glue.py 12.3 KB
Newer Older
Jason Phang's avatar
checkin  
Jason Phang committed
1
import numpy as np
Jonathan Tow's avatar
Jonathan Tow committed
2
from lm_eval.base import rf, mean, f1_score, matthews_corrcoef
Jason Phang's avatar
Jason Phang committed
3
4
from scipy.stats import pearsonr, spearmanr
from tqdm import auto as tqdm_lib
Jonathan Tow's avatar
Jonathan Tow committed
5
6
7
8
from . common import HFTask, yesno


# Single-Sentence Tasks
Jason Phang's avatar
Jason Phang committed
9
10


sdtblck's avatar
sdtblck committed
11
class CoLA(HFTask):
sdtblck's avatar
sdtblck committed
12
13
    DATASET_PATH = "glue"
    DATASET_NAME = "cola"
Jonathan Tow's avatar
Jonathan Tow committed
14

Jason Phang's avatar
checkin  
Jason Phang committed
15
16
17
18
19
20
21
22
23
    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

Jason Phang's avatar
Jason Phang committed
24
25
26
    def fewshot_description(self):
        return "Does this sentence make sense?:\tTrue or False?"

27
28
29
30
31
    def doc_to_text(self, doc):
        return "Sentence: {}\nAnswer:".format(doc["sentence"])

    def doc_to_target(self, doc):
        return " {}".format({1: "True", 0: "False"}[doc["label"]])
Jason Phang's avatar
checkin  
Jason Phang committed
32

Jonathan Tow's avatar
Jonathan Tow committed
33
34
35
36
    def construct_requests(self, doc, ctx):
        ll_true, _ = rf.loglikelihood(ctx, " True")
        ll_false, _ = rf.loglikelihood(ctx, " False")
        return ll_true, ll_false
37

Jonathan Tow's avatar
Jonathan Tow committed
38
39
40
41
42
43
44
    def process_results(self, doc, results):
        ll_true, ll_false = results
        pred = ll_true > ll_false
        gold = doc["label"]
        return {
            "mcc": (gold, pred)
        }
45

Jonathan Tow's avatar
Jonathan Tow committed
46
    def higher_is_better(self):
Jason Phang's avatar
checkin  
Jason Phang committed
47
        return {
Jonathan Tow's avatar
Jonathan Tow committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
            "mcc": True
        }

    def aggregation(self):
        return {
            "mcc": matthews_corrcoef
        }


class SST(HFTask):
    DATASET_PATH = "glue"
    DATASET_NAME = "sst2"

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def fewshot_description(self):
        return "Indicate if each sentence is Positive or Negative."

    def doc_to_text(self, doc):
        return "sentence:\t{}\t\nanswer:".format(
            doc["sentence"],
        )

    def doc_to_target(self, doc):
        return " {}".format({1: "Positive", 0: "Negative"}[doc["label"]])

    def construct_requests(self, doc, ctx):
        ll_positive, _ = rf.loglikelihood(ctx, " Positive")
        ll_negative, _ = rf.loglikelihood(ctx, " Negative")
        return ll_positive, ll_negative

    def process_results(self, doc, results):
        ll_positive, ll_negative = results
        pred = ll_positive > ll_negative
        gold = doc["label"]
        return {
            "acc": pred == gold
        }

    def higher_is_better(self):
        return {
            "acc": True
Jason Phang's avatar
checkin  
Jason Phang committed
97
98
        }

Jonathan Tow's avatar
Jonathan Tow committed
99
100
101
102
103
104
105
106
    def aggregation(self):
        return {
            "acc": mean
        }


# Inference Tasks

Jason Phang's avatar
checkin  
Jason Phang committed
107

sdtblck's avatar
sdtblck committed
108
class MNLI(HFTask):
sdtblck's avatar
sdtblck committed
109
110
    DATASET_PATH = "glue"
    DATASET_NAME = "mnli"
Jason Phang's avatar
Jason Phang committed
111

Jason Phang's avatar
checkin  
Jason Phang committed
112
113
114
115
116
117
118
119
120
121
122
    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def validation_docs(self):
        if self.has_validation_docs():
sdtblck's avatar
sdtblck committed
123
            return self.data["validation_matched"]
Jason Phang's avatar
checkin  
Jason Phang committed
124
125
126

    def test_docs(self):
        if self.has_test_docs():
sdtblck's avatar
sdtblck committed
127
            return self.data["test_matched"]
Jason Phang's avatar
checkin  
Jason Phang committed
128

129
130
    def doc_to_text(self, doc):
        return "{}\nquestion:\t{}\tTrue, False or Neither?\nanswer:".format(
Jason Phang's avatar
Jason Phang committed
131
132
            doc["premise"],
            doc["hypothesis"],
Jason Phang's avatar
checkin  
Jason Phang committed
133
        )
134
135
136
137
138
139

    def doc_to_target(self, doc):
        # True = entailment
        # False = contradiction
        # Neither = neutral
        return " {}".format({0: "True", 1: "Neither", 2: "False"}[doc["label"]])
Jason Phang's avatar
checkin  
Jason Phang committed
140

Jonathan Tow's avatar
Jonathan Tow committed
141
142
143
144
145
    def construct_requests(self, doc, ctx):
        ll_true, _ = rf.loglikelihood(ctx, " True")
        ll_neither, _ = rf.loglikelihood(ctx, " Neither")
        ll_false, _ = rf.loglikelihood(ctx, " False")
        return ll_true, ll_neither, ll_false
146

Jonathan Tow's avatar
Jonathan Tow committed
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
    def process_results(self, doc, results):
        gold = doc["label"]
        pred = np.argmax(results)
        return {
            "acc": pred == gold
        }

    def higher_is_better(self):
        return {
            "acc": True
        }

    def aggregation(self):
        return {
            "acc": mean
        }
Jason Phang's avatar
checkin  
Jason Phang committed
163
164


Jason Phang's avatar
Jason Phang committed
165
166
167
168
169
170
171
172
173
174
175
class MNLIMismatched(MNLI):

    def validation_docs(self):
        if self.has_validation_docs():
            return self.data["validation_mismatched"]

    def test_docs(self):
        if self.has_test_docs():
            return self.data["test_mismatched"]


Jonathan Tow's avatar
Jonathan Tow committed
176
class QNLI(HFTask):
sdtblck's avatar
sdtblck committed
177
    DATASET_PATH = "glue"
Jonathan Tow's avatar
Jonathan Tow committed
178
    DATASET_NAME = "qnli"
Jason Phang's avatar
Jason Phang committed
179
180
181
182
183
184
185
186
187
188

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

Jonathan Tow's avatar
Jonathan Tow committed
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
    def doc_to_text(self, doc):
        return "question:\t{}\nresponse:\t{}\nDoes this answer the question, Yes or No?:".format(
            doc["question"],
            doc["sentence"],
        )

    def doc_to_target(self, doc):
        # True = entailment
        # False = not entailment
        return " {}".format({0: "Yes", 1: "No"}[doc["label"]])

    def construct_requests(self, doc, ctx):
        ll_yes, _ = rf.loglikelihood(ctx, " Yes")
        ll_no, _ = rf.loglikelihood(ctx, " No")
        return ll_yes, ll_no

    def process_results(self, doc, results):
        ll_yes, ll_no = results
        pred = ll_no > ll_yes
        gold = doc["label"]
        return {
            "acc": pred == gold
        }

    def higher_is_better(self):
        return {
            "acc": True
        }

    def aggregation(self):
        return {
            "acc": mean
        }


class WNLI(HFTask):
    DATASET_PATH = "glue"
    DATASET_NAME = "wnli"

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True
Jason Phang's avatar
Jason Phang committed
236

237
    def doc_to_text(self, doc):
Jonathan Tow's avatar
Jonathan Tow committed
238
        return "{}\nquestion:\t{}\tTrue, False or Neither?\nanswer:".format(
Jason Phang's avatar
Jason Phang committed
239
240
241
            doc["sentence1"],
            doc["sentence2"],
        )
242
243

    def doc_to_target(self, doc):
Jonathan Tow's avatar
Jonathan Tow committed
244
245
246
247
        # True = entailment
        # False = contradiction
        # Neither = neutral
        return " {}".format({0: "True", 1: "Neither", 2: "False"}[doc["label"]])
Jason Phang's avatar
Jason Phang committed
248

Jonathan Tow's avatar
Jonathan Tow committed
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
    def construct_requests(self, doc, ctx):
        ll_true, _ = rf.loglikelihood(ctx, " True")
        ll_neither, _ = rf.loglikelihood(ctx, " Neither")
        ll_false, _ = rf.loglikelihood(ctx, " False")
        return ll_true, ll_neither, ll_false

    def process_results(self, doc, results):
        gold = doc["label"]
        pred = np.argmax(results)
        return {
            "acc": pred == gold
        }

    def higher_is_better(self):
        return {
            "acc": True
        }

    def aggregation(self):
        return {
            "acc": mean
        }
271

Jason Phang's avatar
Jason Phang committed
272

sdtblck's avatar
sdtblck committed
273
class RTE(HFTask):
sdtblck's avatar
sdtblck committed
274
275
    DATASET_PATH = "glue"
    DATASET_NAME = "rte"
Jason Phang's avatar
checkin  
Jason Phang committed
276
277
278
279
280
281
282
283
284
285

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

286
287
    def doc_to_text(self, doc):
        return "{}\nquestion:\t{}\tTrue or False?\nanswer:".format(
Jason Phang's avatar
checkin  
Jason Phang committed
288
289
290
            doc["sentence1"],
            doc["sentence2"],
        )
291
292
293
294
295

    def doc_to_target(self, doc):
        # 0 = entailment
        # 1 = not_entailment
        return " {}".format({0: "True", 1: "False"}[doc["label"]])
Jason Phang's avatar
checkin  
Jason Phang committed
296

Jonathan Tow's avatar
Jonathan Tow committed
297
298
299
300
    def construct_requests(self, doc, ctx):
        ll_true, _ = rf.loglikelihood(ctx, " True")
        ll_false, _ = rf.loglikelihood(ctx, " False")
        return ll_true, ll_false
301

Jonathan Tow's avatar
Jonathan Tow committed
302
303
304
305
306
307
308
309
310
311
312
313
    def process_results(self, doc, results):
        ll_true, ll_false = results
        pred = ll_false > ll_true
        gold = doc["label"]
        return {
            "acc": pred == gold
        }

    def higher_is_better(self):
        return {
            "acc": True
        }
Jason Phang's avatar
Jason Phang committed
314

Jonathan Tow's avatar
Jonathan Tow committed
315
316
317
318
    def aggregation(self):
        return {
            "acc": mean
        }
Jason Phang's avatar
Jason Phang committed
319

Jonathan Tow's avatar
Jonathan Tow committed
320
321
322
323
324

# Similarity and Paraphrase Tasks


class MRPC(HFTask):
sdtblck's avatar
sdtblck committed
325
    DATASET_PATH = "glue"
Jonathan Tow's avatar
Jonathan Tow committed
326
    DATASET_NAME = "mrpc"
Jason Phang's avatar
Jason Phang committed
327
328
329
330
331
332
333
334
335
336

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

Jonathan Tow's avatar
Jonathan Tow committed
337
338
339
    def fewshot_description(self):
        return "Indicate if both sentences mean the same thing."

340
    def doc_to_text(self, doc):
Jonathan Tow's avatar
Jonathan Tow committed
341
342
343
        return "sentence 1:\t{}\nsentence 2:\t{}\nanswer:".format(
            doc["sentence1"],
            doc["sentence2"],
Jason Phang's avatar
Jason Phang committed
344
        )
345
346

    def doc_to_target(self, doc):
Jonathan Tow's avatar
Jonathan Tow committed
347
        return " {}".format(yesno(doc["label"]))
Jason Phang's avatar
Jason Phang committed
348

Jonathan Tow's avatar
Jonathan Tow committed
349
350
351
352
    def construct_requests(self, doc, ctx):
        ll_yes, _ = rf.loglikelihood(ctx, " yes")
        ll_no, _ = rf.loglikelihood(ctx, " no")
        return ll_yes, ll_no
353

Jonathan Tow's avatar
Jonathan Tow committed
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
    def process_results(self, doc, results):
        ll_yes, ll_no = results
        gold = doc["label"]
        pred = ll_yes > ll_no
        return {
            "acc": pred == gold,
            "f1": (gold, pred),
        }

    def higher_is_better(self):
        return {
            "acc": True,
            "f1": True
        }

    def aggregation(self):
        return {
            "acc": mean,
            "f1": f1_score
        }
Jason Phang's avatar
Jason Phang committed
374
375


sdtblck's avatar
sdtblck committed
376
class QQP(HFTask):
sdtblck's avatar
sdtblck committed
377
378
    DATASET_PATH = "glue"
    DATASET_NAME = "qqp"
Jason Phang's avatar
Jason Phang committed
379
380
381
382
383
384
385
386
387
388
389

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def fewshot_description(self):
Jason Phang's avatar
Jason Phang committed
390
        return "Indicate if both questions ask the same thing."
Jason Phang's avatar
Jason Phang committed
391

392
393
    def doc_to_text(self, doc):
        return "question 1:\t{}\nquestion 2:\t{}\nanswer:".format(
Jason Phang's avatar
Jason Phang committed
394
395
396
            doc["question1"],
            doc["question2"],
        )
397
398
399

    def doc_to_target(self, doc):
        return " {}".format(yesno(doc["label"]))
Jason Phang's avatar
Jason Phang committed
400

Jonathan Tow's avatar
Jonathan Tow committed
401
402
403
404
    def construct_requests(self, doc, ctx):
        ll_yes, _ = rf.loglikelihood(ctx, " yes")
        ll_no, _ = rf.loglikelihood(ctx, " no")
        return ll_yes, ll_no
405

Jonathan Tow's avatar
Jonathan Tow committed
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
    def process_results(self, doc, results):
        ll_yes, ll_no = results
        gold = doc["label"]
        pred = ll_yes > ll_no
        return {
            "acc": pred == gold,
            "f1": (gold, pred),
        }

    def higher_is_better(self):
        return {
            "acc": True,
            "f1": True
        }

    def aggregation(self):
        return {
            "acc": mean,
            "f1": f1_score
        }
Jason Phang's avatar
Jason Phang committed
426
427


sdtblck's avatar
sdtblck committed
428
class STSB(HFTask):
sdtblck's avatar
sdtblck committed
429
430
    DATASET_PATH = "glue"
    DATASET_NAME = "stsb"
Jason Phang's avatar
Jason Phang committed
431
432
433
434
435
436
437
438
439
440
441
442
443
444

    def has_training_docs(self):
        return True

    def has_validation_docs(self):
        return True

    def has_test_docs(self):
        return True

    def fewshot_description(self):
        return "Indicate if both sentences mean the same thing from a scale of 0-5, " \
           "where 5 means identical and 0 means unrelated."

445
446
    def doc_to_text(self, doc):
        return "sentence 1:\t{}\nsentence 2:\t{}\nanswer:".format(
Jason Phang's avatar
Jason Phang committed
447
448
449
            doc["sentence1"],
            doc["sentence2"],
        )
450
451
452

    def doc_to_target(self, doc):
        return " {}".format(doc["label"])
Jason Phang's avatar
Jason Phang committed
453

Leo Gao's avatar
Leo Gao committed
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
    def construct_requests(self, doc, ctx):
        """ Uses RequestFactory to construct Requests and returns an iterable of 
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural 
            language description, as well as the few shot examples, and the question
            part of the document for `doc`. 
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')
    
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a 
        dict where keys are the names of submetrics and values are the values of 
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')

    def aggregation(self):
        """
        :returns: {str: [float] -> float}
            A dictionary where keys are the names of submetrics and values are 
            functions that aggregate a list of metrics
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')

    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are 
            whether a higher value of the submetric is better
        """
        # TODO: implement evaluation.
        raise NotImplementedError('Evaluation not implemented')