty_cache()
haileyschoelkopf's avatar
haileyschoelkopf committed
423
424


lintangsutawika's avatar
lintangsutawika committed
425
def get_dtype(dtype: Union[str, torch.dtype]) -> torch.dtype:
haileyschoelkopf's avatar
haileyschoelkopf committed
426
427
428
429
430
431
    """Converts `dtype` from `str` to torch.dtype when possible. Does not use an instantiated HF AutoConfig"""
    if isinstance(dtype, str) and dtype != "auto":
        # Convert `str` args torch dtype: `float16` -> `torch.float16`
        _torch_dtype = getattr(torch, dtype)
    else:
        _torch_dtype = dtype
lintangsutawika's avatar
lintangsutawika committed
432
    return _torch_dtype
lintangsutawika's avatar
lintangsutawika committed
433
434


haileyschoelkopf's avatar
haileyschoelkopf committed
435
436
437
438
439
def pad_and_concat(max_length:int, tensors: List[torch.Tensor], padding_side="right"):
    """ 
    Method for padding a list of tensors given the maximum tensor 
    length in the batch. Used for batching inputs and continuations in 
    seq2seq models. 
lintangsutawika's avatar
lintangsutawika committed
440
    """
haileyschoelkopf's avatar
haileyschoelkopf committed
441
442
    assert padding_side == "left" or padding_side == "right", f"Unrecognized padding type: '{padding_side}' not 'left' or 'right'"

lintangsutawika's avatar
lintangsutawika committed
443
444
445
    for i, tensor in enumerate(tensors):
        tensor_len = tensor.shape[0]
        if tensor_len < max_length:
haileyschoelkopf's avatar
haileyschoelkopf committed
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
            if padding_side == "right":
                # right-pad
                tensors[i] = torch.cat(
                        [
                            tensor,  # [seq]
                            torch.zeros(max_length - tensor_len, dtype=torch.long).to(
                                tensor.device
                            ),  # [padding_length - seq]
                        ],
                        dim=0,
                    ).unsqueeze(0)
            else:
                # left-pad
                tensors[i] = torch.cat(
                    [
                        torch.zeros(max_length - tensor_len, dtype=torch.long).to(
                            tensor.device
                        ),  # [padding_length - seq]
                        tensor, # [seq]
                    ],
                    dim=0,
                ).unsqueeze(0)
lintangsutawika's avatar
lintangsutawika committed
468
469
470
        else:
            tensors[i] = tensor.unsqueeze(0)

haileyschoelkopf's avatar
haileyschoelkopf committed
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
    return torch.cat(tensors, dim = 0)


# Multi-token stopping criteria 
class MultiTokenEOSCriteria(transformers.StoppingCriteria):
    """Criteria to stop on the specified multi-token sequence."""

    def __init__(
        self,
        sequence: str,
        tokenizer: transformers.PreTrainedTokenizer,
        initial_decoder_input_length: int,
        batch_size: int,
    ):
        self.initial_decoder_input_length = initial_decoder_input_length
        self.done_tracker = [False] * batch_size
        self.sequence = sequence
        self.sequence_ids = tokenizer.encode(sequence, add_special_tokens=False)
        self.sequence_id_len = len(self.sequence_ids)
        self.tokenizer = tokenizer

    def __call__(self, input_ids, scores, **kwargs) -> bool:
        # For efficiency, we compare the last n tokens where n is the number of tokens in the stop_sequence
        lookback_ids_batch = input_ids[:, self.initial_decoder_input_length :][
            :, -self.sequence_id_len :
        ]

        lookback_tokens_batch = self.tokenizer.batch_decode(lookback_ids_batch)

        for i, done in enumerate(self.done_tracker):
            if not done:
                self.done_tracker[i] = self.sequence in lookback_tokens_batch[i]
        return False not in self.done_tracker


def stop_sequences_criteria(
    tokenizer: transformers.PreTrainedTokenizer,
    stop_sequences: List[str],
    initial_decoder_input_length: int,
    batch_size: int,
) -> transformers.StoppingCriteriaList:
    return transformers.StoppingCriteriaList(
        [
            *[
                MultiTokenEOSCriteria(
                    sequence, tokenizer, initial_decoder_input_length, batch_size
                )
                for sequence in stop_sequences
            ],
        ]
    )