evaluator.py 28.8 KB
Newer Older
Baber Abbasi's avatar
Baber Abbasi committed
1
import itertools
2
import json
3
import logging
Baber Abbasi's avatar
Baber Abbasi committed
4
import random
5
import time
6
7
from collections import defaultdict
from typing import TYPE_CHECKING, List, Optional, Union
Baber Abbasi's avatar
Baber Abbasi committed
8

9
import numpy as np
Baber Abbasi's avatar
Baber Abbasi committed
10
import torch
lintangsutawika's avatar
lintangsutawika committed
11

lintangsutawika's avatar
lintangsutawika committed
12
import lm_eval.api.metrics
lintangsutawika's avatar
lintangsutawika committed
13
import lm_eval.api.registry
Lintang Sutawika's avatar
Lintang Sutawika committed
14
import lm_eval.api.task
Baber Abbasi's avatar
Baber Abbasi committed
15
import lm_eval.models
16
from lm_eval.caching.cache import delete_cache
17
from lm_eval.evaluator_utils import (
Lintang Sutawika's avatar
Lintang Sutawika committed
18
    consolidate_group_results,
19
20
    consolidate_results,
    get_sample_size,
Lintang Sutawika's avatar
Lintang Sutawika committed
21
    get_subtask_list,
22
23
24
25
26
    get_task_list,
    prepare_print_tasks,
    print_writeout,
    run_task_tests,
)
KonradSzafer's avatar
KonradSzafer committed
27
from lm_eval.loggers import EvaluationTracker
28
from lm_eval.loggers.utils import add_env_info, add_tokenizer_info, get_git_commit_hash
Lintang Sutawika's avatar
Lintang Sutawika committed
29
30
31
32
from lm_eval.tasks import (
    TaskManager,
    get_task_dict,
)
33
34
35
36
37
38
from lm_eval.utils import (
    handle_non_serializable,
    hash_string,
    positional_deprecated,
    simple_parse_args_string,
)
39

Fabrizio Milo's avatar
Fabrizio Milo committed
40

41
42
if TYPE_CHECKING:
    from lm_eval.api.model import LM
Lintang Sutawika's avatar
Lintang Sutawika committed
43
    from lm_eval.api.task import Task
44

Lintang Sutawika's avatar
Lintang Sutawika committed
45
46
eval_logger = logging.getLogger(__name__)

47

48
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
49
50
def simple_evaluate(
    model,
51
52
    model_args: Optional[Union[str, dict]] = None,
    tasks: Optional[List[Union[str, dict, object]]] = None,
Baber Abbasi's avatar
Baber Abbasi committed
53
    num_fewshot: Optional[int] = None,
54
    batch_size: Optional[Union[int, str]] = None,
Baber Abbasi's avatar
Baber Abbasi committed
55
56
57
    max_batch_size: Optional[int] = None,
    device: Optional[str] = None,
    use_cache: Optional[str] = None,
58
59
60
    cache_requests: bool = False,
    rewrite_requests_cache: bool = False,
    delete_requests_cache: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
61
    limit: Optional[Union[int, float]] = None,
Ethan Smith's avatar
Ethan Smith committed
62
63
64
65
    bootstrap_iters: int = 100000,
    check_integrity: bool = False,
    write_out: bool = False,
    log_samples: bool = True,
KonradSzafer's avatar
KonradSzafer committed
66
67
    evaluation_tracker: Optional[EvaluationTracker] = None,
    system_instruction: Optional[str] = None,
68
    apply_chat_template: Union[bool, str] = False,
KonradSzafer's avatar
KonradSzafer committed
69
    fewshot_as_multiturn: bool = False,
70
71
    gen_kwargs: Optional[str] = None,
    task_manager: Optional[TaskManager] = None,
Lintang Sutawika's avatar
Lintang Sutawika committed
72
    verbostiy=None,
Baber Abbasi's avatar
Baber Abbasi committed
73
    predict_only: bool = False,
74
75
76
    random_seed: int = 0,
    numpy_random_seed: int = 1234,
    torch_random_seed: int = 1234,
77
    fewshot_random_seed: int = 1234,
Hojin Lee's avatar
Hojin Lee committed
78
    confirm_run_unsafe_code: bool = False,
Baber's avatar
Baber committed
79
    mcq_to_generative: bool = False,
Fabrizio Milo's avatar
Fabrizio Milo committed
80
):
81
    """Instantiate and evaluate a model on a list of tasks.
82

83
84
    :param model: Union[str, LM]
        Name of model or LM object, see lm_eval.models.get_model
85
86
    :param model_args: Optional[str, dict]
        String or dict arguments for each model class, see LM.create_from_arg_string and LM.create_from_arg_object.
87
        Ignored if `model` argument is a LM object.
88
    :param tasks: list[Union[str, dict, Task]]
Leo Gao's avatar
Leo Gao committed
89
        List of task names or Task objects. Task objects will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
90
91
    :param num_fewshot: int
        Number of examples in few-shot context
92
    :param batch_size: int or str, optional
93
        Batch size for model
94
95
    :param max_batch_size: int, optional
        Maximal batch size to try with automatic batch size detection
96
    :param device: str, optional
97
        PyTorch device (e.g. "cpu" or "cuda:0") for running models
haileyschoelkopf's avatar
haileyschoelkopf committed
98
99
    :param use_cache: str, optional
        A path to a sqlite db file for caching model responses. `None` if not caching.
100
101
102
103
104
105
    :param cache_requests: bool, optional
        Speed up evaluation by caching the building of dataset requests. `None` if not caching.
    :param rewrite_requests_cache: bool, optional
        Rewrites all of the request cache if set to `True`. `None` if not desired.
    :param delete_requests_cache: bool, optional
        Deletes all of the request cache if set to `True`. `None` if not desired.
106
107
    :param limit: int or float, optional
        Limit the number of examples per task (only use this for testing), If <1, limit is a percentage of the total number of examples.
108
    :param bootstrap_iters:
109
        Number of iterations for bootstrap statistics, used when calculating stderrs. set to 0 for no stderr calculations to be performed.
Stephen Hogg's avatar
Stephen Hogg committed
110
111
    :param check_integrity: bool
        Whether to run the relevant part of the test suite for the tasks
112
    :param write_out: bool
113
114
115
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
KonradSzafer's avatar
KonradSzafer committed
116
117
    :param system_instruction: str
        System instruction to be applied to the prompt
118
119
120
121
122
    :param apply_chat_template: Union[bool, str]
        Specifies whether to apply a chat template to the prompt.
        - If set to True, the default chat template is applied.
        - If set to a string, applies the specified chat template by name.
        Defaults to False (no chat template applied).
KonradSzafer's avatar
KonradSzafer committed
123
124
    :param fewshot_as_multiturn: bool
        Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
125
126
127
    :param gen_kwargs: str
        String arguments for model generation
        Ignored for all tasks with loglikelihood output_type
Lintang Sutawika's avatar
Lintang Sutawika committed
128
129
    :param verbostiy: str
        Verbosity level for logging
Baber Abbasi's avatar
Baber Abbasi committed
130
131
    :param predict_only: bool
        If true only model outputs will be generated and returned. Metrics will not be evaluated
132
133
134
135
136
137
    :param random_seed: int
        Random seed for python's random module. If set to None, the seed will not be set.
    :param numpy_random_seed: int
        Random seed for numpy. If set to None, the seed will not be set.
    :param torch_random_seed: int
        Random seed for torch. If set to None, the seed will not be set.
138
139
    :param fewshot_random_seed: int
        Random seed for fewshot sampler random generator. If set to None, the seed of generator will be set to None.
Baber Abbasi's avatar
Baber Abbasi committed
140

141
    :return
142
        Dictionary of results
143
    """
Lintang Sutawika's avatar
Lintang Sutawika committed
144
145
    if verbostiy is not None:
        lm_eval.setup_logging(verbosity=verbostiy)
146
    start_date = time.time()
147

148
149
150
151
    if delete_requests_cache:
        eval_logger.info("Deleting requests cache...")
        delete_cache()

152
    seed_message = []
153
154
    if random_seed is not None:
        # See https://github.com/EleutherAI/lm-evaluation-harness/pull/1412
155
        seed_message.append(f"Setting random seed to {random_seed}")
156
157
158
        random.seed(random_seed)

    if numpy_random_seed is not None:
159
        seed_message.append(f"Setting numpy seed to {numpy_random_seed}")
160
161
162
        np.random.seed(numpy_random_seed)

    if torch_random_seed is not None:
163
        seed_message.append(f"Setting torch manual seed to {torch_random_seed}")
164
165
        torch.manual_seed(torch_random_seed)

166
167
168
    if fewshot_random_seed is not None:
        seed_message.append(f"Setting fewshot manual seed to {fewshot_random_seed}")

169
170
171
    if seed_message:
        eval_logger.info(" | ".join(seed_message))

172
173
    if tasks is None:
        tasks = []
174
175
176
177
    if len(tasks) == 0:
        raise ValueError(
            "No tasks specified, or no tasks found. Please verify the task names."
        )
178

lintangsutawika's avatar
lintangsutawika committed
179
180
    if gen_kwargs is not None:
        gen_kwargs = simple_parse_args_string(gen_kwargs)
lintangsutawika's avatar
udate  
lintangsutawika committed
181
        eval_logger.warning(
182
183
            "generation_kwargs specified through cli, these settings will update set parameters in yaml tasks. "
            "Ensure 'do_sample=True' for non-greedy decoding!"
lintangsutawika's avatar
udate  
lintangsutawika committed
184
        )
lintangsutawika's avatar
lintangsutawika committed
185
186
187
        if gen_kwargs == "":
            gen_kwargs = None

188
    if isinstance(model, str):
Fabrizio Milo's avatar
Fabrizio Milo committed
189
        if model_args is None:
190
            eval_logger.warning("model_args not specified. Using defaults.")
Fabrizio Milo's avatar
Fabrizio Milo committed
191
            model_args = ""
192

193
        if isinstance(model_args, dict):
194
195
196
            eval_logger.info(
                f"Initializing {model} model, with arguments: {model_args}"
            )
197
198
199
200
201
202
203
204
205
206
            lm = lm_eval.api.registry.get_model(model).create_from_arg_obj(
                model_args,
                {
                    "batch_size": batch_size,
                    "max_batch_size": max_batch_size,
                    "device": device,
                },
            )

        else:
207
208
209
            eval_logger.info(
                f"Initializing {model} model, with arguments: {simple_parse_args_string(model_args)}"
            )
210
211
212
213
214
215
216
217
            lm = lm_eval.api.registry.get_model(model).create_from_arg_string(
                model_args,
                {
                    "batch_size": batch_size,
                    "max_batch_size": max_batch_size,
                    "device": device,
                },
            )
218
    else:
219
        if not isinstance(model, lm_eval.api.model.LM):
220
221
222
            raise TypeError(
                f"The value of `model` passed to simple_evaluate() was of type {type(model)}, but is required to be a subclass of lm_eval.api.model.LM . This may be because you are passing an initialized Hugging Face PreTrainedModel without having wrapped it in `lm_eval.models.huggingface.HFLM(pretrained=my_model)` first."
            )
223
        eval_logger.info("Using pre-initialized model")
224
        lm = model
225

haileyschoelkopf's avatar
haileyschoelkopf committed
226
    if use_cache is not None:
227
        eval_logger.info(f"Using cache at {use_cache + '_rank' + str(lm.rank) + '.db'}")
haileyschoelkopf's avatar
haileyschoelkopf committed
228
229
230
231
232
        lm = lm_eval.api.model.CachingLM(
            lm,
            use_cache
            # each rank receives a different cache db.
            # necessary to avoid multiple writes to cache at once
233
234
235
            + "_rank"
            + str(lm.rank)
            + ".db",
haileyschoelkopf's avatar
haileyschoelkopf committed
236
237
        )

238
    if task_manager is None:
Baber's avatar
Baber committed
239
        task_manager = TaskManager(mcq_to_generative=mcq_to_generative)
240
241

    task_dict = get_task_dict(tasks, task_manager)
Baber Abbasi's avatar
Baber Abbasi committed
242

Lintang Sutawika's avatar
Lintang Sutawika committed
243
244
245
246
247
248
249
250
251
252
    # helper function to recursively apply config overrides to leaf subtasks, skipping their constituent groups.
    # (setting of num_fewshot ; bypassing metric calculation ; setting fewshot seed)
    def _adjust_config(task_dict):
        adjusted_task_dict = {}
        for task_name, task_obj in task_dict.items():
            if isinstance(task_obj, dict):
                adjusted_task_dict = {
                    **adjusted_task_dict,
                    **{task_name: _adjust_config(task_obj)},
                }
253

254
            else:
Lintang Sutawika's avatar
Lintang Sutawika committed
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
                if task_obj.get_config("output_type") == "generate_until":
                    if gen_kwargs is not None:
                        task_obj.set_config(
                            key="generation_kwargs", value=gen_kwargs, update=True
                        )

                if predict_only:
                    eval_logger.info(
                        f"Processing {task_name} in output-only mode. Metrics will not be calculated!"
                    )
                    # we have to change the class properties post-hoc. This is pretty hacky.
                    task_obj.override_metric(metric_name="bypass")

                # override tasks' fewshot values to the provided num_fewshot arg value
                # except if tasks have it set to 0 manually in their configs--then we should never overwrite that
                if num_fewshot is not None:
                    if (default_num_fewshot := task_obj.get_config("num_fewshot")) == 0:
                        eval_logger.info(
                            f"num_fewshot has been set to 0 for {task_name} in its config. Manual configuration will be ignored."
                        )
                    else:
                        eval_logger.warning(
                            f"Overwriting default num_fewshot of {task_name} from {default_num_fewshot} to {num_fewshot}"
                        )
                        task_obj.set_config(key="num_fewshot", value=num_fewshot)
                else:
                    # if num_fewshot not provided, and the task does not define a default one, default to 0
                    if (
                        default_num_fewshot := task_obj.get_config("num_fewshot")
                    ) is None:
                        task_obj.set_config(key="num_fewshot", value=0)
                # fewshot_random_seed set for tasks, even with a default num_fewshot (e.g. in the YAML file)
                task_obj.set_fewshot_seed(seed=fewshot_random_seed)

                adjusted_task_dict[task_name] = task_obj

        return adjusted_task_dict

    task_dict = _adjust_config(task_dict)
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
294

Stephen Hogg's avatar
Stephen Hogg committed
295
    if check_integrity:
296
        run_task_tests(task_list=tasks)
Stephen Hogg's avatar
Stephen Hogg committed
297

KonradSzafer's avatar
KonradSzafer committed
298
299
300
301
302
    if evaluation_tracker is not None:
        evaluation_tracker.general_config_tracker.log_experiment_args(
            model_source=model,
            model_args=model_args,
            system_instruction=system_instruction,
Baber Abbasi's avatar
Baber Abbasi committed
303
304
305
            chat_template=lm.chat_template(apply_chat_template)
            if apply_chat_template
            else None,
306
            fewshot_as_multiturn=fewshot_as_multiturn,
KonradSzafer's avatar
KonradSzafer committed
307
308
        )

309
310
311
312
    results = evaluate(
        lm=lm,
        task_dict=task_dict,
        limit=limit,
313
314
        cache_requests=cache_requests,
        rewrite_requests_cache=rewrite_requests_cache,
Niklas Muennighoff's avatar
Niklas Muennighoff committed
315
        bootstrap_iters=bootstrap_iters,
316
        write_out=write_out,
Lintang Sutawika's avatar
Lintang Sutawika committed
317
        log_samples=True if predict_only else log_samples,
KonradSzafer's avatar
KonradSzafer committed
318
319
320
        system_instruction=system_instruction,
        apply_chat_template=apply_chat_template,
        fewshot_as_multiturn=fewshot_as_multiturn,
Lintang Sutawika's avatar
Lintang Sutawika committed
321
        verbosity=verbostiy,
Hojin Lee's avatar
Hojin Lee committed
322
        confirm_run_unsafe_code=confirm_run_unsafe_code,
323
    )
Lintang Sutawika's avatar
Lintang Sutawika committed
324
325
    if verbostiy is not None:
        lm_eval.setup_logging(verbosity=verbostiy)
326

327
    if lm.rank == 0:
328
329
330
331
332
333
334
        if isinstance(model, str):
            model_name = model
        elif hasattr(model, "config") and hasattr(model.config, "_name_or_path"):
            model_name = model.config._name_or_path
        else:
            model_name = type(model).__name__

335
336
        # add info about the model and few shot config
        results["config"] = {
337
            "model": model_name,
338
339
            "model_args": model_args,
        }
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
        # add more detailed model info if available
        if isinstance(lm, lm_eval.models.huggingface.HFLM):
            results["config"].update(lm.get_model_info())
        # add info about execution
        results["config"].update(
            {
                "batch_size": batch_size,
                "batch_sizes": (
                    list(lm.batch_sizes.values()) if hasattr(lm, "batch_sizes") else []
                ),
                "device": device,
                "use_cache": use_cache,
                "limit": limit,
                "bootstrap_iters": bootstrap_iters,
                "gen_kwargs": gen_kwargs,
355
356
357
358
                "random_seed": random_seed,
                "numpy_seed": numpy_random_seed,
                "torch_seed": torch_random_seed,
                "fewshot_seed": fewshot_random_seed,
359
360
            }
        )
361
        results["git_hash"] = get_git_commit_hash()
362
        results["date"] = start_date
363
        add_env_info(results)  # additional environment info to results
achervyakov's avatar
achervyakov committed
364
        add_tokenizer_info(results, lm)  # additional info about tokenizer
365
366
367
        return results
    else:
        return None
368

Leo Gao's avatar
Leo Gao committed
369

370
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
371
def evaluate(
372
    lm: "LM",
Fabrizio Milo's avatar
Fabrizio Milo committed
373
    task_dict,
Baber Abbasi's avatar
Baber Abbasi committed
374
    limit: Optional[int] = None,
375
376
    cache_requests: bool = False,
    rewrite_requests_cache: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
377
    bootstrap_iters: Optional[int] = 100000,
Ethan Smith's avatar
Ethan Smith committed
378
379
    write_out: bool = False,
    log_samples: bool = True,
KonradSzafer's avatar
KonradSzafer committed
380
    system_instruction: Optional[str] = None,
381
    apply_chat_template: Union[bool, str] = False,
KonradSzafer's avatar
KonradSzafer committed
382
    fewshot_as_multiturn: bool = False,
383
    verbosity: str = "INFO",
Hojin Lee's avatar
Hojin Lee committed
384
    confirm_run_unsafe_code: bool = False,
Fabrizio Milo's avatar
Fabrizio Milo committed
385
):
386
387
388
389
390
    """Instantiate and evaluate a model on a list of tasks.

    :param lm: obj
        Language Model
    :param task_dict: dict[str, Task]
haileyschoelkopf's avatar
haileyschoelkopf committed
391
        Dictionary of tasks. Tasks will be taken to have name type(task).config.task .
392
393
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
Hojin Lee's avatar
Hojin Lee committed
394
395
396
397
    :param cache_requests: bool, optional
        Speed up evaluation by caching the building of dataset requests.
    :param rewrite_requests_cache: bool, optional
        Rewrites all the request cache if set to `True`.
398
    :param bootstrap_iters:
399
        Number of iterations for bootstrap statistics, used when calculating stderr. Set to 0 for skipping all stderr calculations.
400
    :param write_out: bool
401
402
403
        If True, write out an example document and model input for checking task integrity
    :param log_samples: bool
        If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis
KonradSzafer's avatar
KonradSzafer committed
404
405
    :param system_instruction: str
        System instruction to be applied to the prompt
406
407
408
409
410
    :param apply_chat_template: Union[bool, str]
        Specifies whether to apply a chat template to the prompt.
        - If set to True, the default chat template is applied.
        - If set to a string, applies the specified chat template by name.
        Defaults to False (no chat template applied).
KonradSzafer's avatar
KonradSzafer committed
411
412
    :param fewshot_as_multiturn: bool
        Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
Hojin Lee's avatar
Hojin Lee committed
413
414
415
416
    :param verbosity: str
        Verbosity level for logging
    :param confirm_run_unsafe_code: bool
        Whether to confirm running tasks marked as unsafe.
417
418
419
    :return
        Dictionary of results
    """
420

421
422
423
424
425
    if apply_chat_template:
        eval_logger.warning(
            "Chat template formatting change affects loglikelihood and multiple-choice tasks. See docs/chat-template-readme.md for details."
        )

426
    # tracks all Instances/requests a model must generate output on.
427
    requests = defaultdict(list)
428
429
    # stores the amount to pad out reqs per req. type so that
    # number of fwd passes per distributed rank is equal
430
    padding_requests = defaultdict(int)
431

432
    # get lists of group hierarchy and each type of request
Lintang Sutawika's avatar
Lintang Sutawika committed
433
    eval_tasks = get_task_list(task_dict)
434
    if not log_samples:
435
        if not all(
436
437
            "bypass" not in getattr(task_output.task, "_metric_fn_list", {}).keys()
            for task_output in eval_tasks
438
439
        ):
            raise ValueError("log_samples must be True for 'bypass' metric-only tasks")
440

Hojin Lee's avatar
Hojin Lee committed
441
442
443
    # validation checks:
    # 1.are we running multimodal task <-> non-multimodal model class, or vice-versa.
    # 2.are we running code that is marked as unsafe.
444
    incompatible_tasks = []
445
446
    for task_output in eval_tasks:
        task: Task = task_output.task
447
448
449

        if getattr(lm, "MULTIMODAL", False) != getattr(task, "MULTIMODAL", False):
            incompatible_tasks.append(task_output.task_name)
Hojin Lee's avatar
Hojin Lee committed
450
451
452
453
        elif getattr(task, "UNSAFE_CODE", False) and not confirm_run_unsafe_code:
            raise ValueError(
                f"Attempted to run task: {task_output.task_name} which is marked as unsafe. Set confirm_run_unsafe_code=True to run this task."
            )
454
455
456
457
458
459
460
461
462
    if len(incompatible_tasks) > 0:
        if not getattr(lm, "MULTIMODAL", False):
            raise ValueError(
                f"Attempted to run tasks: {incompatible_tasks} which require multimodal input, but the selected model type does not currently implement this. Multimodal support is currently restricted to the ['hf-multimodal', 'vllm-vlm'] model type."
            )
        else:
            raise ValueError(
                f"Attempted to run tasks: {incompatible_tasks} which are text-only, but used a model type which only currently supports multimodal tasks."
            )
Hojin Lee's avatar
Hojin Lee committed
463
    # end validation check
464

Chenjie Luo's avatar
Chenjie Luo committed
465
466
467
    # Cache the limit arg.
    limit_arg = limit
    limits = []
468
469
470
    for task_output in eval_tasks:
        task: Task = task_output.task

Chenjie Luo's avatar
Chenjie Luo committed
471
472
        limit = get_sample_size(task, limit_arg)
        limits.append(limit)
473
474
475
476
477
478
        task.build_all_requests(
            limit=limit,
            rank=lm.rank,
            world_size=lm.world_size,
            cache_requests=cache_requests,
            rewrite_requests_cache=rewrite_requests_cache,
KonradSzafer's avatar
KonradSzafer committed
479
            system_instruction=system_instruction,
480
            apply_chat_template=bool(apply_chat_template),
KonradSzafer's avatar
KonradSzafer committed
481
            fewshot_as_multiturn=fewshot_as_multiturn,
482
483
484
485
486
487
            chat_template=getattr(lm, "apply_chat_template")
            if apply_chat_template
            else None,
            tokenizer_name=getattr(lm, "tokenizer_name", "")
            if apply_chat_template
            else "",
488
        )
489
        eval_logger.debug(
490
            f"Task: {task_output.task_name}; number of requests on this rank: {len(task.instances)}"
haileyschoelkopf's avatar
haileyschoelkopf committed
491
492
        )
        if write_out:
493
            print_writeout(task)
494
        # aggregate Instances by LM method requested to get output.
lintangsutawika's avatar
lintangsutawika committed
495
496
497
        for instance in task.instances:
            reqtype = instance.request_type
            requests[reqtype].append(instance)
498
499

        if lm.world_size > 1:
500
501
502
503
            instances_rnk = torch.tensor(len(task._instances), device=lm.device)
            gathered_item = (
                lm.accelerator.gather(instances_rnk).cpu().detach().numpy().tolist()
            )
504
505
506
507
508
509
            # "multiple_choice" task types dispatch (several) "loglikelihood" request types
            reqtype = (
                "loglikelihood"
                if task.OUTPUT_TYPE == "multiple_choice"
                else task.OUTPUT_TYPE
            )
510
            # compute number of pseudo-batches to pad with (FSDP/DDP require even batches among ranks)
511
            numpad = max(gathered_item) - gathered_item[lm.rank]
512
513
            # todo: may not account for padding in cases like SquadV2 which has multiple req types
            padding_requests[reqtype] += numpad
514

515
    ### Run LM on inputs, get all outputs ###
Leo Gao's avatar
Leo Gao committed
516
517
    # execute each type of request
    for reqtype, reqs in requests.items():
518
        eval_logger.info(f"Running {reqtype} requests")
519
520
521
522
        # create `K` copies of each request `req` based off `K = req.repeats`
        cloned_reqs = []
        for req in reqs:
            cloned_reqs.extend([req] * req.repeats)
lintangsutawika's avatar
lintangsutawika committed
523

524
525
        if (lm.world_size > 1) and (padding_requests[reqtype] > 0):
            for _ in range(padding_requests[reqtype]):
526
527
                cloned_reqs.extend([req] * req.repeats)

528
529
530
531
532
533
534
        # run requests through model
        resps = getattr(lm, reqtype)(cloned_reqs)

        # put responses from model into a list of length K for each request.
        for x, req in zip(resps, cloned_reqs):
            req.resps.append(x)

535
536
        if lm.world_size > 1:
            lm.accelerator.wait_for_everyone()
537

538
539
    RANK = lm.rank
    WORLD_SIZE = lm.world_size
540
541
    ### Postprocess outputs ###
    # TODO: del model here, maybe (idea: allow user to specify device of e.g. reward model separately)
Chenjie Luo's avatar
Chenjie Luo committed
542
    for task_output, limit in zip(eval_tasks, limits):
543
        task = task_output.task
544
545
        task.apply_filters()

546
547
        ### Collect values of metrics on all datapoints ###
        # # unpack results and sort back in order and return control to Task
haileyschoelkopf's avatar
haileyschoelkopf committed
548
        # TODO: make it possible to use a different metric per filter
549
        # Pre-process task.instances to group by doc_id
550
        instances_by_doc_id = defaultdict(list)
551
552
553
554
555
        for instance in task.instances:
            instances_by_doc_id[instance.doc_id].append(instance)
        # Sort instances within each group
        for instances in instances_by_doc_id.values():
            instances.sort(key=lambda x: x.idx)
haileyschoelkopf's avatar
haileyschoelkopf committed
556
        # iterate over different filters used
557
558
559
        for filter_key in task.instances[0].filtered_resps.keys():
            doc_iterator = task.doc_iterator(
                rank=RANK, limit=limit, world_size=WORLD_SIZE
560
            )
561
            for doc_id, doc in doc_iterator:
562
                requests = instances_by_doc_id[doc_id]
lintangsutawika's avatar
lintangsutawika committed
563
                metrics = task.process_results(
564
                    doc, [req.filtered_resps[filter_key] for req in requests]
lintangsutawika's avatar
lintangsutawika committed
565
                )
566
567
568
569
570
571
572
573
                if log_samples:
                    target = task.doc_to_target(doc)
                    example = {
                        "doc_id": doc_id,
                        "doc": doc,
                        "target": target,
                        "arguments": [req.args for req in requests],
                        "resps": [req.resps for req in requests],
574
575
576
                        "filtered_resps": [
                            req.filtered_resps[filter_key] for req in requests
                        ],
577
578
                        "filter": filter_key,
                        "metrics": list(metrics.keys()),
579
580
581
582
583
584
585
586
587
588
                        "doc_hash": hash_string(
                            json.dumps(
                                requests[0].doc,
                                indent=2,
                                default=handle_non_serializable,
                                ensure_ascii=False,
                            )
                        ),
                        "prompt_hash": hash_string(requests[0].arguments[0]),
                        "target_hash": hash_string(str(target)),
589
590
                    }
                    example.update(metrics)
591
                    task_output.logged_samples.append(example)
592
                for metric, value in metrics.items():
593
                    task_output.sample_metrics[(metric, filter_key)].append(value)
594

595
596
    if WORLD_SIZE > 1:
        # if multigpu, then gather data across all ranks to rank 0
597
        # first gather logged samples across all ranks
598
599
600
601
602
603
604
605
        for task_output in eval_tasks:
            if log_samples:
                # for task_name, task_samples in list(samples.items()):
                full_samples = [None] * WORLD_SIZE if RANK == 0 else None
                torch.distributed.gather_object(
                    obj=task_output.logged_samples,
                    object_gather_list=full_samples,
                    dst=0,
606
                )
607

608
609
610
611
                if RANK == 0:
                    task_output.logged_samples = list(
                        itertools.chain.from_iterable(full_samples)
                    )
612

613
614
615
616
617
618
619
            # then collect metrics across all ranks
            for metrics in task_output.sample_metrics:
                metric_list = [None] * WORLD_SIZE if RANK == 0 else None
                torch.distributed.gather_object(
                    obj=task_output.sample_metrics[metrics],
                    object_gather_list=metric_list,
                    dst=0,
620
                )
621
622
623
624
                if RANK == 0:
                    task_output.sample_metrics[metrics] = list(
                        itertools.chain.from_iterable(metric_list)
                    )
625

626
    if RANK == 0:
627
628
        ### Aggregate results over all datapoints ###
        # aggregate results ; run bootstrap CIs
629
630
        for task_output in eval_tasks:
            task_output.calculate_aggregate_metric(bootstrap_iters=bootstrap_iters)
631
632
633
634
635
636
637
638
        (
            results,
            samples,
            configs,
            versions,
            num_fewshot,
            higher_is_better,
        ) = consolidate_results(eval_tasks)
Fabrizio Milo's avatar
Fabrizio Milo committed
639

640
        ### Calculate group metrics ###
lintangsutawika's avatar
lintangsutawika committed
641
        if bool(results):
Lintang Sutawika's avatar
Lintang Sutawika committed
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
            results, versions, show_group_table, *_ = consolidate_group_results(
                results, versions, task_dict
            )

        results_agg, group_agg = prepare_print_tasks(task_dict, results)
        subtask_list = get_subtask_list(task_dict)

        # collect all higher_is_better values for metrics
        # in the group's subtasks.
        # TODO: clean this up ; unify with the below metric_list loop?
        _higher_is_better = {}
        for group, task_list in subtask_list.items():
            if (
                len(task_list) != 0
            ):  # subtask list will list "task_name": [] for solo tasks
657
658
659
660
                for task in task_list:
                    for m, h in higher_is_better[task].items():
                        if m not in _higher_is_better.keys():
                            _higher_is_better[m] = h
lintangsutawika's avatar
lintangsutawika committed
661

Lintang Sutawika's avatar
Lintang Sutawika committed
662
663
664
665
666
667
668
669
670
671
                        if (
                            m in _higher_is_better
                            and _higher_is_better[m] is not None
                            and _higher_is_better[m] != h
                        ):
                            eval_logger.warning(
                                f"Higher_is_better values for metric {m} in group {group} are not consistent. Defaulting to None."
                            )
                            _higher_is_better[m] = None
                higher_is_better[group] = _higher_is_better
672

673
        results_dict = {
674
            "results": dict(results_agg.items()),
Lintang Sutawika's avatar
Lintang Sutawika committed
675
676
677
678
679
680
            **(
                {"groups": dict(group_agg.items())}
                if (bool(group_agg) & show_group_table)
                else {}
            ),
            "group_subtasks": dict(reversed(subtask_list.items())),
681
682
            "configs": dict(sorted(configs.items())),
            "versions": dict(sorted(versions.items())),
683
            "n-shot": dict(sorted(num_fewshot.items())),
684
            "higher_is_better": dict(sorted(higher_is_better.items())),
685
686
687
            "n-samples": {
                task_output.task_name: {
                    "original": len(task_output.task.eval_docs),
KonradSzafer's avatar
KonradSzafer committed
688
689
690
691
                    "effective": min(
                        limit if limit else len(task_output.task.eval_docs),
                        len(task_output.task.eval_docs),
                    ),
692
                }
Chenjie Luo's avatar
Chenjie Luo committed
693
                for task_output, limit in zip(eval_tasks, limits)
694
            },
695
        }
696
697
698
699
        if log_samples:
            results_dict["samples"] = dict(samples)

        return results_dict
Fabrizio Milo's avatar
Fabrizio Milo committed
700

701
702
    else:
        return None
703
704
705
706


def request_caching_arg_to_dict(cache_requests: str) -> dict:
    request_caching_args = {
707
708
709
        "cache_requests": cache_requests in {"true", "refresh"},
        "rewrite_requests_cache": cache_requests == "refresh",
        "delete_requests_cache": cache_requests == "delete",
710
711
712
    }

    return request_caching_args