evaluator.py 23 KB
Newer Older
lintangsutawika's avatar
lintangsutawika committed
1
import random
Leo Gao's avatar
Leo Gao committed
2
import itertools
FarzanehNakhaee's avatar
FarzanehNakhaee committed
3
import json
lintangsutawika's avatar
lintangsutawika committed
4
import collections
FarzanehNakhaee's avatar
FarzanehNakhaee committed
5
6
import logging
import sys
lintangsutawika's avatar
lintangsutawika committed
7

8
9
import torch

10
import numpy as np
lintangsutawika's avatar
lintangsutawika committed
11
12

import lm_eval.api
13
import lm_eval.tasks
lintangsutawika's avatar
lintangsutawika committed
14
import lm_eval.models
lintangsutawika's avatar
lintangsutawika committed
15
import lm_eval.api.metrics
lintangsutawika's avatar
lintangsutawika committed
16
import lm_eval.api.registry
lintangsutawika's avatar
lintangsutawika committed
17

lintangsutawika's avatar
lintangsutawika committed
18
19
20
21
from lm_eval.utils import (
    positional_deprecated,
    run_task_tests,
    make_table,
22
    create_iterator,
lintangsutawika's avatar
lintangsutawika committed
23
24
    get_git_commit_hash,
)
25

lintangsutawika's avatar
lintangsutawika committed
26
27
from lm_eval.logger import eval_logger

FarzanehNakhaee's avatar
FarzanehNakhaee committed
28
29
30
31
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
logger.addHandler(logging.StreamHandler(sys.stdout))

Fabrizio Milo's avatar
Fabrizio Milo committed
32

33
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
34
35
36
37
def simple_evaluate(
    model,
    model_args=None,
    tasks=[],
38
    num_fewshot=None,
Fabrizio Milo's avatar
Fabrizio Milo committed
39
    batch_size=None,
40
    max_batch_size=None,
Fabrizio Milo's avatar
Fabrizio Milo committed
41
    device=None,
haileyschoelkopf's avatar
haileyschoelkopf committed
42
    use_cache=None,
Fabrizio Milo's avatar
Fabrizio Milo committed
43
    limit=None,
Ethan Smith's avatar
Ethan Smith committed
44
45
    bootstrap_iters: int = 100000,
    check_integrity: bool = False,
Fabrizio Milo's avatar
Fabrizio Milo committed
46
    decontamination_ngrams_path=None,
Ethan Smith's avatar
Ethan Smith committed
47
48
    write_out: bool = False,
    log_samples: bool = True,
Fabrizio Milo's avatar
Fabrizio Milo committed
49
):
50
    """Instantiate and evaluate a model on a list of tasks.
51

52
53
54
    :param model: Union[str, LM]
        Name of model or LM object, see lm_eval.models.get_model
    :param model_args: Optional[str]
Fabrizio Milo's avatar
Fabrizio Milo committed
55
        String arguments for each model class, see LM.create_from_arg_string.
56
57
        Ignored if `model` argument is a LM object.
    :param tasks: list[Union[str, Task]]
Leo Gao's avatar
Leo Gao committed
58
        List of task names or Task objects. Task objects will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
59
60
    :param num_fewshot: int
        Number of examples in few-shot context
61
    :param batch_size: int or str, optional
62
        Batch size for model
63
64
    :param max_batch_size: int, optional
        Maximal batch size to try with automatic batch size detection
65
    :param device: str, optional
66
        PyTorch device (e.g. "cpu" or "cuda:0") for running models
haileyschoelkopf's avatar
haileyschoelkopf committed
67
68
    :param use_cache: str, optional
        A path to a sqlite db file for caching model responses. `None` if not caching.
69
70
    :param limit: int or float, optional
        Limit the number of examples per task (only use this for testing), If <1, limit is a percentage of the total number of examples.
71
72
    :param bootstrap_iters:
        Number of iterations for bootstrap statistics
Stephen Hogg's avatar
Stephen Hogg committed
73
74
    :param check_integrity: bool
        Whether to run the relevant part of the test suite for the tasks
75
    :param write_out: bool
76
77
78
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
79
    :return
80
        Dictionary of results
81
    """
82
    random.seed(0)
83
    np.random.seed(1234)
84
85
86
    torch.manual_seed(
        1234
    )  # TODO: this may affect training runs that are run with evaluation mid-run.
87

88
89
90
    assert (
        tasks != []
    ), "No tasks specified, or no tasks found. Please verify the task names."
91
92

    if isinstance(model, str):
Fabrizio Milo's avatar
Fabrizio Milo committed
93
94
        if model_args is None:
            model_args = ""
lintangsutawika's avatar
lintangsutawika committed
95
        lm = lm_eval.api.registry.get_model(model).create_from_arg_string(
lintangsutawika's avatar
lintangsutawika committed
96
97
98
99
100
101
            model_args,
            {
                "batch_size": batch_size,
                "max_batch_size": max_batch_size,
                "device": device,
            },
Fabrizio Milo's avatar
Fabrizio Milo committed
102
        )
103
    else:
104
        assert isinstance(model, lm_eval.api.model.LM)
105
        lm = model
106

haileyschoelkopf's avatar
haileyschoelkopf committed
107
108
109
110
111
112
113
114
115
116
    if use_cache is not None:
        print(f"Using cache at {use_cache + '_rank' + str(lm.rank) + '.db'}")
        lm = lm_eval.api.model.CachingLM(
            lm,
            use_cache
            # each rank receives a different cache db.
            # necessary to avoid multiple writes to cache at once
            + "_rank" + str(lm.rank) + ".db",
        )

117
118
    task_dict = lm_eval.tasks.get_task_dict(tasks)
    for task_name in task_dict.keys():
lintangsutawika's avatar
lintangsutawika committed
119
120
121
        task_obj = task_dict[task_name]
        if type(task_obj) == tuple:
            group, task_obj = task_obj
122
123
            if task_obj is None:
                continue
lintangsutawika's avatar
lintangsutawika committed
124
125

        config = task_obj._config
126
127
128
129
130
131
132
        if num_fewshot is not None:
            if config["num_fewshot"] > 0:
                default_num_fewshot = config["num_fewshot"]
                eval_logger.warning(
                    f"Overwriting default num_fewshot of {task_name} from {default_num_fewshot} to {num_fewshot}"
                )

Lintang Sutawika's avatar
Lintang Sutawika committed
133
            task_obj._config["num_fewshot"] = num_fewshot
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
134

Stephen Hogg's avatar
Stephen Hogg committed
135
    if check_integrity:
136
        run_task_tests(task_list=tasks)
Stephen Hogg's avatar
Stephen Hogg committed
137

138
139
140
141
    results = evaluate(
        lm=lm,
        task_dict=task_dict,
        limit=limit,
Niklas Muennighoff's avatar
Niklas Muennighoff committed
142
        bootstrap_iters=bootstrap_iters,
Fabrizio Milo's avatar
Fabrizio Milo committed
143
        decontamination_ngrams_path=decontamination_ngrams_path,
144
        write_out=write_out,
145
        log_samples=log_samples,
146
    )
147

148
149
150
    if lm.rank == 0:
        # add info about the model and few shot config
        results["config"] = {
lintangsutawika's avatar
lintangsutawika committed
151
152
153
            "model": model
            if isinstance(model, str)
            else model.model.config._name_or_path,
154
155
            "model_args": model_args,
            "batch_size": batch_size,
lintangsutawika's avatar
lintangsutawika committed
156
157
158
            "batch_sizes": list(lm.batch_sizes.values())
            if hasattr(lm, "batch_sizes")
            else [],
159
            "device": device,
haileyschoelkopf's avatar
haileyschoelkopf committed
160
            "use_cache": use_cache,
161
162
163
            "limit": limit,
            "bootstrap_iters": bootstrap_iters,
        }
164
        results["git_hash"] = get_git_commit_hash()
165
166
167
        return results
    else:
        return None
168

Leo Gao's avatar
Leo Gao committed
169

170
decontaminate_suffix = "_decontaminate"
Leo Gao's avatar
Leo Gao committed
171

Fabrizio Milo's avatar
Fabrizio Milo committed
172

173
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
174
175
176
177
def evaluate(
    lm,
    task_dict,
    limit=None,
Ethan Smith's avatar
Ethan Smith committed
178
    bootstrap_iters: int = 100000,
Fabrizio Milo's avatar
Fabrizio Milo committed
179
    decontamination_ngrams_path=None,
Ethan Smith's avatar
Ethan Smith committed
180
181
    write_out: bool = False,
    log_samples: bool = True,
Fabrizio Milo's avatar
Fabrizio Milo committed
182
):
183
184
185
186
187
    """Instantiate and evaluate a model on a list of tasks.

    :param lm: obj
        Language Model
    :param task_dict: dict[str, Task]
haileyschoelkopf's avatar
haileyschoelkopf committed
188
        Dictionary of tasks. Tasks will be taken to have name type(task).config.task .
189
190
191
192
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
    :param bootstrap_iters:
        Number of iterations for bootstrap statistics
193
    :param write_out: bool
194
195
196
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
197
198
199
    :return
        Dictionary of results
    """
200

lintangsutawika's avatar
lintangsutawika committed
201
    # decontaminate = decontamination_ngrams_path is not None
202

203
    # stores the final result for each task, for each metric/filter pair.
Leo Gao's avatar
Leo Gao committed
204
    results = collections.defaultdict(dict)
205
    # Tracks each task's version.
Leo Gao's avatar
Leo Gao committed
206
    versions = collections.defaultdict(dict)
207
    # Tracks the YAML configs of all chosen tasks.
208
    configs = collections.defaultdict(dict)
209
    # logs info about each document evaluated.
lintangsutawika's avatar
lintangsutawika committed
210
    samples = collections.defaultdict(list)
211
    # tracks all Instances/requests a model must generate output on.
Leo Gao's avatar
Leo Gao committed
212
    requests = collections.defaultdict(list)
213
    # Aggregated task scores presented with groups
214
    results_agg = collections.defaultdict(dict)
215
    # Aggregated groups scores only
lintangsutawika's avatar
lintangsutawika committed
216
    groups_agg = collections.defaultdict(dict)
217
218
    # stores the amount to pad out reqs per req. type so that
    # number of fwd passes per distributed rank is equal
219
    padding_requests = collections.defaultdict(int)
lintangsutawika's avatar
lintangsutawika committed
220
    # store the hierarchy to do proper ordering
lintangsutawika's avatar
lintangsutawika committed
221
    task_hierarchy = collections.defaultdict(list)
lintangsutawika's avatar
lintangsutawika committed
222
    # store the ordering of tasks and groups
lintangsutawika's avatar
lintangsutawika committed
223
    task_order = collections.defaultdict(int)
lintangsutawika's avatar
lintangsutawika committed
224
    task_group_alias = collections.defaultdict(dict)
225

226
    # get lists of each type of request
227
    for task_name, task in task_dict.items():
228
        if type(task) == tuple:
lintangsutawika's avatar
lintangsutawika committed
229
230
            group_name, task = task
            task_hierarchy[group_name].append(task_name)
231
            versions[group_name] = "N/A"
lintangsutawika's avatar
lintangsutawika committed
232
233
234
235

            if "group_alias" in configs[task_name]:
                task_group_alias[group_name] = configs[task_name]["group_alias"]

236
        else:
lintangsutawika's avatar
lintangsutawika committed
237
238
239
240
            task_hierarchy[task_name] = []

        if task is None:
            continue
241

Leo Gao's avatar
Leo Gao committed
242
        versions[task_name] = task.VERSION
haileyschoelkopf's avatar
haileyschoelkopf committed
243
244
        configs[task_name] = dict(task.dump_config())

lintangsutawika's avatar
lintangsutawika committed
245
246
247
        if "task_alias" in configs[task_name]:
            task_group_alias[task_name] = configs[task_name]["task_alias"]

Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
248
        if limit is not None:
249
250
251
252
253
254
            if task.has_test_docs():
                task_docs = task.test_docs()
            elif task.has_validation_docs():
                task_docs = task.validation_docs()
            else:
                raise RuntimeError("Task has neither test_docs nor validation_docs")
255
            limit = int(len(task_docs) * limit) if limit < 1.0 else int(limit)
256

257
258
        task.build_all_requests(limit=limit, rank=lm.rank, world_size=lm.world_size)

haileyschoelkopf's avatar
haileyschoelkopf committed
259
260
261
262
263
264
265
        eval_logger.info(
            f"Task: {task_name}; number of requests on this rank: {len(task.instances)}"
        )

        if write_out:
            for inst in task.instances:
                # print the prompt for the first few documents
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
266
267
                if inst.doc_id < 1:
                    eval_logger.info(
haileyschoelkopf's avatar
haileyschoelkopf committed
268
269
                        f"Task: {task_name}; document {inst.doc_id}; context prompt (starting on next line):\
\n{inst.args[0]}\n(end of prompt on previous line)\ntarget string or answer choice index (starting on next line):\n{task.doc_to_target(inst.doc)}\n(end of target on previous line)"
haileyschoelkopf's avatar
haileyschoelkopf committed
270
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
271
                    eval_logger.info(f"Request: {str(inst)}")
haileyschoelkopf's avatar
haileyschoelkopf committed
272

273
        # aggregate Instances by LM method requested to get output.
lintangsutawika's avatar
lintangsutawika committed
274
275
        reqtype = (
            "loglikelihood"
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
276
            if task.OUTPUT_TYPE == "multiple_choice"
lintangsutawika's avatar
lintangsutawika committed
277
278
279
            else task.OUTPUT_TYPE
        )  # TODO: this is hacky, fix in task.py
        requests[reqtype].extend(task.instances)
280
281

        if lm.world_size > 1:
282
283
284
285
            instances_rnk = torch.tensor(len(task._instances), device=lm.device)
            gathered_item = (
                lm.accelerator.gather(instances_rnk).cpu().detach().numpy().tolist()
            )
286

287
            # compute number of pseudobatches to pad with (FSDP/DDP require even batches among ranks)
288
            numpad = max(gathered_item) - gathered_item[lm.rank]
289
            padding_requests[task.OUTPUT_TYPE] += numpad
290

291
    ### Run LM on inputs, get all outputs ###
Leo Gao's avatar
Leo Gao committed
292
293
    # execute each type of request
    for reqtype, reqs in requests.items():
lintangsutawika's avatar
lintangsutawika committed
294
        eval_logger.info("Running {} requests".format(reqtype))
295
296
297
298
        # create `K` copies of each request `req` based off `K = req.repeats`
        cloned_reqs = []
        for req in reqs:
            cloned_reqs.extend([req] * req.repeats)
lintangsutawika's avatar
lintangsutawika committed
299

300
301
        if (lm.world_size > 1) and (padding_requests[reqtype] > 0):
            for _ in range(padding_requests[reqtype]):
302
303
                cloned_reqs.extend([req] * req.repeats)

304
305
306
307
308
309
310
        # run requests through model
        resps = getattr(lm, reqtype)(cloned_reqs)

        # put responses from model into a list of length K for each request.
        for x, req in zip(resps, cloned_reqs):
            req.resps.append(x)

311
312
        if lm.world_size > 1:
            lm.accelerator.wait_for_everyone()
313

314
315
316
    ### Postprocess outputs ###
    # TODO: del model here, maybe (idea: allow user to specify device of e.g. reward model separately)
    for task_name, task in task_dict.items():
317
318
        if type(task) == tuple:
            group, task = task
319
320
            if task is None:
                continue
321
322
323
        task.apply_filters()

    ### Collect values of metrics on all datapoints ###
Leo Gao's avatar
Leo Gao committed
324
325
326
    vals = collections.defaultdict(list)

    # unpack results and sort back in order and return control to Task
327
    for task_name, task in task_dict.items():
328
329
        if type(task) == tuple:
            group, task = task
330
331
            if task is None:
                continue
haileyschoelkopf's avatar
haileyschoelkopf committed
332
333
        # TODO: make it possible to use a different metric per filter
        # iterate over different filters used
334
        for key in task.instances[0].filtered_resps.keys():
335
336
337
338
            doc_iterator = (
                itertools.islice(
                    enumerate(task.test_docs()), lm.rank, limit, lm.world_size
                )
lintangsutawika's avatar
lintangsutawika committed
339
                if task.has_test_docs()
340
341
342
343
                else itertools.islice(
                    enumerate(task.validation_docs()), lm.rank, limit, lm.world_size
                )
            )
344
            for doc_id, doc in doc_iterator:
345
346
                # subset instances to only this document id ; sort by idx
                requests = list(filter(lambda x: x.doc_id == doc_id, task.instances))
347
                requests.sort(key=lambda x: x.idx)
lintangsutawika's avatar
lintangsutawika committed
348
349
350
                metrics = task.process_results(
                    doc, [req.filtered_resps[key] for req in requests]
                )
351
352
353
354
355
356
357
358
359
360
361
362
                if log_samples:
                    target = task.doc_to_target(doc)
                    example = {
                        "doc_id": doc_id,
                        "doc": doc,
                        "target": target,
                        "arguments": [req.args for req in requests],
                        "resps": [req.resps for req in requests],
                        "filtered_resps": [req.filtered_resps[key] for req in requests],
                    }
                    example.update(metrics)
                    samples[task_name].append(example)
363
364
365
                for metric, value in metrics.items():
                    vals[(task_name, key, metric)].append(value)

366
    if lm.world_size > 1:
367
        # if multigpu, then gather data across all ranks
368
369
370
371
372
373
374
375
        # first gather logged samples across all ranks
        for task_name, task_samples in list(samples.items()):
            full_samples = [None] * lm.world_size
            torch.distributed.all_gather_object(full_samples, task_samples)

            samples[task_name] = list(itertools.chain.from_iterable(full_samples))

        # then collect metrics across all ranks
376
377
        vals_torch = collections.defaultdict(list)
        for (task_name, key, metric), items in vals.items():
378
            numitem = 0
379
            if type(items[0]) == tuple:
380
381
                numitem = len(items[0])

382
383
384
385
            if isinstance(items[0], (str, list)):
                # handle the string case
                gathered_items = [None] * lm.accelerator.num_processes
                torch.distributed.all_gather_object(gathered_items, items)
386

387
                gathered_item = list(itertools.chain.from_iterable(gathered_items))
388
            else:
389
390
391
392
393
394
395
396
397
398
                # distributed gather requires all ranks to have same dimensions
                # so we pad out with float32 min value
                pad_value = torch.finfo(torch.float32).min
                metrics_tensor = torch.tensor(items, device=lm.device)

                original_dtype = metrics_tensor.dtype  # store original dtype
                torch_device_tensor = lm.accelerator.pad_across_processes(
                    metrics_tensor.to(torch.float32), pad_index=pad_value
                )
                gathered_item = lm.accelerator.gather(torch_device_tensor)
399

400
401
402
403
404
405
406
407
408
409
410
                if numitem > 0:
                    gathered_filtered = gathered_item[gathered_item[:, 0] != pad_value]
                else:
                    gathered_filtered = gathered_item[gathered_item != pad_value]

                gathered_item = (
                    gathered_filtered.to(original_dtype).cpu().detach().numpy().tolist()
                )
                # reconvert if we were passed a tuple of values
                if numitem > 0:
                    gathered_item = [tuple(g) for g in gathered_item]
411

412
413
            if lm.rank == 0:
                vals_torch[(task_name, key, metric)] = gathered_item
414

415
        vals = vals_torch
416

417
    if lm.rank == 0:
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445

        ### Get task ordering for correct sample-wide aggregation
        group_to_task = {}
        for group in task_hierarchy.keys():
            if group not in task_order:
                task_order[group] = 0

            if len(task_hierarchy[group]) > 0:
                group_to_task[group] = task_hierarchy[group].copy()

            for task in task_hierarchy[group]:

                if task in task_order:
                    task_order[task] += 1
                else:
                    task_order[task] = 1 + task_order[group]

                if task in task_hierarchy:
                    group_to_task[group].remove(task)
                    group_to_task[group].extend(task_hierarchy[task])

        task_to_group = {}
        for group in group_to_task:
            for task in group_to_task[group]:
                if task in task_to_group:
                    task_to_group[task].append(group)
                else:
                    task_to_group[task] = [group]
lintangsutawika's avatar
lintangsutawika committed
446

447
448
449
450
        ### Aggregate results over all datapoints ###
        # aggregate results ; run bootstrap CIs
        for (task_name, key, metric), items in vals.items():
            task = task_dict[task_name]
lintangsutawika's avatar
lintangsutawika committed
451
452
            metric_key = metric + "," + key

453
            if type(task) == tuple:
lintangsutawika's avatar
lintangsutawika committed
454
455
456
457
                group_name, task = task
            else:
                group_name = None

458
            agg_fn = task.aggregation()[metric]
459
460
            results[task_name][metric_key] = agg_fn(items)
            results[task_name]["samples"] = len(items)
lintangsutawika's avatar
lintangsutawika committed
461

462
463
            # hotfix: bleu, chrf, ter seem to be really expensive to bootstrap
            # so we run them less iterations. still looking for a cleaner way to do this
haileyschoelkopf's avatar
haileyschoelkopf committed
464
            if bootstrap_iters > 0:
haileyschoelkopf's avatar
haileyschoelkopf committed
465
466
                stderr = lm_eval.api.metrics.stderr_for_metric(
                    metric=task.aggregation()[metric],
haileyschoelkopf's avatar
haileyschoelkopf committed
467
                    bootstrap_iters=min(bootstrap_iters, 100)
haileyschoelkopf's avatar
haileyschoelkopf committed
468
469
470
                    if metric in ["bleu", "chrf", "ter"]
                    else bootstrap_iters,
                )
471

haileyschoelkopf's avatar
haileyschoelkopf committed
472
473
                if stderr is not None:
                    results[task_name][metric + "_stderr" + "," + key] = stderr(items)
Fabrizio Milo's avatar
Fabrizio Milo committed
474

lintangsutawika's avatar
lintangsutawika committed
475
        if bool(results):
476
477

            for group, task_list in reversed(task_hierarchy.items()):
478

479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
                if task_list == []:
                    total_size = results[group]["samples"]
                else:
                    total_size = 0

                    for task in task_list:
                        metrics = results[task]

                        current_size = metrics.pop("samples")
                        # TODO: There should be a way for users
                        #       to toggle between weighted and
                        #       unweighted averaging
                        # For unweighted averaging, use:
                        #     current_size = 1

                        all_stderr = []
                        for metric in [
                            key for key in metrics.keys() if "_stderr" not in key
                        ]:

                            stderr = "_stderr,".join(metric.split(","))
                            stderr_score = results[task][stderr]
                            metric_score = results[task][metric]

                            all_stderr.append(stderr)

                            if metric in results[group]:
                                results[group][metric] = (
                                    results[group][metric] * total_size
                                    + metric_score * current_size
                                ) / (total_size + current_size)
                                # $$s_z^2 = \frac{(n-1) s_x^2 + (m-1) s_y^2}{n+m-1} + \frac{nm(\bar x - \bar y)^2}{(n+m)(n+m-1)}.$$
                                results[group][stderr] = (
                                    (total_size - 1) * results[group][stderr]
                                    + (current_size - 1) * stderr_score
                                ) / (
                                    total_size + current_size - 1
                                ) + total_size * current_size / (
                                    (total_size + current_size)
                                    * (total_size + current_size - 1)
                                ) * (
                                    results[group][metric] - metric_score
                                ) ** 2
                            else:
                                results[group][metric] = metric_score
                                results[group][stderr] = stderr_score

                        total_size += current_size

                    for stderr in all_stderr:
                        results[group][stderr] = np.sqrt(results[group][stderr])
lintangsutawika's avatar
lintangsutawika committed
530

531
                results[group]["samples"] = total_size
lintangsutawika's avatar
lintangsutawika committed
532

lintangsutawika's avatar
lintangsutawika committed
533
        def print_tasks(task_hierarchy, task_order, task_version, task_group_alias):
534
535
536
537
538

            results_agg = collections.defaultdict(dict)
            groups_agg = collections.defaultdict(dict)
            for group_name, task_list in task_hierarchy.items():

lintangsutawika's avatar
lintangsutawika committed
539
                order = task_order[group_name]
lintangsutawika's avatar
lintangsutawika committed
540
541
                results_agg[group_name] = results[group_name]
                results_agg[group_name]["tab"] = order
542
543

                if (order < max(task_order.values())) and (len(task_list) > 0):
lintangsutawika's avatar
lintangsutawika committed
544
545
                    groups_agg[group_name] = results[group_name]
                    groups_agg[group_name]["tab"] = order
546
547
548
549
550
551
552
553
554

                if task_list != []:
                    for task in sorted(task_list):
                        if task in task_hierarchy:
                            _task_hierarchy = {task: task_hierarchy[task]}
                        else:
                            _task_hierarchy = {task: []}

                        _results_agg, _groups_agg, task_version = print_tasks(
lintangsutawika's avatar
lintangsutawika committed
555
                            _task_hierarchy, task_order, task_version, task_group_alias
556
557
558
559
560
561
562
563
                        )

                        results_agg = {**results_agg, **_results_agg}
                        groups_agg = {**groups_agg, **_groups_agg}

            return results_agg, groups_agg, task_version

        results_agg, groups_agg, versions = print_tasks(
lintangsutawika's avatar
lintangsutawika committed
564
            task_hierarchy, task_order, versions, task_group_alias
565
        )
lintangsutawika's avatar
lintangsutawika committed
566

lintangsutawika's avatar
lintangsutawika committed
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
        _results_agg = collections.defaultdict(dict)
        _versions = collections.defaultdict(dict)
        for task in results_agg:
            task_results = results_agg[task]
            if "tab" in task_results:
                tab = task_results.pop("tab")
                tab_string = " "*(tab-1)+"-" if tab > 0 else ""

            if task in task_group_alias:
                task_alias = task_group_alias[task]
                _results_agg[tab_string+task_alias] = task_results
                _versions[tab_string+task_alias] = versions[task]
            else:
                _results_agg[tab_string+task] = task_results
                _versions[tab_string+task] = versions[task]
        results_agg = _results_agg
        versions = _versions

        _groups_agg = collections.defaultdict(dict)
        for group in groups_agg:
            group_results = groups_agg[group]
            if "tab" in group_results:
                tab = group_results.pop("tab")
                tab_string = " "*(tab-1)+"-" if tab > 0 else ""

            if group in task_group_alias:
                group_alias = task_group_alias[group]
                _groups_agg[tab_string+group_alias] = group_results
            else:
                _groups_agg[tab_string+group] = group_results
        groups_agg = _groups_agg

599
        results_dict = {
600
            "results": dict(results_agg.items()),
lintangsutawika's avatar
lintangsutawika committed
601
            **({"groups": dict(groups_agg.items())} if bool(groups_agg) else {}),
602
603
            "configs": dict(sorted(configs.items())),
            "versions": dict(sorted(versions.items())),
604
        }
605
606
607
608
        if log_samples:
            results_dict["samples"] = dict(samples)

        return results_dict
Fabrizio Milo's avatar
Fabrizio Milo committed
609

610
611
    else:
        return None